This commit is contained in:
2024-09-21 11:20:44 +02:00
parent 2a704749ed
commit 5f0f81a790
42 changed files with 32585 additions and 0 deletions

1027
01_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

156
01_gyak.ipynb Normal file
View File

@ -0,0 +1,156 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg az 1. előadás anyagát tartalmazó Jupyter notebook (01_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Határozzuk meg az alábbi kifejezések értékét! Ahol szükséges, ott használjunk változókat, amelyek értékeit értékadó utasításokkal adjuk meg! Az eredményeket jelenítsük meg kétféle módon is: kifejezésként megadva, ill. a print függvény segítségével!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Hányszor van meg a 111-ben a 27 és mennyi a maradék?\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Egy síkbeli pont távolsága az origótól\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Egy adott sugarú kör területe és kerülete\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Egy adott karakter ASCII kódja\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Egy adott karakter angol kisbetű-e?\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Egy komplex szám abszolút értéke\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Négyzetgyök 2 értéke komplex szám(ok) segítségével meghatározva\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Használjuk a type függvényt különféle típusú kifejezések eredménytípusának a meghatározására!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Próbáljon ki néhány típuskonverziót!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mutassa meg, hogy az előjel vagy a hatványozás művelet az erősebb prioritású a Python-ban!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladatok\n",
"- Két adott, zárt intervallum a valós számagyenesen átfed-e vagy sem?\n",
"- Két adott, síkbeli körnek van-e közös pontja vagy sem?\n",
"- Készítsünk kifejezést a kizáró vagy (xor) logikai műveletre! Ez egy kétoperandusú művelet, ami pontosan akkor igaz, ha az egyik operandus igaz, a másik nem!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

702
02_ea.ipynb Normal file
View File

@ -0,0 +1,702 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Standard adatfolyamok](https://en.wikipedia.org/wiki/Standard_streams)\n",
"\n",
"Az operációs rendszer indításkor minden folyamathoz hozzárendel 3 szabványos adatfolyamot: a [standard bemenetet](https://docs.python.org/3/library/sys.html#sys.stdin), a [standard kimenetet](https://docs.python.org/3/library/sys.html#sys.stdout), és a [standard hibakimenetet](https://docs.python.org/3/library/sys.html#sys.stderr). Alapértelmezés szerint a standard bemenet a billentyűzettel, a standard kimenet és hibakimenet pedig a képernyővel van összekötve. Ez a beállítás módosítható, pl. a standard bemenet érkezhet egy fájlból vagy egy másik programból, a standard kimenet és hibakimenet pedig íródhat fájlba vagy továbbítódhat másik programnak."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Standard bemenet\n",
"\n",
"- A standard bemenetről adatokat bekérni az [input](https://docs.python.org/3/library/functions.html#input) függvény segítségével lehet.\n",
"- Az eredmény sztring típusú. Ha más adattípusra van szükség, akkor a konvertálni kell."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Kérek egy szöveget: alma\n"
]
},
{
"data": {
"text/plain": [
"'alma'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Sztring típusú adat beolvasása.\n",
"s = input('Kérek egy szöveget: ')\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Kérek egy egész számot: 23\n"
]
},
{
"data": {
"text/plain": [
"23"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egész típusú adat beolvasása.\n",
"n = int(input('Kérek egy egész számot: '))\n",
"n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Standard kimenet és hibakimenet\n",
"\n",
"- A standard kimenetre és hibakimenetre kiírni a [print](https://docs.python.org/3/library/functions.html#print) függvény segítségével lehet."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"hello\n",
"bello\n"
]
}
],
"source": [
"# Kiírás a standard kimenetre.\n",
"print('hello')\n",
"print('bello')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"hellobello"
]
}
],
"source": [
"# Kiírás soremelés nélkül.\n",
"print('hello', end='')\n",
"print('bello', end='')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"# Egyetlen soremelés kiírása.\n",
"print()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Hiba történt!\n"
]
}
],
"source": [
"# Kiírás a standard hibakimenetre.\n",
"import sys\n",
"print('Hiba történt!', file=sys.stderr)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [Formázott kiírás](https://docs.python.org/3/tutorial/inputoutput.html#fancier-output-formatting)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Az első megoldás 2.5, a második megoldás 4.78.\n"
]
}
],
"source": [
"# Formázott kiírás f-sztringgel.\n",
"x1 = 2.5\n",
"x2 = 4.78\n",
"print(f'Az első megoldás {x1}, a második megoldás {x2}.')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"első megoldás: 2.5, második megoldás: 4.8\n"
]
}
],
"source": [
"# Kiírás 1 tizedesjegy pontossággal.\n",
"print(f'első megoldás: {x1:.1f}, második megoldás: {x2:.1f}')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"egész szám: 42, sztring: alma\n"
]
}
],
"source": [
"# Egész szám ill. sztring kiírása.\n",
"i = 42\n",
"s = 'alma'\n",
"print(f'egész szám: {i}, sztring: {s}')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Az első megoldás 2.500000, a második megoldás 4.780000.\n"
]
}
],
"source": [
"# Formázott kiírás % operátorral.\n",
"x1 = 2.5\n",
"x2 = 4.78\n",
"print('Az első megoldás %f, a második megoldás %f.' % (x1, x2))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Az első megoldás 2.5, a második megoldás 4.8.\n"
]
}
],
"source": [
"# Kiírás 1 tizedesjegy pontossággal.\n",
"print('Az első megoldás %.1f, a második megoldás %.1f.' % (x1, x2))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Az első megoldás 2.500\n"
]
}
],
"source": [
"# Kiírás adott tizedesjegy pontossággal.\n",
"t = 3\n",
"print(f'Az első megoldás {x1:.{t}f}')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Az első megoldás 2.500\n"
]
}
],
"source": [
"# Kiírás adott tizedesjegy pontossággal.\n",
"t = 3\n",
"print('Az első megoldás %.*f' % (t, x1))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"egész szám: 42, sztring: alma\n"
]
}
],
"source": [
"# Egész szám ill. sztring kiírása.\n",
"i = 42\n",
"s = 'alma'\n",
"print('egész szám: %d, sztring: %s' % (i, s))"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Egy meg egy az 2.'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Megjegyzés: A f-sztring ill. a % operátor\n",
"# kiírás nélkül is alkalmazható, sztringműveletként.\n",
"f'Egy meg egy az {1 + 1}.'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Vezérlési szerkezetek\n",
"\n",
"- Pythonban a vezérlési szerkezetek belsejét indentálással (azaz beljebb írással) kell jelölni.\n",
"- Emiatt garantált, hogy a program megjelenése és logikai jelentése összhangban van."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [if utasítás](https://docs.python.org/3/reference/compound_stmts.html#the-if-statement)\n",
"\n",
"- Szintaxis:\n",
"```\n",
" if FELTÉTEL1:\n",
" UTASÍTÁS1\n",
" elif FELTÉTEL2:\n",
" UTASÍTÁS2\n",
" else:\n",
" UTASÍTÁS3\n",
"```\n",
"\n",
"- Működés:\n",
"``` \n",
" +-----------+ igaz +-----------+\n",
" --->| FELTÉTEL1 |---+-------->| UTASÍTÁS1 |-----------------------------+--->\n",
" +-----------+ | +-----------+ |\n",
" | |\n",
" | hamis +-----------+ igaz +-----------+ |\n",
" +-------->| FELTÉTEL2 |---+-------->| UTASÍTÁS2 |---+\n",
" +-----------+ | +-----------+ |\n",
" | |\n",
" | hamis +-----------+ |\n",
" +-------->| UTASÍTÁS3 |---+\n",
" +-----------+\n",
"```\n",
"- Megjegyzések:\n",
" + Több elif ág is szerepelhet.\n",
" + Az elif ágak és az else ág is elhagyható.\n",
" + Ha az utasítás 1 soros, akkor írható az if-fel elif-fel ill. az else-szel azonos sorba."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hány éves vagy? 16\n",
"Sajnos nem adhatok sört.\n"
]
}
],
"source": [
"# Példa: Kérsz sört?\n",
"x = int(input('Hány éves vagy? '))\n",
"if x < 18:\n",
" print('Sajnos nem adhatok sört.') \n",
"else:\n",
" print('Kérsz sört?')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a: 1\n",
"b: -3\n",
"c: 2\n",
"x1=2.0, x2=1.0\n"
]
}
],
"source": [
"# Példa: Másodfokú egyenlet megoldó.\n",
"\n",
"# együtthatók bekérése\n",
"a = float(input('a: '))\n",
"b = float(input('b: '))\n",
"c = float(input('c: '))\n",
"\n",
"# diszkrimináns kiszámítása\n",
"d = b**2 - 4 * a * c\n",
"\n",
"# elágazás\n",
"if d > 0: \n",
" # 2 megoldás\n",
" x1 = (-b + d**0.5) / (2 * a)\n",
" x2 = (-b - d**0.5) / (2 * a)\n",
" print(f'x1={x1}, x2={x2}')\n",
"elif d == 0: \n",
" # 1 megoldás\n",
" x1 = -b / (2 * a)\n",
" print(f'x1={x1}')\n",
"else:\n",
" # 0 megoldás\n",
" print('Nincs valós megoldása.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [while utasítás](https://docs.python.org/3/reference/compound_stmts.html#the-while-statement)\n",
"\n",
"- Szintaxis:\n",
"```\n",
" while FELTÉTEL:\n",
" UTASÍTÁS\n",
"```\n",
"\n",
"- Működés:\n",
"```\n",
" +----------+ igaz\n",
" +<-----| UTASÍTÁS |--------+\n",
" | +----------+ |\n",
" | |\n",
" | +----------+ | hamis\n",
" ---+----->| FELTÉTEL |--------+-------->\n",
" +----------+ \n",
"```\n",
"- Megjegyzések:\n",
" + Egy jól megírt program esetén az utasítás a feltételt előbb-utóbb hamisra állítja. (Ellenkező esetben, ha a feltétel igaz, akkor az is marad, így végtelen ciklus keletkezik.)\n",
" + Akkor érdemes while ciklust alkalmazni, ha a ciklus elején még nem tudjuk pontosan az iterációk számát."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hány pontot értél el? 10\n",
"Sajnos nem sikerült. Tanulj még!\n",
"Hány pontot értél el? 8\n",
"Sajnos nem sikerült. Tanulj még!\n",
"Hány pontot értél el? 12\n",
"Gratulálok, átmentél!\n"
]
}
],
"source": [
"# Példa: Móricka a programozásvizsgán.\n",
"while int(input('Hány pontot értél el? ')) < 12:\n",
" print('Sajnos nem sikerült. Tanulj még!')\n",
"print('Gratulálok, átmentél!')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Példa végtelen ciklusra.\n",
"#while True:\n",
"# pass # üres utasítás"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [for utasítás](https://docs.python.org/3/reference/compound_stmts.html#the-for-statement)\n",
"\n",
"- Szintaxis:\n",
"```\n",
" for ELEM in SZEKVENCIA:\n",
" UTASÍTÁS\n",
"```\n",
"\n",
"- Működés:\n",
"```\n",
" +----------+ van még elem\n",
" +<-----| UTASÍTÁS |<----------------+ \n",
" | +----------+ |\n",
" | |\n",
" | +---------------------+ |\n",
" ------+----->| vegyük a SZEKVENCIA |------+------------------->\n",
" | következő ELEMÉt | nincs több elem\n",
" +---------------------+\n",
"```\n",
"- Megjegyzések:\n",
" + A szekvencia lehet egész számok folytonos sorozata, de lehet más is (pl. sztring, tuple, lista, halmaz, szótár, megnyitott fájl).\n",
" + Akkor érdemes for ciklust alkalmazni, ha A) a szekvencia már rendelkezésre áll vagy B) a ciklus kezdetekor tudjuk az iterációk számát."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"range(0, 5)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Értéktartomány (range) létrehozása.\n",
"r = range(5)\n",
"r"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0, 1, 2, 3, 4]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(r)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(range(10, 20))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[3, 5, 7, 9, 11]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(range(3, 12, 2))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"n: 5\n",
"1\n",
"4\n",
"9\n",
"16\n",
"25\n"
]
}
],
"source": [
"# Példa: Első n négyzetszám kiírása.\n",
"n = int(input('n: '))\n",
"for i in range(1, n + 1):\n",
" print(i**2)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"n: 5\n",
"*****"
]
}
],
"source": [
"# Példa: n darab * karakter kiírása.\n",
"n = int(input('n: '))\n",
"for i in range(n):\n",
" print('*', end='')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

109
02_gyak.ipynb Normal file
View File

@ -0,0 +1,109 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 2. heti előadás anyagát tartalmazó Jupyter notebook (02_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk programokat az alábbi feladatokra!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Szekvencia\n",
"- Adott egy téglatest három oldalának a hossza. Határozzuk meg a test térfogatát és felszínét!\n",
"- Adott két hallgató a nevével és a tanulmányi átlageredményével. Írjuk ki az adatokat két sorban úgy, hogy egy sorban egy hallgató legyen a két adatával, először a név, aztán az eredmény. Az eredmények legyenek 2 tizedesjegyűek és egymás alá igazítottak!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Szelekció\n",
"- Adott két szám, mint input adat. Kérjük be őket és írjuk ki a kisebbiket! Pl. 3, 2 -> 2; 1, 1 -> 1. A megoldáshoz ne használja a min függvényt!\n",
"- Oldjuk meg a fentebbi két hallgató adatainak kiírását abban az esetben is, amikor nem tudjuk a nevek, ill. az érdemjegyek maximális hosszát (pl. az eredmények ne 1-től 5-ig terjedő valós számok, hanem tetszőleges valós számok legyenek)!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Iteráció\n",
"- Írjuk ki 1-től 10-ig az egész számokat (mindkét ciklusfajtával)!\n",
"- Csak a páros számokat írjuk ki (az előbbi intervallumból)!\n",
"- Általánosítsuk az előző feladatot egy $[a, b]$ zárt intervallumba eső, $c$-vel maradék nélkül osztható egész számok kiírására, ahol $a, b, c$ egész számok!\n",
"- A számokat egy sorba írjuk ki (egy-egy szóközzel elválasztva)!\n",
"- Írjuk ki a valós számokat 0-tól 1-ig egytizedes lépésekkel!\n",
"- Írjunk ki egy $nxn$ -es háromszöget * karakterekből két, egymásba ágyazott for ciklussal!\n",
"- Döntsük el két, pozitív egész számról azt, hogy [relatív prímek](https://hu.wikipedia.org/wiki/Relatív_prímek)-e vagy sem!\n",
"- Határozzuk meg a [binomiális együttható](https://hu.wikipedia.org/wiki/Binomiális_együttható) értékét adott $n>0$ és $n>=k>0$ egész számokra!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladatok\n",
"- Egy szobát szeretnénk kifesteni. Ismerjuk a szoba (mint téglatest) három oldalának hosszát (méterben), az ablakok és az ajtók összes felületét (négyzetméterben), valamint azt, hogy 1 liter festék hány négyzetméter lefestésére elegendő. Meghatározandó, hogy hány liter festék szükséges a szoba falainak és mennyezetének egyszeri lefestéséhez (a padlót, az ablakokat és az ajtókat nem kell lefesteni)!\n",
"- Kérjünk be három számot és írjuk ki a legkisebbet! A megoldáshoz ne használja a min függvényt!\n",
"- Határozzuk meg két adott, síkbeli egyenes metszéspontját!\n",
"- Bővítsük az előadás másodfokú egyenlet megoldó programját úgy, hogy az komplex gyököket is meghatározzon!\n",
"- Képzeljünk el egy olyan céltáblát, aminek a középpontja az origó és a találati körök sugara egyesével nő, azaz a legkisebb kör 1, a legnagyobb 10 sugarú. Meghatározandó egy adott lövés (mint síkbeli pont) találata! Ha a lövés a legkisebb (1 sugarú) körben van, akkor 10-t ér, ha abban nincs, de a 2 sugarú körben benne van, akkor 9-t, és így tovább. Ha a 10-es sugarú körben sincs benne, akkor 0-t ér. Egy köríven lévő pontot a körbe esőnek vegyünk (pl. az (1, 0) pont 10-est ér). A megoldást (lehetőleg) ne egy 11 ágú szelekcióval (vagy iterációval) végezzük!\n",
"- Határozzuk meg két pozitív egész szám legnagyobb közös osztóját, ill. legkisebb közös többszörösét!\n",
"- Írjuk ki a [Pascal háromszög](https://hu.wikipedia.org/wiki/Pascal-háromszög) első $n$ darab sorát, ahol $n$ értéke legyen input adat!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

1066
03_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

77
03_gyak.ipynb Normal file
View File

@ -0,0 +1,77 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 3. heti előadás anyagát tartalmazó Jupyter notebook (03_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Próbáljunk ki (hívjunk meg) néhány, sztringekhez tartozó metódust (pl. count, strip, ... )!\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk programokat az alábbi feladatokra!\n",
"- Határozzuk meg egy komplex szám konjugáltját, valós és képzetes részét!\n",
"- Számoljuk ki 60 fok színuszát! Ellenőrizzük a megoldást úgy, hogy kiszámoljuk négyzetgyök 3 felét is!\n",
"- Határozzuk meg egy polárkoordinátákkal adott (r, φ) síkbeli pont derékszögű koordinátáit! A φ szög fokban adott! Pl. (1, 90) -> (0, 1)\n",
"- Alakítsunk át egy angol kisbetűt úgy, hogy az ábécé következő karakterét kapjuk! A 'z' betűből 'a' legyen! Pl. 'a' -> 'b'\n",
"- Generáljunk véletlenszerűen egy angol betűt! Próbáljuk szelekció nélkül (is) megoldani a feladatot!\n",
"- Generáljunk véletlenszerűen egy Neptun kódot! A Neptun kód egy 6 db karakterből álló sztring, amelyben angol nagybetűk és számjegy karakterek lehetnek!\n",
"- Írjuk ki azt, hogy hány bájton tárolódnak a magyar ékezetes kisbetűk! A megoldás ne csak szekvenciát tartalmazzon!\n",
"- Írjunk ki egy $nxn$ -es háromszöget * karakterekből egy db ciklus segítségével!\n",
"- Írjuk ki egy sztring karaktereit fordított sorrendben! Pl. 'abc' -> 'cba'\n",
"- Fordítsuk meg egy sztring karaktereinek sorrendjét! Pl. 'Réti pipitér' -> 'rétipip itéR'\n",
"- Határozzuk meg az angol kisbetűs magánhangzók darabszámát egy sztringben! Pl. 'Almafa, körtefa' -> 4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladatok\n",
"- Készítsünk egyszerű számkitalálós játékot! Generáljunk egy véletlen egész számot 1-től 100-ig, majd kérjünk be tippeket a felhasználótól mindaddig, amíg a felhasználó el nem találja a generált számot! A program minden tipp után írja ki, hogy a megadott tipp kicsi, nagy vagy helyes volt-e!\n",
"- Valósítsuk meg a Caesar-kódolást adott eltolással egy csak angol kisbetűket tartalmazó szövegre! Pl. az 'abz' szöveg 1-es eltolással kódolt alakja: 'bca', a 'venividivici' szöveg 3-as eltolással kódolt alakja: 'yhqlylglylfl'."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

990
04_ea.ipynb Normal file
View File

@ -0,0 +1,990 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Kollekciók"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [Tuple](https://docs.python.org/3/library/stdtypes.html#tuples)\n",
"\n",
"- A tuple természetes számokkal indexelhető, nem módosítható tömb.\n",
"- Az elemeknek nem kell azonos típusúnak lenniük.\n",
"- Az indexelés O(1), a tartalmazásvizsgálat O(n) időben fut le, ahol n a tuple elemszáma."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Hozzunk létre egy t nevű, 3 elemű tuple változót!\n",
"t = (20, 30, 40)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(20, 30, 40)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tuple"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ellenőrizzük t típusát!\n",
"type(t)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az elemek számát a len függvénnyel kérdezhetjük le.\n",
"len(t)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Tuple elemeinek elérése (az indexelés 0-tól indul).\n",
"t[0]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t[1]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"40"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t[2]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "'tuple' object does not support item assignment",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[8], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Az elemeken nem lehet módosítani!\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m t[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\n",
"\u001b[1;31mTypeError\u001b[0m: 'tuple' object does not support item assignment"
]
}
],
"source": [
"# Az elemeken nem lehet módosítani!\n",
"t[0] = 100"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# A t változó persze kaphat új értéket.\n",
"t = (100, 30, 40)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Az elemeknek nem kell azonos típusúnak lenniük.\n",
"t = (10, 2.5, 'alma', False, (10, 20))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(10, 2.5, 'alma', False, (10, 20))"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Tartalmazásvizsgálat.\n",
"'alma' in t"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"'körte' in t"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Amennyiben nem okoz kétértelműséget, a ( és ) határoló elhagyható!\n",
"t = 20, 30, 40"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(20, 30, 40)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tuple"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(t)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"()"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Üres tuple létrehozása.\n",
"()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# Egy elemű tuple létrehozása.\n",
"t = (42,)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(42,)"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [Lista](https://docs.python.org/3/library/stdtypes.html#lists)\n",
"\n",
"- A tuple módosítható változata. Új elemet is hozzá lehet adni, ill. meglévő elemeken is lehet módosítani.\n",
"- Az indexelés O(1), a tartalmazásvizsgálat O(n) időben fut le itt is."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# Hozzunk létre egy l nevű, 4 elemű listaváltozót!\n",
"# Az elemeknek nem kell azonos típusúnak lenniük.\n",
"l = [2, 3, 4, 'körte']"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(list, 4)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ellenőrizzük l típusát, és kérdezzük le az elemek számát!\n",
"type(l), len(l)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Lista elemeinek elérése (az indexelés 0-tól indul).\n",
"l[0]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l[1]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[24], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m l[\u001b[38;5;241m4\u001b[39m]\n",
"\u001b[1;31mIndexError\u001b[0m: list index out of range"
]
}
],
"source": [
"l[4]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# Listaelem módosítása.\n",
"l[0] = 100"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[100, 3, 4, 'körte']"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# Listába elemként beágyazhatunk másik listát.\n",
"l = [10, 20, 30, [40, 50]]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20, 30, [40, 50]]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"# Elem hozzáfűzése a lista végére.\n",
"l.append('sör')"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20, 30, [40, 50], 'sör']"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"# Elem beszúrása a lista adott indexű helyére.\n",
"l.insert(1, 'bor')"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 'bor', 20, 30, [40, 50], 'sör']"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Tartalmazásvizsgálat.\n",
"'sör' in l"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"40 in l"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Elem indexének meghatározása (az első előfordulásé).\n",
"l.index(20)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "42 is not in list",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[37], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m l\u001b[38;5;241m.\u001b[39mindex(\u001b[38;5;241m42\u001b[39m)\n",
"\u001b[1;31mValueError\u001b[0m: 42 is not in list"
]
}
],
"source": [
"l.index(42)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20, 30, 40, 50]"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egy szekvencia összes elemének hozzáfűzése a listához.\n",
"l = [10, 20, 30]\n",
"l.extend([40, 50])\n",
"l"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20, 30, [40, 50]]"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az extend különbözik az append-től!\n",
"l = [10, 20, 30]\n",
"l.append([40, 50])\n",
"l"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Adott indexű elem törlése.\n",
"l.pop(2)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20, [40, 50]]"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[40, 50]"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Utolsó elem törlése.\n",
"l.pop()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20]"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 20, 30, 'Pisti', 'Józsi']"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Két lista összefűzése egy új listába.\n",
"[10, 20, 30] + ['Pisti', 'Józsi']"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Lista többszörözése.\n",
"[0, 1] * 10"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Üres lista létrehozása.\n",
"[]"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[[1, 2, 3], [4, 5, 6]]"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egy 2x3-as mátrix\n",
"m = [[1, 2, 3], [4, 5, 6]]\n",
"m"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Konverzió\n",
"\n",
"Ezen adattípusok nevei is használhatók függvényként az adott adattípusra való konvertálásra, amennyiben a konverziónak van értelme."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 2, 3)"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tuple([1, 2, 3]) # list => tuple"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[4, 5, 6]"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list((4, 5, 6)) # tuple => list"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'[10, 20]'"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"str([10, 20])"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "int() argument must be a string, a bytes-like object or a real number, not 'list'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[51], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28mint\u001b[39m([\u001b[38;5;241m10\u001b[39m, \u001b[38;5;241m20\u001b[39m])\n",
"\u001b[1;31mTypeError\u001b[0m: int() argument must be a string, a bytes-like object or a real number, not 'list'"
]
}
],
"source": [
"int([10, 20])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

73
04_gyak.ipynb Normal file
View File

@ -0,0 +1,73 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 4. heti előadás anyagát tartalmazó Jupyter notebook (04_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Próbáljunk ki (hívjunk meg) néhány, a sorokhoz, ill. a listákhoz tartozó metódust (pl. count, pop, ... )!\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk programokat az alábbi feladatokra! Ne használjon olyan dolgokat, amelyekről még nem volt szó az előadáson (pl. sum, min, max függvények)!\n",
"- Határozzuk meg az összegét, átlagát, legkisebb és legnagyobb elemét egy számokat tartalmazó adatsornak! Pl. 3, 5, 2, 6 => összeg: 16, átlag: 4.0, minimum: 2, maximum: 6.\n",
"- Fizessünk ki egy euróban adott egész összeget a lehető legkevesebb címlet felhasználásával! Az euró címletei: 500, 200, 100, 50, 20, 10, 5, 2, 1 (amiket egy tuple segítségével kezeljünk)! Pl. 905 -> 1 db 500, 2 db 200, 1 db 5. \n",
"- Fordítsuk meg egy sztring karaktereinek sorrendjét lista segítségével! Pl. 'abc' -> 'cba'. (Tipp: használja a list.reverse és a str.join metódusokat!)\n",
"- Töröljünk ki egy adatsorból egy adott értéket, ahányszor csak előfordul! Pl. 1, 2, 1, 3-ból az 1-t -> 2, 3.\n",
"- Határozzuk meg egy adott mátrix sorminimumait! Feltehető, hogy a mátrix (mint listák listája) helyes (azaz minden sora ugyanolyan hosszú, minden elem azonos típusú, amelyekre értelmezett az összehasonlítás)! Az eredmény egy listába kerüljön!\n",
"- Oldjuk meg az előző feladatot úgy, hogy a sorminimumok helyett az oszlopmaximumokat határozzuk meg!\n",
"- Döntsük el egy négyzetes mátrixról, hogy szimmetrikus-e vagy sem! Ha minden elem megegyezik a főátlóra vetített tükörképével ($a_{i,j}=a_{j,i}$) akkor szimmetrikus, egyébként nem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladatok\n",
"- Egy műkorcsolyaversenyen N (>=1) versenyző indul és M (>=3) bíró pontoz. Minden versenyző minden bírótól pontosan egy db pontot kap (ami 0-tól 6-ig egy valós szám)! Ismerjük a versenyzők nevét, nemzetiségét (3 betűs sztring), és a bíróktól kapott pontjaikat. Számítsuk ki a versenyzők átlagpontjait, majd készítsünk olyan listát, amelyben a versenyzők összes adata (név, nemzetiség, pontok, átlagpont) szerepel! Minden versenyző legyen külön sorban, a pontok két tizedesjeggyel jelenjenek meg, egymás alá igazítva!\n",
"- Oldjuk meg a feladatot úgy is, hogy az átlagpontba az adott versenyző legnagyobb és legkisebb pontjának egy-egy előfordulását nem számítjuk be (a bírók részrehajlását elkerülendő)!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

836
05_ea.ipynb Normal file
View File

@ -0,0 +1,836 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Kollekciók"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [Halmaz](https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset)\n",
"\n",
"- A halmaz adattípus a matematikai halmazfogalom számítógépes megfelelője.\n",
"- Halmazt indexelni nem lehet, a tartalmazásvizsgálat O(1) időben fut le."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Hozzunk létre egy s nevű halmazváltozót!\n",
"s = {10, 20, 30}"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(set, 3)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ellenőrizzük s típusát és elemszámát!\n",
"type(s), len(s)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Tartalmazásvizsgálat.\n",
"20 in s"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"21 in s"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Elem hozzáadása a halmazhoz.\n",
"s.add(40)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{10, 20, 30, 40}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{1, 2, 3, 4, 5, 6, 7}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Halmazműveletek.\n",
"{1, 2, 3, 4, 5} | {4, 5, 6, 7} # unió"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{4, 5}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{1, 2, 3, 4, 5} & {4, 5, 6, 7} # metszet"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{1, 2, 3}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{1, 2, 3, 4, 5} - {4, 5, 6, 7} # kivonás"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{6, 7}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{4, 5, 6, 7} - {1, 2, 3, 4, 5}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{10, 2.5, 'alma'}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az elemek típusa nem feltétlenül azonos.\n",
"{10, 2.5, 'alma'}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{(20, 30), 10, 2.5, 'alma'}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A halmazba bármilyen nem módosítható típusú elemet be lehet tenni.\n",
"{10, 2.5, 'alma', (20, 30)}"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "unhashable type: 'list'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[13], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# ...módosíthatót viszont nem lehet!\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m {\u001b[38;5;241m10\u001b[39m, \u001b[38;5;241m2.5\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124malma\u001b[39m\u001b[38;5;124m'\u001b[39m, [\u001b[38;5;241m20\u001b[39m, \u001b[38;5;241m30\u001b[39m]}\n",
"\u001b[1;31mTypeError\u001b[0m: unhashable type: 'list'"
]
}
],
"source": [
"# ...módosíthatót viszont nem lehet!\n",
"{10, 2.5, 'alma', [20, 30]}"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Elem eltávolítása.\n",
"s = {20, 30, 40}\n",
"s.remove(20)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{30, 40}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"40\n",
"20\n",
"30\n"
]
}
],
"source": [
"# Iterálás egy halmaz elemein (a sorrend meglepő is lehet).\n",
"s = {20, 30, 40}\n",
"for x in s:\n",
" print(x)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"set()"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Üres halmaz létrehozása.\n",
"set()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### [Szótár](https://docs.python.org/3/library/stdtypes.html#mapping-types-dict)\n",
"\n",
"- A szótár kulcs-érték párok halmaza, ahol a kulcsok egyediek.\n",
"- A kulcs lehet egyszerű típus, tuple vagy bármely módosíthatatlan adatszerkezet.\n",
"- Indexelni a kulccsal lehet, O(1) időben."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# Hozzunk létre egy d nevű szótárváltozót!\n",
"d = {'a': 10, 'b': 20}"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 10, 'b': 20}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ellenőrizzük le d típusát és elemszámát!\n",
"type(d)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(d)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Létező kulcshoz tartozó érték lekérdezése.\n",
"d['b']"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "'banán'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[23], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Nem létező kulcshoz tartozó érték lekérdezése.\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m d[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbanán\u001b[39m\u001b[38;5;124m'\u001b[39m]\n",
"\u001b[1;31mKeyError\u001b[0m: 'banán'"
]
}
],
"source": [
"# Nem létező kulcshoz tartozó érték lekérdezése.\n",
"d['banán']"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# Kulcshoz tartozó érték módosítása.\n",
"d['a'] = 100"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 100, 'b': 20}"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# Új kulcs-érték pár beszúrása.\n",
"d['cc'] = 'valami'"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 100, 'b': 20, 'cc': 'valami'}"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# Kulcs-érték pár törlése.\n",
"del d['b']"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 100, 'cc': 'valami'}"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Benne van-e egy kulcs a szótárban?\n",
"'cc' in d"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"'xx' in d"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"100 in d"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{(10, 20): 'sör', (30, 40): 'bor'}"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Akár tuple is lehet szótárkulcs.\n",
"{(10, 20): 'sör', (30, 40): 'bor'}"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a\n",
"b\n",
"c\n"
]
}
],
"source": [
"# Iterálás egy szótár elemein.\n",
"d = {'a': 1, 'b': 2, 'c': 3}\n",
"for x in d:\n",
" # x-ben csak az aktuális kulcs van.\n",
" print(x)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a 1\n",
"b 2\n",
"c 3\n"
]
}
],
"source": [
"# Iterálás egy szótár elemein.\n",
"d = {'a': 1, 'b': 2, 'c': 3}\n",
"for x in d:\n",
" # Most a kulcsokhoz tartozó értékeket is kiírjuk.\n",
" print(x, d[x])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{}"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Üres szótár létrehozása.\n",
"{}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Konverzió\n",
"\n",
"Ezen adattípusok nevei is használhatók függvényként az adott adattípusra való konvertálásra, amennyiben a konverziónak van értelme."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{1, 2}"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"set((1, 1, 2)) # tuple => set"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{1, 2}"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"set([1, 1, 2]) # list => set"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': 1, 'b': 2}"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dict([('a', 1), ('b', 2)]) # párok listája => dict"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['a', 'b']"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list({'a': 1, 'b': 2}) # szótárkulcsok listája"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('a', 1), ('b', 2)]"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list({'a': 1, 'b': 2}.items()) # dict => párok listája"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

83
05_gyak.ipynb Normal file
View File

@ -0,0 +1,83 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg az 5. heti előadás anyagát tartalmazó Jupyter notebook (05_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Egy hallgatói adatnyilvántartás\n",
"Készítsünk megfelelő adatszerkezete(ke)t egy hallgatói adatnyilvántartáshoz! A megkötéseket több lépésben adjuk meg, így a megoldások is több lépésben készíthetők el (mindig csak az adott lépésre fókuszálva)!\n",
"1. Egy hallgató adatai: név, Neptun kód, érdemjegyek. Minden hallgató ugyanazokat a tárgyakat tanulja (pl. 3 db tárgyat) és egy tárgyból mindenkinek pontosan egy db jegye van. \n",
"2. Legyen több (pl. két) hallgató a nyilvántartásban!\n",
"3. A tárgyaknak legyenek nevei!\n",
"4. A Neptun kód csak egyedi lehessen!\n",
"5. A hallgatók tanulhassanak különböző tárgyakat!\n",
"6. A hallgatók egy tárgyból több jegyet is kaphassanak!\n",
"7. A hallgatóknak lehessenek kedvenc tárgyai!\n",
"8. A hallgatók egyes adatait ne indexekkel, hanem nevekkel (Név, Neptun kód, Jegyek, Kedvencek) lehessen hivatkozni!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk programokat az alábbi feladatokra! A megoldásoknál csak a tananyagban eddig elhangzott ismereteket használjuk!\n",
"- Határozzuk meg egy sztring különböző karaktereinek számát!\n",
"- Generáljunk véletlenszerűen ötöslottó számokat, azaz 5 db különböző egész számot az [1, 90] intervallumból!\n",
"- Generáljuk az $1, 2, ..., n$ számoknak egy véletlenszerű permutációját/sorrendjét!\n",
"- Adott $n$ személy életkora és testsúlya, amelyek egész számok. Határozzuk meg az egyes életkorokra vonatkozó átlagos testsúly értékeket! "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladat\n",
"- 'Gyúrjuk egybe' a hallgatói adatnyilvántartás lépéseit, azaz készítsünk olyan adatstruktúrát, ami az összes felmerült igényt képes 'kiszolgálni'!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

761
05_gyak_mego.ipynb Normal file
View File

@ -0,0 +1,761 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Egy hallgatói adatnyilvántartás\n",
"A megoldásokat több lépésben készítjük el, az adott lépésekre fókuszálva."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. lépés \n",
"Egy hallgató adatai: név, Neptun kód, érdemjegyek. Minden hallgató ugyanazokat a tárgyakat tanulja (pl. 3 db tárgyat) és egy tárgyból mindenkinek pontosan egy db jegye van."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('Gipsz Jakab', 'ABC123', 1, 2, 3)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ha az adatok nem módusulnak, akkor a tuple is megfelelő \n",
"('Gipsz Jakab', 'ABC123', 1, 2, 3)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Gipsz Jakab', 'ABC123', 1, 2, 3]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ha az adatok módusulhatnak, akkor a lista a megfelelő \n",
"['Gipsz Jakab', 'ABC123', 1, 2, 3]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'ABC123'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egy változóban is tárolhatók az adatok, ha később hivatkozni szeretnénk rá\n",
"h = ('Gipsz Jakab', 'ABC123', 1, 2, 3)\n",
"# A hallgató Neptun kódja (feltételezve a fenti adatsorrendet)\n",
"h[1]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Gipsz Jakab', 'XYZ000', 1, 2, 3]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Lista esetén módosíthatók is az adatok\n",
"h = ['Gipsz Jakab', 'ABC123', 1, 2, 3]\n",
"# A Neptun kód módosítása\n",
"h[1] = 'XYZ000'\n",
"h"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. lépés \n",
"Legyen több hallgató a nyilvántartásban!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gipsz Jakab\n",
"5\n"
]
}
],
"source": [
"# A hallgatókat (most két hallgatót) egy tuple-ben adjuk meg\n",
"\n",
"# Egy hallgató adatai tuple-ben\n",
"h = (('Gipsz Jakab', 'ABC123', 1, 2, 3),\n",
" ('Wincs Eszter', 'XYZ000', 2, 4, 5))\n",
"\n",
"# Az első hallgató neve\n",
"print(h[0][0])\n",
"\n",
"# Az utolsó hallgató 3. jegye\n",
"print(h[len(h) - 1][4])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "'tuple' object does not support item assignment",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-6-0a64637030d2>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# Az adatok nem módosíthatók\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mh\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m: 'tuple' object does not support item assignment"
]
}
],
"source": [
"# Az adatok nem módosíthatók\n",
"h[1][4] = 2"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['Gipsz Jakab', 'ABC123', 1, 2, 3], ['Wincs Eszter', 'XYZ000', 2, 4, 5]]\n",
"[['Móricka', 'XXX999', 1, 1, 1], ['Wincs Eszter', 'XYZ000', 2, 4, 5]]\n",
"[['Móricka', 'XXX999', 1, 1, 1], ['Wincs Eszter', 'XYZ000', 2, 4, 3]]\n"
]
}
],
"source": [
"# A hallgatókat (most két hallgatót) egy listában adjuk meg\n",
"\n",
"# Egy hallgató adatai listában\n",
"h = [['Gipsz Jakab', 'ABC123', 1, 2, 3],\n",
" ['Wincs Eszter', 'XYZ000', 2, 4, 5]]\n",
"\n",
"print(h)\n",
"\n",
"# Az adatok módosíthatók\n",
"h[0] = ['Móricka', 'XXX999', 1, 1, 1]\n",
"print(h)\n",
"h[1][4] = 3 \n",
"print(h)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A jegyek elkülönítve is kezelhetők (például egy-egy listában)\n",
"h1 = [['Gipsz Jakab', 'ABC123', [1, 2, 3]],\n",
" ['Wincs Eszter', 'XYZ000', [2, 4, 5]]]\n",
"# Az első hallgató első jegye\n",
"h1[0][2][0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. lépés \n",
"A tárgyaknak legyenek nevei!"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('Matematika', 'Fizika', 'Programozás')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egy külön változóba vesszük fel a tárgyak neveit (ahelyett, hogy minden hallgatóhoz felvennénk őket)\n",
"t = ('Matematika', 'Fizika', 'Programozás')\n",
"t"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['Móricka', 'XXX999', 1, 1, 1], ['Wincs Eszter', 'XYZ000', 2, 4, 3]]\n",
"Móricka 1 Matematika\n"
]
}
],
"source": [
"# A jegyek és a tárgyak sorrendje megegyező\n",
"print(h)\n",
"# Az első hallgató neve, első jegye és hozzá tartozó tárgy neve\n",
"print(h[0][0], h[0][2], t[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. lépés \n",
"A Neptun kód legyen egyedi!"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['Gipsz Jakab', 'ABC123', 1, 2, 3],\n",
" ['Móricka', 'XXX999', 1, 1, 1],\n",
" ['Wincs Eszter', 'ABC123', 2, 4, 5]]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A lista nem 'védi' az egyediséget (azaz megenged egyforma Neptun kódokat)\n",
"h = [['Gipsz Jakab', 'ABC123', 1, 2, 3],\n",
" ['Móricka', 'XXX999', 1, 1, 1],\n",
" ['Wincs Eszter', 'ABC123', 2, 4, 5]]\n",
"h"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'ABC123': ['Wincs Eszter', 2, 4, 5], 'XXX999': ['Móricka', 1, 1, 1]}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A szótár viszont csak egyedi kulcsokat enged meg\n",
"# A Neptun kód a kulcs, az értékek pedig az egyes hallgatók adatai egy-egy listában\n",
"# Azonos kulcs esetén az utoljára felvett adat marad csak meg a szótárban\n",
"h = {'ABC123':['Gipsz Jakab', 1, 2, 3],\n",
" 'XXX999':['Móricka', 1, 1, 1],\n",
" 'ABC123':['Wincs Eszter', 2, 4, 5]}\n",
"h"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "0",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-13-919b098136b6>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# A hallgatók elérése a szótárban már nem történhet index segítségével\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mh\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mKeyError\u001b[0m: 0"
]
}
],
"source": [
"# A hallgatók elérése a szótárban már nem történhet index segítségével\n",
"h[0]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Wincs Eszter', 2, 4, 5]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A kulccsal kell indexelni\n",
"h['ABC123']"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Wincs Eszter'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egy adat elérése is csak a 'hallgatón keresztül' történhet\n",
"# Az ABC123 Neptun kódú hallgató neve\n",
"h['ABC123'][0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. lépés \n",
"A hallgatók tanulhassanak különböző tárgyakat!"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['Gipsz Jakab', 'ABC123', {'Matematika': 1, 'Fizika': 2, 'Programozás': 3}],\n",
" ['Móricka', 'XXX999', {'Mechanika': 1}],\n",
" ['Wincs Eszter', 'AAA123', {'Fizika': 2, 'Testnevelés': 5}]]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A tantárgyaknak a hallgatókhoz kell tartozni, így szótár a megfelelő adatstruktúra\n",
"h = [['Gipsz Jakab', 'ABC123', {'Matematika':1, 'Fizika':2, 'Programozás':3}],\n",
" ['Móricka', 'XXX999', {'Mechanika':1}],\n",
" ['Wincs Eszter', 'AAA123', {'Fizika':2, 'Testnevelés':5}]]\n",
"h"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az első hallgató hány tárgyat tanul\n",
"len(h[0][2])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Tanul-e fizikát az első hallgató?\n",
"'Fizika' in h[0][2]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Hányast kapott belőle?\n",
"h[0][2]['Fizika']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. lépés \n",
"A hallgatók egy tárgyból több jegyet is kaphassanak!"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['Gipsz Jakab',\n",
" 'ABC123',\n",
" {'Matematika': [1, 2], 'Fizika': [2, 3], 'Programozás': [3, 4, 1]}],\n",
" ['Móricka', 'XXX999', {'Mechanika': [1, 1, 1]}],\n",
" ['Wincs Eszter', 'AAA123', {'Fizika': [2], 'Testnevelés': [5, 5, 5]}]]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A tantárgyakhoz az 1 db érdemjegy helyett többet rendelünk (tuple vagy lista, itt most listát használunk)\n",
"h = [['Gipsz Jakab', 'ABC123', {'Matematika':[1, 2], 'Fizika':[2, 3], 'Programozás':[3, 4, 1]}],\n",
" ['Móricka', 'XXX999', {'Mechanika':[1, 1, 1]}],\n",
" ['Wincs Eszter', 'AAA123', {'Fizika':[2], 'Testnevelés':[5, 5, 5]}]]\n",
"h"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[2, 3]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az első hallgató jegyei fizikából\n",
"h[0][2]['Fizika']"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Gipsz Jakab',\n",
" 'ABC123',\n",
" {'Matematika': [1, 2], 'Fizika': [2, 3, 5], 'Programozás': [3, 4, 1]}]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az első hallgató kapott egy új jegyet (egy 5-t) fizikából\n",
"h[0][2]['Fizika'].append(5)\n",
"h[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7. lépés \n",
"A hallgatóknak lehessenek kedvenc tárgyai!"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[['Gipsz Jakab',\n",
" 'ABC123',\n",
" {'Matematika': 1, 'Fizika': 2, 'Programozás': 3},\n",
" {'Fizika'}],\n",
" ['Móricka', 'XXX999', {'Mechanika': 1}, {}],\n",
" ['Wincs Eszter',\n",
" 'AAA123',\n",
" {'Fizika': 2, 'Testnevelés': 5},\n",
" {'Fizika', 'Testnevelés'}]]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A halmaz a megfelelő adatstruktúra a kedvenc tárgyaknak, felvesszük a hallgatókhoz (most utolsó adatként)\n",
"h = [['Gipsz Jakab', 'ABC123', {'Matematika':1, 'Fizika':2, 'Programozás':3}, {'Fizika'}],\n",
" ['Móricka', 'XXX999', {'Mechanika':1}, {}],\n",
" ['Wincs Eszter', 'AAA123', {'Fizika':2, 'Testnevelés':5}, {'Testnevelés', 'Fizika'}]]\n",
"h"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Van-e kedvenc tárgya az első hallgatónak?\n",
"len(h[0][3]) > 0\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az utolsó hallgató kedveli-e a Fizikát?\n",
"'Fizika' in h[len(h) - 1][3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8. lépés \n",
"A hallgatók egyes adatait ne indexekkel, hanem nevekkel (Név, Neptun kód, Jegyek, Kedvencek) lehessen hivatkozni!"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'Név': 'Gipsz Jakab',\n",
" 'Neptun kód': 'ABC123',\n",
" 'Jegyek': {'Fizika': 5},\n",
" 'Kedvencek': {'Fizika'}},\n",
" {'Név': 'Móricka',\n",
" 'Neptun kód': 'XXX999',\n",
" 'Jegyek': {'Mechanika': 1},\n",
" 'Kedvencek': {}},\n",
" {'Név': 'Wincs Eszter',\n",
" 'Neptun kód': 'AAA123',\n",
" 'Jegyek': {'Fizika': 2, 'Testnevelés': 5},\n",
" 'Kedvencek': {'Fizika', 'Testnevelés'}}]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Ehhez az egyes hallgatók adatait szótárba kell tennünk\n",
"h = [{'Név':'Gipsz Jakab', 'Neptun kód':'ABC123', 'Jegyek':{'Fizika':5}, 'Kedvencek':{'Fizika'}},\n",
" {'Név':'Móricka', 'Neptun kód':'XXX999', 'Jegyek':{'Mechanika':1}, 'Kedvencek':{}},\n",
" {'Név':'Wincs Eszter', 'Neptun kód':'AAA123', 'Jegyek':{'Fizika':2, 'Testnevelés':5}, 'Kedvencek':{'Testnevelés', 'Fizika'}}]\n",
"h"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gipsz Jakab {'Fizika': 5}\n"
]
}
],
"source": [
"# Az első hallgató neve és érdemjegyei\n",
"print(h[0]['Név'], h[0]['Jegyek'])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Fizika', 'Testnevelés'}"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A harmadik hallgató kedvenc tárgyai\n",
"h[2]['Kedvencek']"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

1297
06_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

105
06_gyak.ipynb Normal file
View File

@ -0,0 +1,105 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 6. heti előadás anyagát tartalmazó Jupyter notebook (06_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. feladat\n",
"Készítsünk különbségsorozatot az $a_1$, ..., $a_n$ számsorozatból, ahol a különbségsorozat $i$. eleme $a_{i+1}$ - $a_i$! Pl: 2, 5, 7, 15 => 3, 2, 8"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[3, 2, 8]\n",
"[3, 2, 8]\n",
"[3, 2, 8]\n"
]
}
],
"source": [
"# A számsorozat\n",
"a = [2, 5, 7, 15]\n",
"\n",
"# 1. megoldás (nem használva a 6. előadás dolgait))\n",
"diff = []\n",
"for i in range(len(a) - 1):\n",
" diff.append(a[i + 1] - a[i])\n",
"print(diff)\n",
"\n",
"# 2. megoldás (comprehension és indexelés)\n",
"diff = [a[i + 1] - a[i] for i in range(len(a) - 1)]\n",
"print(diff)\n",
"\n",
"# 3. megoldás (comprehension, unpacking, slicing és zip)\n",
"diff = [x - y for x, y in zip(a[1:], a[:-1])]\n",
"print(diff)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk programokat az alábbi feladatokra! A megoldásoknál használjuk az előadáson elhangzottakat (pl. comprehension, haladó indexelés, kicsomagolás, zip, ...)!\n",
"- Állítsuk elő comprehension-nel a [100, 90, 80, 70, 60, 50, 40, 30, 20, 10] listát!\n",
"- Gyűjtsük ki feltételes comprehension-nel egy számokból álló lista pozitív elemeit egy új listába! Pl. [-1, 2, 0, 3] => [2, 3] \n",
"- Fordítsuk meg egy sztring karaktereinek sorrendjét haladó indexeléssel! Pl. 'abc' => 'cba'.\n",
"- Készítsünk szótárat egy `KULCS_1,ÉRTÉK_1, ... KULCS_n,ÉRTÉK_n` formátumú sztringből! Pl. 'alma,10,körte,20,barack,30' => {'alma': 10, 'körte': 20, 'barack': 30} (Tipp: a sztring darabolásához használjuk a split metódust!)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladatok\n",
"Készítsünk programokat az alábbi feladatokra! A megoldásoknál használjuk az előadáson elhangzottakat (pl. sum, min, max, sorted függvények)!\n",
"- Egy műkorcsolyaversenyen N (>=1) versenyző indul és M (>=3) bíró pontoz. Minden versenyző minden bírótól pontosan egy db pontot kap (ami 0-tól 6-ig egy valós szám)! Ismerjük a versenyzők nevét, nemzetiségét (3 betűs sztring), és a bíróktól kapott pontjaikat. Számítsuk ki a versenyzők átlagpontjait, majd készítsünk olyan listát, amelyben a versenyzők összes adata (név, nemzetiség, pontok, átlagpont) szerepel! Minden versenyző legyen külön sorban, a pontok két tizedesjeggyel jelenjenek meg, egymás alá igazítva!\n",
"- Oldjuk meg a feladatot úgy is, hogy az átlagpontba az adott versenyző legnagyobb és legkisebb pontjának egy-egy előfordulását nem számítjuk be (a bírók részrehajlását elkerülendő)!\n",
"- Oldjuk meg a feladatot úgy is, hogy a lista eredménylista legyen (azaz olyan lista, amely az átlagpont szerint csökkenően rendezett)!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

761
07_ea.ipynb Normal file
View File

@ -0,0 +1,761 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Függvények](https://docs.python.org/3/tutorial/controlflow.html#defining-functions)\n",
"\n",
"### Alapfogalmak\n",
"\n",
"- A függvény névvel ellátott alprogram, amely a program más részeiből meghívható.\n",
"- Függvények használatával a számítási feladatok kisebb egységekre oszthatók. A gyakran használt függvények kódját könyvtárakba rendezhetjük.\n",
"- A matematikában egy függvénynek nincsenek mellékhatásai. Egy Python nyelvű függvénynek lehetnek!\n",
"\n",
"\n",
"- Pythonban a függvények \"teljes jogú állampolgárok\":\n",
" + Egy változónak értékül adhatunk egy függvényt.\n",
" + Függvényeket egymásba lehet ágyazni.\n",
" + Egy függvény kaphat paraméterként függvényt ill. adhat eredményül függvényt.\n",
" \n",
"\n",
"- Fontos különbséget tenni egy függvény *definíciója* és *meghívása* között:\n",
" + A függvény definíciója megadja, hogy milyen bemenethez milyen kimenet rendelődjön (és milyen mellékhatások hajtódjanak végre). A függvény definíciója a programban általában csak egy helyen szerepel (ha több helyen szerepel, akkor az utolsó definíció lesz az érvényes.)\n",
" + A függvény meghívása azt jelenti, hogy egy adott bemenethez kiszámítjuk a hozzárendelt értéket. Egy függvényt a programban többször is meg lehet hívni."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Példa: n-edik gyök függvény definiálása.\n",
"def root(x, n=2):\n",
" '''Returns the n-th root of x.'''\n",
" return x**(1 / n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ha a függvény első utasítása egy sztring, akkor ez lesz a függvény dokumentációs sztringje."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Returns the n-th root of x.'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Dokumentációs sztring (docstring) lekérdezése.\n",
"root.__doc__ # \"dunder doc\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# A __doc__ attribútum egy közönséges sztring, tetszés szerint végezhetünk vele műveleteket.\n",
"root.__doc__ *= 10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Pythonban a függvényeknek *pozícionális* és *kulcsszó* paraméterei lehetnek.\n",
" + Függvénydefiníciókor először a pozícionális majd a kulcsszó paramétereket kell felsorolni.\n",
" + A pozícionális paramétereknek nincs alapértelmezett értékük, a kulcsszó paramétereknek van.\n",
" + Mindegyik paramétertípusból lehet nulla darab is.\n",
"- Függvényhíváskor...\n",
" + Az összes pozícionális paraméter értékét meg kell adni, olyan sorrendben, ahogy a definíciónál szerepeltek,\n",
" + A kulcsszó paraméterek értékét nem kötelező megadni."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.4142135623730951"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Gyök 2 kiszámítása.\n",
"root(2)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.2599210498948732"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Köbgyök 2 kiszámítása.\n",
"root(2, n=3)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.2599210498948732"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A második paramétert nem kell nevesíteni.\n",
"root(2, 3)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Változónak értékül adhatunk függvényt.\n",
"f = root"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"function"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(f)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2.0"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f(16, n=4)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Példa egymásba ágyazásra ill. függvényt visszaadó függvényre.\n",
"def f(y):\n",
" def g(x):\n",
" return x * y\n",
" return g"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# f egy \"függvénygyár\"\n",
"g2 = f(2) # kétszerező függvény\n",
"g3 = f(3) # háromszorozó függvény"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g2(10)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"60"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g3(20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Gyakorlás"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Prímtesztelés\n",
"\n",
"Készítsünk függvényt, amely eldönti egy természetes számról, hogy prím-e!"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n"
]
}
],
"source": [
"# 1. változat: függvény nélkül\n",
"n = 17\n",
"\n",
"is_prime = True\n",
"for i in range(2, int(n**0.5) + 1):\n",
" if n % i == 0:\n",
" is_prime = False\n",
" break\n",
" \n",
"print(is_prime and n > 1)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# 2. változat: függvénnyel\n",
"def is_prime(n):\n",
" for i in range(2, int(n**0.5) + 1):\n",
" if n % i == 0:\n",
" return False\n",
" return n > 1"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"is_prime(1)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"is_prime(2)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"is_prime(12)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"is_prime(13)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Legnagyobb közös osztó\n",
"\n",
"Készítsünk függvényt két természetes szám legnagyobb közös osztójának a meghatározására!"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6\n"
]
}
],
"source": [
"# 1. változat: függvény nélkül\n",
"a = 18\n",
"b = 12\n",
"\n",
"for i in range(min(a, b), 0, -1):\n",
" if a % i == 0 and b % i == 0: # i közös osztó?\n",
" break\n",
" \n",
"print(i)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# 2. változat: függvénnyel\n",
"def calc_gcd(a, b):\n",
" for i in range(min(a, b), 0, -1):\n",
" if a % i == 0 and b % i == 0: # i közös osztó?\n",
" return i"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calc_gcd(12, 18)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calc_gcd(13, 18)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Másodfokú egyenlet megoldó\n",
"\n",
"Készítsünk másodfokú egyenlet megoldó függvényt!"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def solve_quadratic(a, b, c):\n",
" '''Solve quadratic equation a*x^2 + b*x + c = 0,\n",
" and return solutions in a list.'''\n",
" \n",
" # diszkrimináns kiszámítása\n",
" d = b**2 - 4 * a * c\n",
"\n",
" # elágazás\n",
" if d > 0: # 2 megoldás\n",
" x1 = (-b + d**0.5) / (2 * a)\n",
" x2 = (-b - d**0.5) / (2 * a)\n",
" return [x1, x2]\n",
" elif d == 0: # 1 megoldás\n",
" return [-b / (2 * a)]\n",
" else:\n",
" return []"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[2.0, 1.0]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve_quadratic(1, -3, 2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-1.0]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve_quadratic(1, 2, 1)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve_quadratic(1, 1, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Lambda kifejezések](https://docs.python.org/3/reference/expressions.html#lambda)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- A lambda kifejezés nem más, mint egysoros, névtelen függvény.\n",
"- (A [funkcionális programozás](https://en.wikipedia.org/wiki/Functional_programming) egyéb elemei a Pythonban: [map](https://docs.python.org/3/library/functions.html#map), [filter](https://docs.python.org/3/library/functions.html#filter).)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"142"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Példa lambda kifejezésre.\n",
"f = lambda x: x + 42\n",
"f(100)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Egynél több bemenet is megengedett.\n",
"g = lambda x, y: x + y\n",
"g(10, 20)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ...de akár nulla bemenet is lehet.\n",
"h = lambda: 100\n",
"h()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Lambda kifejezés alkalmazása rendezésnél"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('körte', 11), ('alma', 22), ('barack', 33)]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Párok listájának rendezése a második elem szerint.\n",
"pairs = [('alma', 22), ('körte', 11), ('barack', 33)]\n",
"sorted(pairs, key=lambda p: p[1])"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('körte', 11), ('alma', 22), ('barack', 33)]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az előző feladat megoldása lambda kifejezés nélkül.\n",
"pairs = [('alma', 22), ('körte', 11), ('barack', 33)]\n",
"def key_func(p):\n",
" return p[1]\n",
"sorted(pairs, key=key_func)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['king', 'queen', 'denmark']"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Szótárkulcsok rendezése az értékek szerint csökkenő sorrendbe.\n",
"words = {'king': 203, 'denmark': 24, 'queen': 192}\n",
"sorted(words, key=lambda k: words[k], reverse=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

70
07_gyak.ipynb Normal file
View File

@ -0,0 +1,70 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 7. heti előadás anyagát tartalmazó Jupyter notebook (07_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk függvényeket az alábbi feladatok megoldására, majd teszteljük a függvények működését (azaz hívjuk meg őket valamilyen tesztadattal és írjuk ki a kapott eredményeket)!\n",
"- Határozzuk meg két szám összegét!\n",
"- Egy sztring karakterei különbözőek-e vagy sem? (Pl. 'Alma' -> igen, 'alma' -> nem)\n",
"- Bővítsük az előadásanyagban szereplő másodfokú egyenlet megoldó függvényt (solve_quadratic) egy új, opcionális paraméterrel, amivel kérhető legyen a komplex gyökök kiszámítása is! A paraméter alapértelmezett értéke esetén csak valós gyököket számoljunk!\n",
"- Határozzuk meg egy sztringként megadott pozitív, bináris egész szám decimális értékét! (Pl. '110' -> 6)\n",
"- Egy számsorozat számtani sorozatot alkot-e vagy sem? (Pl. [1, 2, 3] -> igen, [1, 2, 2] -> nem)\n",
"- Határozzuk meg egy pozitív egész szám, mint euróban kifizetendő pénzösszeg kifizetéséhez szükséges legkevesebb címletet! (Pl. 213: 2 db 100-as, 1 db 10-es, 3 db 1-es)\n",
"- Definiáljuk egy általunk készített függvény doc sztringjét és nézzük meg a használatát is (pl. kérjünk help-et a függvényünkre)!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Házi feladatok\n",
"Készítsünk függvényeket az alábbi feladatok megoldására!\n",
"- Egy sztring tartalmaz-e angol nagybetűt vagy sem?\n",
"- Egy sztringben helyes angol név van-e vagy sem? Egy név helyes, ha:\n",
" - pontosan egy darab szóköz van benne, de az nincs az elején és a végén,\n",
" - az egy db szóközön kívül csak angol kis- és nagybetűk vannak benne,\n",
" - a vezetéknév és a keresztnév első betűje nagybetű, a többi kisbetű. (Pl: \"Little John\" -> helyes, \"nemecsek ernő\" -> nem helyes)\n",
"- Adottak síkbeli pontok a derékszögű koordinátáikkal! Határozzuk meg azt a pontot, amelyik a legközelebb van a pontok súlypontjához! Az eredmény a megfelelő pont(ok)ból álló lista legyen! (Pl. [(1, 0), (-1, 0), (0. 3)] -> [(1, 0), (-1, 0)])\n",
"- Oldjuk meg az előző (6.) heti korcsolyaversenyes feladatot úgy, hogy a rendezésnél lambda függvényt használunk!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

1015
08_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

249
08_gyak.ipynb Normal file
View File

@ -0,0 +1,249 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 8. heti előadás anyagát tartalmazó Jupyter notebook (08_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. feladat\n",
"Készítsünk programot, amely szimulál egy n hosszú pénzfeldobás sorozatot, majd kiírja a fejek és írások darabszámát!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"51\n",
"49\n"
]
}
],
"source": [
"# 1. megoldás\n",
"import random\n",
"n = 100\n",
"nheads = 0\n",
"ntails = 0\n",
"for i in range(n):\n",
" x = random.choice('HT')\n",
" if x == 'H': \n",
" nheads += 1\n",
" else:\n",
" ntails += 1\n",
"print(ntails)\n",
"print(nheads)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"42\n",
"58\n"
]
}
],
"source": [
"# 2. megoldás\n",
"import random\n",
"n = 100\n",
"x = [random.choice('HT') for i in range(n)]\n",
"print(x.count('H'))\n",
"print(x.count('T'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Oldjuk meg a feladatot 'fej' és 'írás' dobások használatával!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Készítsünk programot, amely szimulál egy n hosszú pénzfeldobás sorozatot, majd kiírja a leghosszabb fej ill. írás sorozat hosszát!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T T T T T H H T H H H T T H H H T T H H\n",
"3\n",
"5\n"
]
}
],
"source": [
"import random\n",
"\n",
"def longest_sequence(x, sign):\n",
" maxlen = 0\n",
" actlen = 0\n",
" for xi in x:\n",
" if xi == sign:\n",
" actlen += 1\n",
" if actlen > maxlen:\n",
" maxlen = actlen\n",
" else:\n",
" actlen = 0\n",
" return maxlen\n",
"\n",
"n = 20\n",
"x = [random.choice('HT') for i in range(n)]\n",
"\n",
"print(' '.join(x))\n",
"print(longest_sequence(x, 'H'))\n",
"print(longest_sequence(x, 'T'))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['T', 'H', 'H', 'T', 'T', 'H', 'H', 'H', 'H', 'T']\n",
"4\n"
]
}
],
"source": [
"# ... a leghosszabb sorozat hossza (nem külön-külön számolva)\n",
"\n",
"import random\n",
"n = 10\n",
"sorsolas = [random.choice('HT') for i in range(n)]\n",
"\n",
"sorozat = 1\n",
"sorozat_max = 1\n",
"for x in range(1, n):\n",
" if sorsolas[x] == sorsolas[x - 1]:\n",
" sorozat += 1\n",
" else:\n",
" sorozat = 1\n",
" \n",
" if sorozat > sorozat_max:\n",
" sorozat_max = sorozat\n",
" \n",
"print(sorsolas)\n",
"print(sorozat_max)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Módosítsuk a megoldást úgy, hogy megadjuk azt is, hogy hány db ilyen (maximális hosszú) sorozat létezett a dobássorozatban!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Az előadás anyagához kapcsolódó feladatok\n",
"- Módosítsuk a személyek és születési dátumok rendezett listáját megadó megoldást úgy, hogy az adott személyeknek ne a születési dátumát, hanem az életkorát (a betöltött évek száma) jelenítsük meg!\n",
"- Oldjuk meg a két kockával dobott dobásösszeg gyakoriságok meghatározását szótár segítségével!\n",
"- Hasonlítsuk össze (azaz 'mérjük meg') a 20. századi péntek 13-kák számát meghatározó megoldások futási idejét!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"- Készítsünk egy saját modult (azaz egy py kiterjesztésű szövegfájlt, amiben legyen pl. egy saját függvény)! Használjuk ezt a saját modult (azaz hívjuk meg pl. a modulban lévő függvényt)! \n",
"- Határozzuk meg és írjuk ki azt, hogy hány napot éltünk!\n",
"- Generáljunk véletlenszerűen egy ezévi (helyes) dátumot!\n",
"- Készítsünk programot, amelyik 'kő-papír-olló' játékot szimulál két játékos között! Generáljunk n db véletlen 'választás-párt', értékeljük ki ezeket és adjuk meg, hogy hányszor nyert az első, hányszor a második játékos, ill. hány döntetlen született!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" ### Házi feladatok\n",
" - Az ember nem betűnként olvas, hanem valahogy másképp (pl. 'ránézéssel'). Ennek igazolására alakítsunk át egy mondatot (amelyben a szavak csak kisbetűket tartalmaznak és a szavak között pontosan egy db szóköz található) úgy, hogy a szavak sorrendjét megtartjuk, de a szavakat átalakítjuk! A legfeljebb 3 betűt tartalmazó szavak maradjanak változatlanok, a hosszabbak esetén az első és utolsó betűt a helyükön hagyva, a többi betűt keverjük meg véletlenszerűen! Nézzük meg, hogy el tudjuk-e olvasni az átalakított mondatot is kb. ugyanolyan gyorsan, mint az eredetit! Pl. 'na el tudod ezt is gyorsan olvasni' => 'na el tdoud ezt is gsryaon onslvai'.\n",
" - Nehezítsük az előző feladatot a magyar két (pl. 'gy', 'sz'), ill. hárombetűs ('dzs') 'betűk' kezelésével! Az ilyen 'betűket' egy betűként kezeljük! Pl. a 'gyász' szó így 'hárombetűs' szó lévén nem fog megváltozni, de a 'lándzsa' szó 'ötbetűs', aminek egy átalakítása lehet a 'ldzsána' szó (ahol a 'dzs' betű egyben maradt)!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

2891
09_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

54
09_gyak.ipynb Normal file
View File

@ -0,0 +1,54 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 9. heti előadás anyagát tartalmazó Jupyter notebook (09_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Készítsünk programokat az alábbi feladatokra!\n",
"- Olvassuk be a 'matrix.txt' adatait, majd határozzuk meg minden egyes oszlopra az 1-esek darabszámát!\n",
"- Határozzuk meg az 'igazi.txt' fájlban található leghosszabb és legrövidebb szót!\n",
"- Hány olyan szó van a 'hamlet.txt' fájlban, amiben csak betű van?\n",
"- Határozzuk meg a 'hamlet.txt' fájl szavaira azt, hogy a szavak hányadrésze tartalmaz angol nagybetűt!\n",
"- Határozzuk meg a Premier League adatok ('pl.txt') alapján (a tabella elkészítése nélkül), hogy egy adott csapat (pl. 'Liverpool FC') hány gólt rúgott a szezonban!\n",
"- A Premier League eredménytáblázatát (a tabellát) ne a képernyőre, hanem szövegfájlba írjuk ki, ahol a fájl nevében szerepeljen a forduló sorszáma is (amellyel bezárólag készül a tabella, például: 'pl_tab_02.txt' a 2. forduló utáni tabellát tartalmazza)!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

1019
10_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

115
10_gyak.ipynb Normal file
View File

@ -0,0 +1,115 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 10. heti előadás anyagát tartalmazó Jupyter notebook (10_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. feladat\n",
"\n",
"Hány olyan kétjegyű természetes szám van, amely osztható a számjegyei összegével?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Az $a$, $b$ és $c$ pozitív egész számok pitagoraszi számhármast alkotnak, ha $a^2 + b^2 = c^2$. Például a $(3, 4, 5)$ számhármas pitagoraszi, mivel $3^2 + 4^2 = 5^2$.\n",
"\n",
"- Hány olyan pitagoraszi számhármas létezik, melyre $c \\leq 500$? Az $(a, b, c)$ és a $(b, a, c)$ hármast ne tekintsük különbözőnek!\n",
"- Az előbbi számhármasok között hány primitív van, azaz hány olyan van, melyre $a$ és $b$ relatív prímek?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. feladat\n",
"Készítsünk programot, amely:\n",
"- Egy 1 és 99 közötti arab számot római számmá alakít!\n",
"- Egy I és XCIX közötti római számot arab számmá alakít!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bővítsük az előző feladatot úgy, hogy a használható egész számok intervalluma az [1, 99] helyett az [1, 3000] (ill. [I, MMM]) lehessen!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. feladat\n",
"\n",
"Készítsünk programot, amely a [Conway-féle életjátékot](https://hu.wikipedia.org/wiki/%C3%89letj%C3%A1t%C3%A9k) valósítja meg!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

509
10_gyak_mego.ipynb Normal file
View File

@ -0,0 +1,509 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. feladat\n",
"\n",
"Hány olyan kétjegyű természetes szám van, amely osztható a számjegyei összegével?"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"23\n"
]
}
],
"source": [
"# 1. megoldás\n",
"n = 0\n",
"for i in range(10, 100): # végigmegyünk a kétjegyű számokon\n",
" s = sum([int(d) for d in str(i)]) # számjegyek összege\n",
" if i % s == 0:\n",
" n += 1\n",
"print(n)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"23\n"
]
}
],
"source": [
"# 2. megoldás\n",
"n = 0\n",
"for t in range(1, 10): # tízesek\n",
" for e in range(10): # egyesek\n",
" if (t * 10 + e) % (t + e) == 0:\n",
" n += 1\n",
"print(n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Az $a$, $b$ és $c$ pozitív egész számok pitagoraszi számhármast alkotnak, ha $a^2 + b^2 = c^2$. Például a $(3, 4, 5)$ számhármas pitagoraszi, mivel $3^2 + 4^2 = 5^2$.\n",
"\n",
"- Hány olyan pitagoraszi számhármas létezik, melyre $c \\leq 500$? Az $(a, b, c)$ és a $(b, a, c)$ hármast ne tekintsük különbözőnek!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# 1. megoldás\n",
"triplets = set()\n",
"for c in range(1, 501):\n",
" for a in range(1, c):\n",
" for b in range(a, c):\n",
" if b**2 + a**2 == c**2:\n",
" triplets.add((a, b, c))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"386"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(triplets)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# 2. megoldás\n",
"triplets = set()\n",
"for c in range(1, 501):\n",
" for a in range(1, c):\n",
" b = int((c**2 - a**2)**0.5 + 0.5)\n",
" if b >= a and a**2 + b**2 == c**2:\n",
" triplets.add((a, b, c))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"386"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(triplets)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Megjegyzés: Az előző megoldásokban a hármasokat egy listába tettük (az esetleges ellenőrzés végett, noha nem írtuk ki őket), a darabszám meghatározása (ami a feladat volt) enélkül is elvégezhető lett volna (pl. egy darabszámot adminisztráló változó használatával)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Az előbbi számhármasok között hány primitív van, azaz hány olyan van, melyre $a$ és $b$ relatív prímek?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. feladat\n",
"Készítsünk programot, amely egy 1 és 99 közötti arab számot római számmá alakít!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'XXIII'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. megoldás\n",
"a = 23\n",
"r_ones = ['', 'I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', 'IX']\n",
"r_tens = ['', 'X', 'XX', 'XXX', 'XL', 'L', 'LX', 'LXX', 'LXXX', 'XC']\n",
"r = r_tens[a // 10] + r_ones[a % 10]\n",
"r"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# 2. megoldás: függvénybe csomagolva\n",
"def arabic_to_roman(a):\n",
" r_ones = ['', 'I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', 'IX']\n",
" r_tens = ['', 'X', 'XX', 'XXX', 'XL', 'L', 'LX', 'LXX', 'LXXX', 'XC']\n",
" return r_tens[a // 10] + r_ones[a % 10]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'XLVII'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arabic_to_roman(47)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Készítsünk programot, amely egy I és XCIX közötti római számot arab számmá alakít!"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Konverziós szótár\n",
"roman_to_arabic = {arabic_to_roman(a): a for a in range(1, 100)}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"roman_to_arabic['LXIV']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. feladat\n",
"\n",
"Készítsünk programot, amely a [Conway-féle életjátékot](https://hu.wikipedia.org/wiki/%C3%89letj%C3%A1t%C3%A9k) valósítja meg!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Adjuk meg a kezdőállapotot egy sztringben!\n",
"# (Lehetne fájlból is beolvasni, de az egyszerűség kedvéért használjunk most sztringet!)\n",
"\n",
"worldstr = '''\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........oo.........\n",
"........oo..........\n",
".........o..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"'''.strip()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# kezdőállapot beolvasása listák listájába\n",
"world = [list(row) for row in worldstr.split('\\n')]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def display_world(world):\n",
" for row in world:\n",
" print(''.join(row))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Szabályok:\n",
"- A sejt túléli a kört, ha két vagy három szomszédja van.\n",
"- A sejt elpusztul, ha kettőnél kevesebb (elszigetelődés), vagy háromnál több (túlnépesedés) szomszédja van.\n",
"- Új sejt születik minden olyan cellában, melynek környezetében pontosan három sejt található.\n",
"- Az átlós szomszédság is számít."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import copy\n",
"\n",
"def count_neighbors(world, i, j):\n",
" nb = 0 # szomszédok száma\n",
" for di in [-1, 0, 1]: # végigmegyünk a szomszédos sorokon\n",
" for dj in [-1, 0, 1]: # végigmegyünk a szomszédos oszlopokon\n",
" if di == 0 and dj == 0: # önmagát ne számítsuk szomszédként\n",
" continue\n",
" if j + dj < 0 or i + di < 0: # negatív indext ne használjunk\n",
" continue\n",
" try:\n",
" if world[i + di][j + dj] == 'o': # ha találtunk szomszédot\n",
" nb += 1\n",
" except IndexError:\n",
" pass\n",
" return nb\n",
"\n",
"def update_world(world):\n",
" nrows = len(world)\n",
" ncols = len(world[0])\n",
" new_world = copy.deepcopy(world) # másolat készítése\n",
" for i in range(nrows):\n",
" for j in range(ncols):\n",
" nb = count_neighbors(world, i, j)\n",
" if nb < 2 or nb > 3: # elpusztul a sejt\n",
" new_world[i][j] = '.'\n",
" elif nb == 3: # új sejt születik\n",
" new_world[i][j] = 'o'\n",
" return new_world"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........oo.........\n",
"........oo..........\n",
".........o..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"........ooo.........\n",
"........o...........\n",
"........oo..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........o..........\n",
"........oo..........\n",
".......o..o.........\n",
"........oo..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "Interrupted by user",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-5-ab312b5cc2bd>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mdisplay_world\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mworld\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mworld\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mupdate_world\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mworld\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0minput\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel\\kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[1;34m(self, prompt)\u001b[0m\n\u001b[0;32m 858\u001b[0m \u001b[1;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 859\u001b[0m )\n\u001b[1;32m--> 860\u001b[1;33m return self._input_request(str(prompt),\n\u001b[0m\u001b[0;32m 861\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 862\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_parent_header\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel\\kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[1;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[0;32m 902\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 903\u001b[0m \u001b[1;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 904\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Interrupted by user\"\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 905\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 906\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Invalid Message:\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: Interrupted by user"
]
}
],
"source": [
"while True:\n",
" display_world(world)\n",
" world = update_world(world)\n",
" input()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. feladat - egyebek\n",
"- Teszteljük a játékot más kiinduló állapottal!\n",
"- Módosítsuk úgy a játékot, hogy:\n",
" - a játék addig folytatódjon, amíg a felhasználó a 'q' betűt meg nem adja (azaz minden más input esetén folytassuk, de a 'q' inputra fejezzük be a futást)\n",
" - a 'világ' más méretű legyen (pl. 10x10-es)\n",
" - érvényesítsünk más szabály(oka)t (pl. más feltételek mellett szülessen új sejt, vagy pusztuljon el egy élő sejt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

872
11_ea.ipynb Normal file
View File

@ -0,0 +1,872 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Objektumorientált programozás](https://docs.python.org/3/tutorial/classes.html), nulladik közelítésben\n",
"\n",
"Az objektumorientált programozás(OOP) olyan programozási módszertan, ahol az egymással kapcsolatban álló programegységek hierarchiájának megtervezése áll a középpontban.\n",
"- A korábban uralkodó procedurális megközelítés a műveletek megalkotására fókuszált.\n",
"- OOP esetén adatokat és az őket kezelő függvényeket egységbezárjuk (encapsulation).\n",
"- Az OOP másik fontos sajátossága az öröklődés (inheritance)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10 20\n"
]
}
],
"source": [
"# Példa: téglalap osztály.\n",
"\n",
"class Rectangle:\n",
" def __init__(self, a, b): # konstruktor\n",
" self.a = a\n",
" self.b = b\n",
" \n",
" def calc_area(self): # területszámító metódus definiálása\n",
" return self.a * self.b\n",
"\n",
" def calc_perimeter(self): # kerületszámító metódus definiálása\n",
" return (self.a + self.b) * 2\n",
" \n",
"r1 = Rectangle(10, 20) # téglalap objektum létrehozása\n",
"print(r1.a, r1.b)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"200"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r1.calc_area() # metódus meghívása"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"200"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A Python a metódushívást a színfalak mögött függvényhívássá alakítja át.\n",
"Rectangle.calc_area(r1)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ...ez a beépített típusokra is igaz.\n",
"(1).__add__(1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"int.__add__(1, 1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"314.1592653589793\n",
"125.66370614359172\n"
]
}
],
"source": [
"# Példa: kör osztály.\n",
"\n",
"import math\n",
"\n",
"class Circle:\n",
" def __init__(self, r): # konstruktor\n",
" self.r = r\n",
" \n",
" def calc_area(self): # területszámító metódus definiálása\n",
" return self.r**2 * math.pi\n",
"\n",
" def calc_perimeter(self): # kerületszámító metódus definiálása\n",
" return 2 * self.r * math.pi\n",
" \n",
"c1 = Circle(10)\n",
"c2 = Circle(20)\n",
"print(c1.calc_area())\n",
"print(c2.calc_perimeter())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# A kerület-terület arány kiszámítása téglalapok és körök esetén ugyanúgy történik.\n",
"# Hozzunk létre egy egy síkidom ősosztályt, származtassuk ebből a téglalapot és a kört!\n",
"# A kerület-terület arány számítást az ősosztályba tegyük!\n",
"\n",
"class Shape:\n",
" def calc_pa_ratio(self):\n",
" return self.calc_perimeter() / self.calc_area()\n",
"\n",
"class Rectangle(Shape): # a téglalap a síkidomból származik\n",
" def __init__(self, a, b): # konstruktor\n",
" self.a = a\n",
" self.b = b\n",
" \n",
" def calc_area(self): # területszámító metódus definiálása\n",
" return self.a * self.b\n",
"\n",
" def calc_perimeter(self): # kerületszámító metódus definiálása\n",
" return (self.a + self.b) * 2\n",
"\n",
"class Circle(Shape): # a kör a síkidomból származik\n",
" def __init__(self, r): # konstruktor\n",
" self.r = r\n",
" \n",
" def calc_area(self): # területszámító metódus definiálása\n",
" return self.r**2 * math.pi\n",
"\n",
" def calc_perimeter(self): # kerületszámító metódus definiálása\n",
" return 2 * self.r * math.pi"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6\n",
"1.6666666666666667\n",
"0.19999999999999998\n"
]
}
],
"source": [
"shapes = [Rectangle(10, 5), Rectangle(2, 3), Circle(10)]\n",
"for s in shapes:\n",
" print(s.calc_pa_ratio())"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def solve_quadratic(a, b, c):\n",
" '''Solve quadratic equation a*x^2 + b*x + c = 0,\n",
" and return solutions in a list.'''\n",
" \n",
" # diszkrimináns kiszámítása\n",
" d = b**2 - 4 * a * c\n",
"\n",
" # elágazás\n",
" if d > 0: # 2 megoldás\n",
" x1 = (-b + d**0.5) / (2 * a)\n",
" x2 = (-b - d**0.5) / (2 * a)\n",
" return [x1, x2]\n",
" elif d == 0: # 1 megoldás\n",
" return [-b / (2 * a)]\n",
" else:\n",
" return []"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Feladat: Készítsünk másodfokú egyenlet megoldó osztályt!\n",
"class QuadraticEquation:\n",
" def __init__(self, a, b, c):\n",
" self.a = a\n",
" self.b = b\n",
" self.c = c\n",
"\n",
" def _calc_d(self):\n",
" return self.b**2 - 4 * self.a * self.c\n",
" \n",
" def nsolutions(self):\n",
" d = self._calc_d()\n",
" if d > 0: return 2\n",
" elif d == 0: return 1\n",
" else: return 0\n",
" \n",
" def solve(self):\n",
" '''Solve quadratic equation a*x^2 + b*x + c = 0,\n",
" and return solutions in a list.'''\n",
" \n",
" a, b, c = self.a, self.b, self.c\n",
"\n",
" # diszkrimináns kiszámítása\n",
" d = self._calc_d()\n",
"\n",
" # elágazás\n",
" if d > 0: # 2 megoldás\n",
" x1 = (-b + d**0.5) / (2 * a)\n",
" x2 = (-b - d**0.5) / (2 * a)\n",
" return [x1, x2]\n",
" elif d == 0: # 1 megoldás\n",
" return [-b / (2 * a)]\n",
" else:\n",
" return []"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-1.0, -2.0]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"QuadraticEquation(1, 3, 2).solve()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-1.0]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"QuadraticEquation(1, 2, 1).solve()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"QuadraticEquation(1, 1, 3).solve()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2\n",
"[-1.0, -2.0]\n"
]
}
],
"source": [
"eq = QuadraticEquation(1, 3, 2)\n",
"print(eq.nsolutions())\n",
"print(eq.solve())"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# Feladat: \"Éhes kutyák\".\n",
"\n",
"class Dog:\n",
" def __init__(self, name, is_hungry=False):\n",
" self.name = name\n",
" self.is_hungry = is_hungry\n",
"\n",
" def eat(self):\n",
" self.is_hungry = False\n",
" \n",
"dogs = [\n",
" Dog('Borzas', True),\n",
" Dog('Vadász', False),\n",
" Dog('Nokedli'),\n",
" Dog('Cézár', True),\n",
" Dog('Csibész', True)\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Borzas\n",
"Cézár\n",
"Csibész\n"
]
}
],
"source": [
"# Nézzük meg, hogy kik éhesek!\n",
"for d in dogs:\n",
" if d.is_hungry:\n",
" print(d.name)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Etessük meg az összes éhes kutyát!\n",
"for d in dogs:\n",
" if d.is_hungry:\n",
" d.eat()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Borzas False\n",
"Vadász False\n",
"Nokedli False\n",
"Cézár False\n",
"Csibész False\n"
]
}
],
"source": [
"# Nézzük meg, hogy mi az etetés eredmény!\n",
"for d in dogs:\n",
" print(d.name, d.is_hungry)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Éhezzenek meg a kutyák!\n",
"for d in dogs:\n",
" d.is_hungry = True"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Borzas\n",
"Vadász\n",
"Nokedli\n",
"Cézár\n",
"Csibész\n"
]
}
],
"source": [
"# Újra nézzük meg, hogy kik éhesek!\n",
"for d in dogs:\n",
" if d.is_hungry:\n",
" print(d.name)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Borzas\n",
"Cézár\n",
"Csibész\n"
]
}
],
"source": [
"# Oldjuk meg az \"éhes kutyák\" feladatot osztályok használata nélkül!\n",
"dogs = [\n",
" {'name': 'Borzas', 'is_hungry': True},\n",
" {'name': 'Vadász', 'is_hungry': False},\n",
" {'name': 'Nokedli', 'is_hungry': False},\n",
" {'name': 'Cézár', 'is_hungry': True},\n",
" {'name': 'Csibész', 'is_hungry': True}\n",
"]\n",
"\n",
"for d in dogs:\n",
" if d['is_hungry']:\n",
" print(d['name'])\n",
" \n",
"# ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Speciális (\"dunder\") [attribútumok](https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy) és [metódusok](https://docs.python.org/3/reference/datamodel.html#special-method-names)\n",
"\n",
"- `__doc__`, `__class__`, `__init__()`, `__hash__()`, `__code__`, ...\n",
"- attribútumtárolásra: `__dict__`, `__dir__()`\n",
"- kiírásra: `__repr__()`, `__str__()`\n",
"- műveletvégzésre: `__add__()`, `__mul__()`, ...\n",
"- indexelésre: `__getitem__()`, `__setitem__()`, `__len__()`\n",
"- iterálásra: `__iter__()`, `__next__()`\n",
"- kontextuskezelésre: `__enter__()`, `__exit__()`\n",
"- ..."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# Példa: __repr__ metódussal rendelkező osztály.\n",
"class Student:\n",
" def __init__(self, name, neptun):\n",
" self.name = name\n",
" self.neptun = neptun\n",
" \n",
" def __repr__(self):\n",
" return f\"Student('{self.name}', '{self.neptun}')\""
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Student('Gipsz Jakab', 'ABC123')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Student('Gipsz Jakab', 'ABC123')"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10, 20, 30]\n"
]
}
],
"source": [
"# A __repr__ metódus a beépített osztályokra is meg van valósítva.\n",
"l = [10, 20, 30]\n",
"print(l.__repr__())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Gyakorlás\n",
"\n",
"Készítsünk vektor osztályt, amely támogatja a vektorok közötti elemenkénti alapműveleteket (+, -, *, /), a vektor elemszámának lekérdezését, a haladó indexelést valamint a vektor sztringgé alakítását! Elvárt működés:\n",
"```\n",
"v1 = Vector([1.0, 2.0, 3.0])\n",
"v2 = Vector([4.0, 5.0, 6.0])\n",
"print(len(v1), v1[0], v1[:2]) # => 3 1.0 [1.0, 2.0]\n",
"print(v1 + v2) # => Vector([5.0, 7.0, 9.0])\n",
"print(v1 * v2) # => Vector([4.0, 10.0, 18.0]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"class Vector:\n",
" def __init__(self, data):\n",
" self.data = data\n",
" \n",
" def __repr__(self):\n",
" return f'Vector({str(self.data)})'\n",
" \n",
" def __add__(self, other):\n",
" return Vector([x + y for x, y in zip(self.data, other.data)])\n",
"\n",
" def __sub__(self, other):\n",
" return Vector([x - y for x, y in zip(self.data, other.data)])\n",
"\n",
" def __mul__(self, other):\n",
" return Vector([x * y for x, y in zip(self.data, other.data)])\n",
"\n",
" def __truediv__(self, other):\n",
" return Vector([x / y for x, y in zip(self.data, other.data)])\n",
" \n",
" def __len__(self):\n",
" return len(self.data)\n",
" \n",
" def __getitem__(self, idx):\n",
" return self.data[idx]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# 2 vektor létrehozása\n",
"v1 = Vector([1.0, 2.0, 3.0])\n",
"v2 = Vector([4.0, 5.0, 6.0])"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([1.0, 2.0, 3.0])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v1"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([5.0, 7.0, 9.0])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# műveletek\n",
"v1 + v2"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([-3.0, -3.0, -3.0])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v1 - v2"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([4.0, 10.0, 18.0])"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v1 * v2"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([0.25, 0.4, 0.5])"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v1 / v2"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# elemszám lekérdezés\n",
"len(v1)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# indexelés\n",
"v1[0]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[1.0, 2.0]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# haladó indexelés\n",
"v1[:2]"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([5.0, 7.0, 9.0])"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A műveletek a háttérben egyszerű függvényhívássá alakulnak át.\n",
"v1 + v2"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Vector([5.0, 7.0, 9.0])"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Vector.__add__(v1, v2)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

174
11_gyak.ipynb Normal file
View File

@ -0,0 +1,174 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 11. heti előadás anyagát tartalmazó Jupyter notebook (11_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Feladat\n",
"- A Jupyter notebook súgójával (help) derítsük ki azt, hogy milyen műveletei (dunder metódusai) vannak a bool osztálynak! Melyik ősétől mit örökölt?\n",
"- Próbáljuk ki néhány (pl. az előadás anyagában megemlített) dunder attribútum, ill. metódus használatát!\n",
"- Egészítsük ki az előadás anyagában szereplő Dog osztályt egy megfelelő `__repr__` metódussal és teszteljük ennek működését!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Készítsük el a [Conway-féle életjáték](https://hu.wikipedia.org/wiki/%C3%89letj%C3%A1t%C3%A9k) objektumorientált változatát!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"worldstr = '''\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........oo.........\n",
"........oo..........\n",
".........o..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"'''.strip()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# kezdőállapot beolvasása listák listájába\n",
"world = [list(row) for row in worldstr.split('\\n')]\n",
"\n",
"def display_world(world):\n",
" for row in world:\n",
" print(''.join(row))\n",
" \n",
"def count_neighbors(world, i, j):\n",
" nb = 0 # szomszédok szám\n",
" for di in [-1, 0, 1]: # végigmegyünk a szomszédos sorokon\n",
" for dj in [-1, 0, 1]: # végigmegyünk a szomszédos oszlopokon\n",
" if di == 0 and dj == 0: # önmagát ne számítsuk szomszédként\n",
" continue\n",
" if j + dj < 0 or i + di < 0: # negatív indext ne használjunk\n",
" continue\n",
" \n",
" try:\n",
" if world[i + di][j + dj] == 'o': # ha találtunk szomszédot\n",
" nb += 1\n",
" except IndexError:\n",
" pass\n",
" return nb\n",
"\n",
"import copy\n",
"\n",
"def update_world(world):\n",
" nrows = len(world)\n",
" ncols = len(world[0])\n",
" new_world = copy.deepcopy(world) # másolat készítése\n",
" for i in range(nrows):\n",
" for j in range(ncols):\n",
" nb = count_neighbors(world, i, j)\n",
" if nb < 2 or nb > 3: # elpusztul a sejt\n",
" new_world[i][j] = '.'\n",
" elif nb == 3: # új sejt születik\n",
" new_world[i][j] = 'o'\n",
" return new_world\n",
"\n",
"while True:\n",
" display_world(world)\n",
" world = update_world(world)\n",
" input()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Feladat\n",
"- Definiáljunk egy osztályt (pl. Allat néven) az alábbiak szerint!\n",
" - Az osztályhoz tartozó objektumok rendelkezzenek névvel és egy vagy több táplálékkal! Az objektumok adatai (pl. 'medve', {'méz', 'málna'}) létrehozáskor (azaz a konstruktor meghívásakor) legyenek megadhatók!\n",
" - Definiáljuk az osztály `__repr__` metódusát!\n",
" - Legyen az osztálynak egy olyan metódusa, amellyel bővíteni lehessen egy adott objektum táplálékait!\n",
" - Teszteljük az osztályt, azaz hozzunk létre egy ehhez az osztályhoz tartozó objektumot, majd használjuk (pl. írjuk ki a képernyőre, hívjuk meg valamelyik metódusát, stb.)!\n",
"- Nehezítsük a feladatot úgy, hogy definiálunk egy másik osztályt is (pl. Kedvenc néven) az alábbiak szerint!\n",
" - Az új osztály az előzőleg elkészített osztályból származzon! \n",
" - Az osztály példányai rendelkezzenek egy becenévvel és egy vagy több tevékenységgel is (azon felül, amelyekkel, mint Allat objektumok rendelkeznek)!\n",
" - Az osztályhoz tartozó objektumok adatai (pl. 'medve', {'méz', 'málna'}, 'Brumi', {'mézet lejmol', 'brummog', 'téli álmot alszik'}) itt is példányosításkor legyenek megadhatók!\n",
" - A konstruktor (`__init__`) a szülő osztály konstruktorát használja az örökölt adatok értékeinek beállítására (lásd a `super` függvényt a súgóban)!\n",
" - Definiáljuk az osztály `__repr__` metódusát!\n",
" - Legyen az osztálynak egy olyan metódusa (pl. mit_csinal néven), amelyik egy véletlenszerűen kiválasztott tevékenységet ad eredményül!\n",
" - Teszteljük az osztályt, azaz hozzunk létre egy ehhez az osztályhoz tartozó objektumot, majd használjuk (pl. írjuk ki a képernyőre, hívjuk meg valamelyik metódusát, stb.)!\n",
"- Teszteljük együtt a két osztályt úgy, hogy hozzunk létre objektumokat (Allat és Kedvenc osztályhoz tartozókat is, pl. egy listában), majd használjuk ezeket az objektumokat (pl. Kedvenc típusú objektum esetén írjuk ki a képernyőre a becenevét és a `mit_csinal` függvény egy hívásának eredményét, egyébként meg, Allat típusú objektum esetén, a nevét és a táplálékát/táplálékait)! Egy adott objektum egy adott osztályhoz való 'tartozásának' eldöntésére használjuk a `isinstance` függvényt (lásd súgó)! \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,309 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Készítsük el a [Conway-féle életjáték](https://hu.wikipedia.org/wiki/%C3%89letj%C3%A1t%C3%A9k) objektumorientált változatát!"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"worldstr = '''\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........oo.........\n",
"........oo..........\n",
".........o..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"'''.strip()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........oo.........\n",
"........oo..........\n",
".........o..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"........ooo.........\n",
"........o...........\n",
"........oo..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "Interrupted by user",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-14-507952edb998>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 40\u001b[0m \u001b[0mdisplay_world\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mworld\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 41\u001b[0m \u001b[0mworld\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mupdate_world\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mworld\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 42\u001b[1;33m \u001b[0minput\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel\\kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[1;34m(self, prompt)\u001b[0m\n\u001b[0;32m 858\u001b[0m \u001b[1;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 859\u001b[0m )\n\u001b[1;32m--> 860\u001b[1;33m return self._input_request(str(prompt),\n\u001b[0m\u001b[0;32m 861\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 862\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_parent_header\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel\\kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[1;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[0;32m 902\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 903\u001b[0m \u001b[1;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 904\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Interrupted by user\"\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 905\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 906\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Invalid Message:\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: Interrupted by user"
]
}
],
"source": [
"# kezdőállapot beolvasása listák listájába\n",
"world = [list(row) for row in worldstr.split('\\n')]\n",
"\n",
"def display_world(world):\n",
" for row in world:\n",
" print(''.join(row))\n",
" \n",
"def count_neighbors(world, i, j):\n",
" nb = 0 # szomszédok szám\n",
" for di in [-1, 0, 1]: # végigmegyünk a szomszédos sorokon\n",
" for dj in [-1, 0, 1]: # végigmegyünk a szomszédos oszlopokon\n",
" if di == 0 and dj == 0: # önmagát ne számítsuk szomszédként\n",
" continue\n",
" if j + dj < 0 or i + di < 0: # negatív indext ne használjunk\n",
" continue\n",
" \n",
" try:\n",
" if world[i + di][j + dj] == 'o': # ha találtunk szomszédot\n",
" nb += 1\n",
" except IndexError:\n",
" pass\n",
" return nb\n",
"\n",
"import copy\n",
"\n",
"def update_world(world):\n",
" nrows = len(world)\n",
" ncols = len(world[0])\n",
" new_world = copy.deepcopy(world) # másolat készítése\n",
" for i in range(nrows):\n",
" for j in range(ncols):\n",
" nb = count_neighbors(world, i, j)\n",
" if nb < 2 or nb > 3: # elpusztul a sejt\n",
" new_world[i][j] = '.'\n",
" elif nb == 3: # új sejt születik\n",
" new_world[i][j] = 'o'\n",
" return new_world\n",
"\n",
"while True:\n",
" display_world(world)\n",
" world = update_world(world)\n",
" input()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"import copy\n",
"\n",
"class Game:\n",
" def __init__(self, worldstr):\n",
" # kezdőállapot beolvasása listák listájába\n",
" self.world = [list(row) for row in worldstr.split('\\n')]\n",
" \n",
" def run(self, nsteps=None):\n",
" step = 0\n",
" while nsteps == None or step < nsteps:\n",
" self.display_world() # megjelenítés\n",
" self.world = self.update_world() # léptetés\n",
" input() # enter bekérése\n",
" step += 1\n",
" \n",
" def update_world(self):\n",
" nrows = len(self.world)\n",
" ncols = len(self.world[0])\n",
" new_world = copy.deepcopy(self.world) # másolat készítése\n",
" for i in range(nrows):\n",
" for j in range(ncols):\n",
" nb = self.count_neighbors(i, j)\n",
" if nb < 2 or nb > 3: # elpusztul a sejt\n",
" new_world[i][j] = '.'\n",
" elif nb == 3: # új sejt születik\n",
" new_world[i][j] = 'o'\n",
" return new_world\n",
" \n",
" def display_world(self):\n",
" for row in self.world:\n",
" print(''.join(row))\n",
" \n",
" def count_neighbors(self, i, j):\n",
" nb = 0 # szomszédok száma\n",
" for di in [-1, 0, 1]: # végigmegyünk a szomszédos sorokon\n",
" for dj in [-1, 0, 1]: # végigmegyünk a szomszédos oszlopokon\n",
" if di == 0 and dj == 0: # önmagát ne számítsuk szomszédként\n",
" continue\n",
" if j + dj < 0 or i + di < 0: # negatív indext ne használjunk\n",
" continue\n",
"\n",
" try:\n",
" if self.world[i + di][j + dj] == 'o': # ha találtunk szomszédot\n",
" nb += 1\n",
" except IndexError:\n",
" pass\n",
" return nb"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........oo.........\n",
"........oo..........\n",
".........o..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"........ooo.........\n",
"........o...........\n",
"........oo..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
".........o..........\n",
"........oo..........\n",
".......o..o.........\n",
"........oo..........\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"....................\n",
"\n"
]
}
],
"source": [
"Game(worldstr).run(3)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

1757
12_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

184
12_gyak.ipynb Normal file
View File

@ -0,0 +1,184 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 12. heti előadás anyagát tartalmazó Jupyter notebook (12_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. feladat\n",
"\n",
"Hozzunk létre egy 3×3-as, csupa True logikai értéket tartalmazó, NumPy tömböt!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Írjuk ki a páratlan elemeket az alábbi 2 dimenziós NumPy tömbben!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. feladat\n",
"\n",
"Írjuk ki a 3-nál nagyobb elemeket az alábbi 2 dimenziós NumPy tömbben!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. feladat\n",
"\n",
"Írjuk ki az átlag feletti elemeket az alábbi NumPy tömbben!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. feladat\n",
"\n",
"Készítsünk programot, amely egyenletes eloszlás szerint generál 1000 db térbeli pontot az egységkockában, majd meghatározza az 1. ponttól legtávolabb eső pontot!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. feladat\n",
"\n",
"Készítsünk olyan programot (a lineáris regresszió feladat megoldása alapján), ami nem a magassághoz ad testsúlyt, hanem fordítva, testsúlyhoz magasságot! Kell-e új modellparamétert számolnunk, vagy használhatjuk a magasság-testsúly meghatározás modellparaméterét? A kétféle megközelítés, ill. számolás miért számol másmilyen eredményt?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7. feladat\n",
"\n",
"Készítsen függvényt, amely egy adott $n$ pozitív egész számra (mint bemenő paraméter) eredményként előállít egy olyan négyzetes mátrixot (mint numpy tömböt), amelyik négy db $n*n$-es részmátrixból áll úgy, hogy a bal felső részmátrix 1-eseket, a jobb felső 2-eseket, a bal alsó 3-asokat, és a jobb alsó 4-eseket tartalmazzon!\n",
"\n",
"Példák:\n",
"```\n",
"n = 1 n = 2 n = 3 \n",
"1 2 1 1 2 2 1 1 1 2 2 2\n",
"3 4 1 1 2 2 1 1 1 2 2 2\n",
" 3 3 4 4 1 1 1 2 2 2\n",
" 3 3 4 4 3 3 3 4 4 4\n",
" 3 3 3 4 4 4\n",
" 3 3 3 4 4 4\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8. feladat\n",
"\n",
"Készítsünk függvényt, amely egy paraméterként kapott mátrix (mint kétdimenziós numpy tömb) alapján előállít egy új mátrixot (mint kétdimenziós numpy tömböt), ami már nem tartalmazza a mátrix egy adott indexű oszlopát!\n",
"\n",
"Elvárt működés:\n",
"```\n",
" Input Output\n",
"\n",
" A mátrix A mátrix\n",
" 1.0, 2.0, 3.0 1.0, 3.0\n",
" 4.0, 5.0, 6.0 4.0, 6.0\n",
" \n",
" A törlendő oszlop indexe\n",
" 1\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

418
12_gyak_mego.ipynb Normal file
View File

@ -0,0 +1,418 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. feladat\n",
"\n",
"Hozzunk létre egy 3×3-as, csupa True logikai értéket tartalmazó, NumPy tömböt!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ True, True, True],\n",
" [ True, True, True],\n",
" [ True, True, True]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. megoldás\n",
"np.array([[True] * 3] * 3)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ True, True, True],\n",
" [ True, True, True],\n",
" [ True, True, True]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 2. megoldás\n",
"np.ones((3, 3), dtype='bool')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. feladat\n",
"\n",
"Írjuk ki a páratlan elemeket az alábbi 2 dimenziós NumPy tömbben!"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[3 5 7]\n"
]
}
],
"source": [
"b = np.array([[2, 3, 4], [5, 6, 7]])\n",
"print(b[b % 2 == 1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. feladat\n",
"\n",
"Írjuk ki a 3-nál nagyobb elemeket az alábbi 2 dimenziós NumPy tömbben!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[4 5 6 7]\n"
]
}
],
"source": [
"b = np.array([[2, 3, 4], [5, 6, 7]])\n",
"print(b[b > 3])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. feladat\n",
"\n",
"Írjuk ki az átlag feletti elemeket az alábbi NumPy tömbben!"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10 8 9]\n"
]
}
],
"source": [
"b = np.array([1, 10, 2, 8, 3, 5, 9])\n",
"print(b[b > b.mean()])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. feladat\n",
"\n",
"Készítsünk programot, amely egyenletes eloszlás szerint generál 1000 db térbeli pontot az egységkockában, majd meghatározza az 1. ponttól legtávolabb eső pontot!"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0.37454012, 0.95071431, 0.73199394],\n",
" [0.59865848, 0.15601864, 0.15599452],\n",
" [0.05808361, 0.86617615, 0.60111501],\n",
" ...,\n",
" [0.80000348, 0.55270708, 0.39655368],\n",
" [0.13171503, 0.86529576, 0.15727321],\n",
" [0.30978786, 0.29004553, 0.87141403]])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# pontok generálása\n",
"rs = np.random.RandomState(42)\n",
"P = rs.uniform(size=(1000, 3))\n",
"P"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.89633582 0.01300192 0.08550853]\n"
]
}
],
"source": [
"# legtávolabbi pont kiszámítása, 1. megoldás\n",
"\n",
"p = P[0]\n",
"dmax = 0\n",
"for pi in P:\n",
" act = ((p[0] - pi[0])**2 + (p[1] - pi[1])**2 +(p[2] - pi[2])**2)**0.5\n",
" if act > dmax:\n",
" dmax = act\n",
" pmax = pi\n",
"print(pmax)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.89633582, 0.01300192, 0.08550853])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# legtávolabbi pont kiszámítása, 2. megoldás (vektorizálással)\n",
"\n",
"# P: 1000 3\n",
"# p: - 3\n",
"\n",
"P[((P - p)**2).sum(axis=1).argmax()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. feladat\n",
"\n",
"A [baseball.txt](baseball.txt) szövegfájl professzionális baseball játékosok testmagasságáról és testsúlyáról tartalmaz adatokat. Készítsünk programot, amely lineáris modellt ad a testsúly testmagasságból történő előrejelzésére! Részfeladatok:\n",
"- Határozzuk meg a minimális SSE (sum squared error) hibát adó modellparamétert!\n",
"- Adjunk becslést egy 180 cm magas játékos testsúlyára!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"linreg_1d.jpg\" width=\"600\"></img>"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"array([[188., 82.],\n",
" [188., 98.],\n",
" [183., 95.],\n",
" ...,\n",
" [190., 93.],\n",
" [190., 86.],\n",
" [185., 88.]])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Adatok betöltése.\n",
"data = np.genfromtxt('baseball.txt', delimiter=',')\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# bemeneti vektor\n",
"x = data[:, 0]\n",
"\n",
"# célvektor\n",
"y = data[:, 1]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# átlag kivonása\n",
"xm = x.mean()\n",
"ym = y.mean()\n",
"x -= xm\n",
"y -= ym"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0.92836399, 0.92836399, -4.07163601, ..., 2.92836399,\n",
" 2.92836399, -2.07163601])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-9.50338819, 6.49661181, 3.49661181, ..., 1.49661181,\n",
" -5.50338819, -3.50338819])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.8561919786085497"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Optimális modellparaméter.\n",
"w = (x @ y) / (x @ x)\n",
"w"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"85.4487101609531"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Becslés egy 180 cm magas játékos testsúlyára.\n",
"(180 - xm) * w + ym"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

2808
13_ea.ipynb Normal file

File diff suppressed because it is too large Load Diff

63
13_gyak.ipynb Normal file
View File

@ -0,0 +1,63 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Előadás anyag\n",
"Nézzük meg a 13. heti előadás anyagát tartalmazó Jupyter notebook (13_ea.ipynb) tartalmát! Futtassuk az egyes cellákat, módosítsunk, kisérletezzünk szabadon!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"\n",
"Oldjuk meg az alábbi feladatokat a pandas segítségével!\n",
"\n",
"A [pl.txt](pl.txt) szövegfájl a Premier League 2011-12-es szezonjának eredményeit tartalmazza. Készítsünk programot, amely:\n",
"- Betölti a fájl adatait egy DataFrame-be!\n",
"- Meghatározza, hogy:\n",
" - hány mérkőzés volt ez egyes fordulókban?\n",
" - hány gól esett az egyes fordulókban?\n",
" - melyik fordulóban esett a legtöbb gól?\n",
" - mennyi volt az átlagos mérkőzésenkénti gólszám az egyes fordulókban?\n",
" - a mérkőzések hány százalékán esett gól?\n",
" - melyik mérkőzésen esett a legtöbb gól?\n",
" - hány gólt rúgott összesen a Manchester United?\n",
"- Kiírja: \n",
" - a tíz leggólgazdagabb fordulót a gólszámokkal együtt!\n",
" - a 10., 20. és 30. fordulóban hány gól esett összesen!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

994
13_gyak_mego.ipynb Normal file
View File

@ -0,0 +1,994 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feladatok\n",
"Oldjuk meg az alábbi feladatokat a pandas segítségével!\n",
"\n",
"A [pl.txt](pl.txt) szövegfájl a Premier League 2011-12-es szezonjának eredményeit tartalmazza. Készítsünk programot, amely:\n",
"- Betölti a fájl adatait egy DataFrame-be!\n",
"- Meghatározza, hogy:\n",
" - hány mérkőzés volt ez egyes fordulókban?\n",
" - hány gól esett az egyes fordulókban?\n",
" - mennyi volt az átlagos mérkőzésenkénti gólszám az egyes fordulókban?\n",
" - melyik fordulóban esett a legtöbb gól?\n",
" - a mérkőzések hány százalékán esett gól?\n",
" - melyik mérkőzésen esett a legtöbb gól?\n",
" - hány gólt rúgott összesen a Manchester United?\n",
"\n",
"- Kiírja: \n",
" - a tíz leggólgazdagabb fordulót a gólszámokkal együtt!\n",
" - a 10., 20. és 30. fordulóban hány gól esett összesen!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# A megoldáshoz a pandas-t használjuk.\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>round</th>\n",
" <th>hteam</th>\n",
" <th>ateam</th>\n",
" <th>hgoals</th>\n",
" <th>agoals</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>Blackburn Rovers</td>\n",
" <td>Wolverhampton Wanderers</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>Fulham FC</td>\n",
" <td>Aston Villa</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>Liverpool FC</td>\n",
" <td>Sunderland AFC</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>Queens Park Rangers</td>\n",
" <td>Bolton Wanderers</td>\n",
" <td>0</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1</td>\n",
" <td>Wigan Athletic</td>\n",
" <td>Norwich City</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>375</th>\n",
" <td>38</td>\n",
" <td>Sunderland AFC</td>\n",
" <td>Manchester United</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>376</th>\n",
" <td>38</td>\n",
" <td>Swansea City</td>\n",
" <td>Liverpool FC</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>377</th>\n",
" <td>38</td>\n",
" <td>Tottenham Hotspur</td>\n",
" <td>Fulham FC</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>378</th>\n",
" <td>38</td>\n",
" <td>West Bromwich Albion</td>\n",
" <td>Arsenal FC</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>379</th>\n",
" <td>38</td>\n",
" <td>Wigan Athletic</td>\n",
" <td>Wolverhampton Wanderers</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>380 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" round hteam ateam hgoals agoals\n",
"0 1 Blackburn Rovers Wolverhampton Wanderers 1 2\n",
"1 1 Fulham FC Aston Villa 0 0\n",
"2 1 Liverpool FC Sunderland AFC 1 1\n",
"3 1 Queens Park Rangers Bolton Wanderers 0 4\n",
"4 1 Wigan Athletic Norwich City 1 1\n",
".. ... ... ... ... ...\n",
"375 38 Sunderland AFC Manchester United 0 1\n",
"376 38 Swansea City Liverpool FC 1 0\n",
"377 38 Tottenham Hotspur Fulham FC 2 0\n",
"378 38 West Bromwich Albion Arsenal FC 2 3\n",
"379 38 Wigan Athletic Wolverhampton Wanderers 3 2\n",
"\n",
"[380 rows x 5 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Töltsük be a pl.txt fájl adatait DataFrame-be!\n",
"names = ['round', 'hteam', 'ateam', 'hgoals', 'agoals']\n",
"df = pd.read_csv('pl.txt', sep='\\t', skiprows=6, names=names)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 380 entries, 0 to 379\n",
"Data columns (total 5 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 round 380 non-null int64 \n",
" 1 hteam 380 non-null object\n",
" 2 ateam 380 non-null object\n",
" 3 hgoals 380 non-null int64 \n",
" 4 agoals 380 non-null int64 \n",
"dtypes: int64(3), object(2)\n",
"memory usage: 15.0+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>round</th>\n",
" <th>hgoals</th>\n",
" <th>agoals</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>380.000000</td>\n",
" <td>380.000000</td>\n",
" <td>380.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>19.500000</td>\n",
" <td>1.589474</td>\n",
" <td>1.215789</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>10.980313</td>\n",
" <td>1.331531</td>\n",
" <td>1.204987</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>10.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>19.500000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>29.000000</td>\n",
" <td>2.000000</td>\n",
" <td>2.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>38.000000</td>\n",
" <td>8.000000</td>\n",
" <td>6.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" round hgoals agoals\n",
"count 380.000000 380.000000 380.000000\n",
"mean 19.500000 1.589474 1.215789\n",
"std 10.980313 1.331531 1.204987\n",
"min 1.000000 0.000000 0.000000\n",
"25% 10.000000 1.000000 0.000000\n",
"50% 19.500000 1.000000 1.000000\n",
"75% 29.000000 2.000000 2.000000\n",
"max 38.000000 8.000000 6.000000"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>round</th>\n",
" <th>hteam</th>\n",
" <th>ateam</th>\n",
" <th>hgoals</th>\n",
" <th>agoals</th>\n",
" <th>goals</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>Blackburn Rovers</td>\n",
" <td>Wolverhampton Wanderers</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>Fulham FC</td>\n",
" <td>Aston Villa</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>Liverpool FC</td>\n",
" <td>Sunderland AFC</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>Queens Park Rangers</td>\n",
" <td>Bolton Wanderers</td>\n",
" <td>0</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1</td>\n",
" <td>Wigan Athletic</td>\n",
" <td>Norwich City</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>375</th>\n",
" <td>38</td>\n",
" <td>Sunderland AFC</td>\n",
" <td>Manchester United</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>376</th>\n",
" <td>38</td>\n",
" <td>Swansea City</td>\n",
" <td>Liverpool FC</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>377</th>\n",
" <td>38</td>\n",
" <td>Tottenham Hotspur</td>\n",
" <td>Fulham FC</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>378</th>\n",
" <td>38</td>\n",
" <td>West Bromwich Albion</td>\n",
" <td>Arsenal FC</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>379</th>\n",
" <td>38</td>\n",
" <td>Wigan Athletic</td>\n",
" <td>Wolverhampton Wanderers</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>380 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" round hteam ateam hgoals agoals \\\n",
"0 1 Blackburn Rovers Wolverhampton Wanderers 1 2 \n",
"1 1 Fulham FC Aston Villa 0 0 \n",
"2 1 Liverpool FC Sunderland AFC 1 1 \n",
"3 1 Queens Park Rangers Bolton Wanderers 0 4 \n",
"4 1 Wigan Athletic Norwich City 1 1 \n",
".. ... ... ... ... ... \n",
"375 38 Sunderland AFC Manchester United 0 1 \n",
"376 38 Swansea City Liverpool FC 1 0 \n",
"377 38 Tottenham Hotspur Fulham FC 2 0 \n",
"378 38 West Bromwich Albion Arsenal FC 2 3 \n",
"379 38 Wigan Athletic Wolverhampton Wanderers 3 2 \n",
"\n",
" goals \n",
"0 3 \n",
"1 0 \n",
"2 2 \n",
"3 4 \n",
"4 2 \n",
".. ... \n",
"375 1 \n",
"376 1 \n",
"377 2 \n",
"378 5 \n",
"379 5 \n",
"\n",
"[380 rows x 6 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# \"Gólok száma\" oszlop felvétele.\n",
"df['goals'] = df['hgoals'] + df['agoals']\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"round\n",
"1 10\n",
"2 10\n",
"3 10\n",
"4 10\n",
"5 10\n",
"6 10\n",
"7 10\n",
"8 10\n",
"9 10\n",
"10 10\n",
"11 10\n",
"12 10\n",
"13 10\n",
"14 10\n",
"15 10\n",
"16 10\n",
"17 10\n",
"18 10\n",
"19 10\n",
"20 10\n",
"21 10\n",
"22 10\n",
"23 10\n",
"24 10\n",
"25 10\n",
"26 10\n",
"27 10\n",
"28 10\n",
"29 10\n",
"30 10\n",
"31 10\n",
"32 10\n",
"33 10\n",
"34 10\n",
"35 10\n",
"36 10\n",
"37 10\n",
"38 10\n",
"dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Példák csoportosításra (groupby).\n",
"# Hány mérkőzés volt az egyes fordulókban?\n",
"df.groupby('round').size()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 10\n",
"29 10\n",
"22 10\n",
"23 10\n",
"24 10\n",
"25 10\n",
"26 10\n",
"27 10\n",
"28 10\n",
"30 10\n",
"2 10\n",
"31 10\n",
"32 10\n",
"33 10\n",
"34 10\n",
"35 10\n",
"36 10\n",
"37 10\n",
"21 10\n",
"20 10\n",
"19 10\n",
"18 10\n",
"3 10\n",
"4 10\n",
"5 10\n",
"6 10\n",
"7 10\n",
"8 10\n",
"9 10\n",
"10 10\n",
"11 10\n",
"12 10\n",
"13 10\n",
"14 10\n",
"15 10\n",
"16 10\n",
"17 10\n",
"38 10\n",
"Name: round, dtype: int64"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# (majdnem) ugyanez, tömörebben\n",
"df['round'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"round\n",
"1 20\n",
"2 23\n",
"3 31\n",
"4 22\n",
"5 38\n",
"6 27\n",
"7 34\n",
"8 32\n",
"9 31\n",
"10 39\n",
"11 31\n",
"12 30\n",
"13 25\n",
"14 30\n",
"15 30\n",
"16 18\n",
"17 31\n",
"18 19\n",
"19 26\n",
"20 29\n",
"21 22\n",
"22 35\n",
"23 23\n",
"24 31\n",
"25 36\n",
"26 30\n",
"27 24\n",
"28 17\n",
"29 27\n",
"30 25\n",
"31 35\n",
"32 23\n",
"33 29\n",
"34 28\n",
"35 22\n",
"36 35\n",
"37 26\n",
"38 32\n",
"Name: goals, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Hány gól esett az egyes fordulókban?\n",
"df.groupby('round')['goals'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Melyik fordulóban esett a legtöbb gól?\n",
"df.groupby('round')['goals'].sum().idxmax()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"round\n",
"1 2.0\n",
"2 2.3\n",
"3 3.1\n",
"4 2.2\n",
"5 3.8\n",
"6 2.7\n",
"7 3.4\n",
"8 3.2\n",
"9 3.1\n",
"10 3.9\n",
"11 3.1\n",
"12 3.0\n",
"13 2.5\n",
"14 3.0\n",
"15 3.0\n",
"16 1.8\n",
"17 3.1\n",
"18 1.9\n",
"19 2.6\n",
"20 2.9\n",
"21 2.2\n",
"22 3.5\n",
"23 2.3\n",
"24 3.1\n",
"25 3.6\n",
"26 3.0\n",
"27 2.4\n",
"28 1.7\n",
"29 2.7\n",
"30 2.5\n",
"31 3.5\n",
"32 2.3\n",
"33 2.9\n",
"34 2.8\n",
"35 2.2\n",
"36 3.5\n",
"37 2.6\n",
"38 3.2\n",
"Name: goals, dtype: float64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Az átlagos mérkőzésenkénti gólszám az egyes fordulókban.\n",
"df.groupby('round')['goals'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"round\n",
"10 39\n",
"5 38\n",
"25 36\n",
"22 35\n",
"36 35\n",
"31 35\n",
"7 34\n",
"38 32\n",
"8 32\n",
"9 31\n",
"Name: goals, dtype: int64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Írjuk ki a tíz leggólgazdagabb fordulót a gólszámokkal együtt!\n",
"df.groupby('round')['goals'].sum().sort_values(ascending=False).head(10)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"92.89473684210526"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# A mérkőzések hány százalékán esett gól?\n",
"(df['goals'] > 0).mean() * 100"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"round 3\n",
"hteam Manchester United\n",
"ateam Arsenal FC\n",
"hgoals 8\n",
"agoals 2\n",
"goals 10\n",
"Name: 29, dtype: object"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Melyik mérkőzésen esett a legtöbb gól?\n",
"df.loc[df['goals'].idxmax()]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"93"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Írjuk ki, hogy a 10., 20. és 30. fordulóban hány gól esett összesen!\n",
"df[(df['round'] == 10) | (df['round'] == 20) | (df['round'] == 30)]['goals'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"93"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ...alternatív megoldás:\n",
"df[df['round'].isin({10, 20, 30})]['goals'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"93"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ...harmadik megoldás:\n",
"df.groupby('round')['goals'].sum()[[10, 20, 30]].sum()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"93"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ...negyedik megoldás:\n",
"df[(df['round'] % 10 == 0)]['goals'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"89"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Hány gólt rúgott összesen a Manchester United?\n",
"df[df['hteam'] == 'Manchester United']['hgoals'].sum() + df[df['ateam'] == 'Manchester United']['agoals'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"89"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# ...alternatív megoldás:\n",
"sum([df[df[f'{p}team'] == 'Manchester United'][f'{p}goals'].sum() for p in 'ha'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

1034
baseball.txt Normal file

File diff suppressed because it is too large Load Diff

4
example_file.txt Normal file
View File

@ -0,0 +1,4 @@
# example data
apple,10
pear,20
cherry,30

6777
hamlet.txt Normal file

File diff suppressed because it is too large Load Diff

505
hotels.txt Normal file
View File

@ -0,0 +1,505 @@
Hotel name;Nr. rooms;Pool;Gym;Tennis court;Spa;Casino;Traveler type;Period of stay;Score
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Dec-Feb;5
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Business;Dec-Feb;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Mar-May;5
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Mar-May;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Solo;Mar-May;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Mar-May;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Mar-May;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Mar-May;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Mar-May;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Mar-May;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Jun-Aug;2
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Jun-Aug;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Jun-Aug;2
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Jun-Aug;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Friends;Jun-Aug;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Jun-Aug;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Sep-Nov;1
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Sep-Nov;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Sep-Nov;3
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Sep-Nov;2
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Sep-Nov;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Sep-Nov;1
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Families;Dec-Feb;4
Circus Circus Hotel & Casino Las Vegas;3773;NO;YES;NO;NO;YES;Couples;Dec-Feb;2
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Business;Dec-Feb;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Business;Dec-Feb;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Solo;Mar-May;5
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Mar-May;5
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Mar-May;5
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Mar-May;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Solo;Mar-May;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Friends;Mar-May;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Jun-Aug;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Families;Jun-Aug;2
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Business;Sep-Nov;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Sep-Nov;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Families;Sep-Nov;3
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Friends;Sep-Nov;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Families;Sep-Nov;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Friends;Sep-Nov;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Excalibur Hotel & Casino;3981;YES;YES;NO;YES;YES;Solo;Dec-Feb;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Dec-Feb;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Solo;Dec-Feb;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Dec-Feb;2
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Mar-May;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Business;Mar-May;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Mar-May;5
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Business;Mar-May;2
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Mar-May;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Mar-May;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Families;Jun-Aug;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Jun-Aug;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Solo;Jun-Aug;2
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Families;Jun-Aug;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Friends;Sep-Nov;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Families;Sep-Nov;3
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Sep-Nov;2
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Business;Sep-Nov;1
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Business;Dec-Feb;2
Monte Carlo Resort&Casino;3003;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Business;Dec-Feb;3
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Dec-Feb;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Friends;Dec-Feb;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Solo;Dec-Feb;5
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Mar-May;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Friends;Mar-May;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Friends;Mar-May;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Families;Mar-May;3
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Families;Mar-May;3
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Friends;Mar-May;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Families;Jun-Aug;3
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Jun-Aug;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Solo;Jun-Aug;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Jun-Aug;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Jun-Aug;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Sep-Nov;3
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Business;Sep-Nov;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Families;Sep-Nov;5
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Sep-Nov;3
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Sep-Nov;5
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Families;Sep-Nov;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Friends;Dec-Feb;4
Treasure Island- TI Hotel & Casino;2884;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Families;Dec-Feb;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Dec-Feb;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Dec-Feb;3
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Business;Dec-Feb;3
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Business;Mar-May;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Mar-May;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Mar-May;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Business;Mar-May;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Mar-May;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Mar-May;3
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Business;Jun-Aug;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Jun-Aug;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Solo;Jun-Aug;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Jun-Aug;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Jun-Aug;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Sep-Nov;1
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Sep-Nov;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Sep-Nov;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Sep-Nov;2
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Solo;Sep-Nov;4
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Friends;Sep-Nov;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Tropicana Las Vegas - A Double Tree by Hilton Hotel;1467;YES;YES;YES;YES;YES;Families;Dec-Feb;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Friends;Dec-Feb;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Dec-Feb;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Dec-Feb;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Mar-May;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Mar-May;3
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Mar-May;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Mar-May;4
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Mar-May;1
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Mar-May;4
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Caesars Palace;3348;YES;YES;NO;YES;YES;Solo;Jun-Aug;1
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Jun-Aug;3
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Business;Sep-Nov;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Sep-Nov;3
Caesars Palace;3348;YES;YES;NO;YES;YES;Families;Dec-Feb;4
Caesars Palace;3348;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Dec-Feb;4
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Dec-Feb;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Dec-Feb;4
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Mar-May;4
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Business;Mar-May;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Families;Mar-May;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Business;Mar-May;2
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Jun-Aug;2
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Jun-Aug;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Business;Jun-Aug;1
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Families;Jun-Aug;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Business;Sep-Nov;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Business;Sep-Nov;5
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Couples;Dec-Feb;2
The Cosmopolitan Las Vegas;2959;YES;YES;NO;YES;YES;Families;Dec-Feb;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Dec-Feb;3
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Dec-Feb;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Mar-May;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Mar-May;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Mar-May;4
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Business;Mar-May;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Jun-Aug;3
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Jun-Aug;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Friends;Jun-Aug;4
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Business;Jun-Aug;4
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Friends;Sep-Nov;3
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Sep-Nov;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Sep-Nov;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Sep-Nov;3
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
The Palazzo Resort Hotel Casino;3025;YES;YES;NO;YES;YES;Families;Dec-Feb;4
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Families;Dec-Feb;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Dec-Feb;4
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Friends;Mar-May;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Business;Mar-May;4
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Business;Mar-May;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Mar-May;4
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Solo;Mar-May;3
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Mar-May;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Solo;Jun-Aug;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Business;Sep-Nov;2
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Friends;Sep-Nov;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Sep-Nov;4
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Sep-Nov;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Business;Sep-Nov;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Sep-Nov;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Wynn Las Vegas;2700;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Solo;Dec-Feb;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Business;Dec-Feb;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Business;Dec-Feb;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Dec-Feb;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Mar-May;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Mar-May;3
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Mar-May;4
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Mar-May;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Mar-May;4
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Mar-May;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Business;Jun-Aug;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Jun-Aug;4
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Sep-Nov;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Sep-Nov;1
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Sep-Nov;2
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Families;Sep-Nov;4
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Business;Dec-Feb;4
Trump International Hotel Las Vegas;1282;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
The Cromwell;188;YES;NO;NO;NO;YES;Business;Dec-Feb;3
The Cromwell;188;YES;NO;NO;NO;YES;Business;Dec-Feb;4
The Cromwell;188;YES;NO;NO;NO;YES;Families;Dec-Feb;5
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Dec-Feb;5
The Cromwell;188;YES;NO;NO;NO;YES;Solo;Mar-May;2
The Cromwell;188;YES;NO;NO;NO;YES;Friends;Mar-May;5
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Mar-May;5
The Cromwell;188;YES;NO;NO;NO;YES;Families;Mar-May;2
The Cromwell;188;YES;NO;NO;NO;YES;Friends;Mar-May;5
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Mar-May;5
The Cromwell;188;YES;NO;NO;NO;YES;Friends;Jun-Aug;5
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Jun-Aug;5
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Jun-Aug;5
The Cromwell;188;YES;NO;NO;NO;YES;Friends;Jun-Aug;1
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Jun-Aug;5
The Cromwell;188;YES;NO;NO;NO;YES;Families;Jun-Aug;4
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Sep-Nov;5
The Cromwell;188;YES;NO;NO;NO;YES;Business;Sep-Nov;4
The Cromwell;188;YES;NO;NO;NO;YES;Families;Sep-Nov;3
The Cromwell;188;YES;NO;NO;NO;YES;Friends;Sep-Nov;5
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Sep-Nov;3
The Cromwell;188;YES;NO;NO;NO;YES;Business;Sep-Nov;4
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Dec-Feb;4
The Cromwell;188;YES;NO;NO;NO;YES;Couples;Dec-Feb;4
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Business;Dec-Feb;1
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Business;Dec-Feb;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Mar-May;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Friends;Mar-May;4
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Families;Mar-May;3
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Friends;Mar-May;4
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Business;Mar-May;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Friends;Mar-May;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Business;Jun-Aug;4
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Friends;Jun-Aug;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Business;Sep-Nov;4
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Friends;Dec-Feb;5
Encore at wynn Las Vegas;2034;YES;YES;NO;YES;YES;Business;Dec-Feb;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Dec-Feb;2
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Business;Dec-Feb;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Mar-May;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Mar-May;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Business;Mar-May;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Mar-May;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Mar-May;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Mar-May;1
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Friends;Jun-Aug;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Solo;Jun-Aug;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Jun-Aug;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Sep-Nov;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Solo;Sep-Nov;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Sep-Nov;2
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Business;Sep-Nov;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Sep-Nov;3
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Families;Sep-Nov;4
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Hilton Grand Vacations on the Boulevard;1228;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Business;Dec-Feb;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Business;Dec-Feb;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Dec-Feb;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Business;Dec-Feb;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Friends;Mar-May;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Business;Mar-May;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Mar-May;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Mar-May;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Mar-May;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Business;Mar-May;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Jun-Aug;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Jun-Aug;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Jun-Aug;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Jun-Aug;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Jun-Aug;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Jun-Aug;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Friends;Sep-Nov;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Friends;Sep-Nov;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Business;Sep-Nov;3
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Sep-Nov;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Sep-Nov;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Sep-Nov;4
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Couples;Dec-Feb;5
Marriott's Grand Chateau;732;YES;YES;NO;NO;YES;Families;Dec-Feb;4
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Dec-Feb;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Friends;Dec-Feb;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Dec-Feb;3
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Dec-Feb;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Friends;Mar-May;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Mar-May;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Mar-May;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Mar-May;4
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Families;Mar-May;2
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Mar-May;3
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Friends;Jun-Aug;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Jun-Aug;3
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Jun-Aug;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Jun-Aug;4
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Jun-Aug;3
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Jun-Aug;4
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Sep-Nov;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Sep-Nov;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Sep-Nov;3
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Sep-Nov;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Couples;Sep-Nov;4
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Business;Sep-Nov;3
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Families;Dec-Feb;5
Tuscany Las Vegas Suites & Casino;716;YES;YES;YES;YES;YES;Friends;Dec-Feb;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Business;Dec-Feb;3
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Dec-Feb;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Dec-Feb;2
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Dec-Feb;2
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Friends;Mar-May;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Mar-May;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Mar-May;3
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Mar-May;3
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Friends;Mar-May;3
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Mar-May;3
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Jun-Aug;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Jun-Aug;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Jun-Aug;3
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Jun-Aug;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Jun-Aug;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Jun-Aug;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Friends;Sep-Nov;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Business;Sep-Nov;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Sep-Nov;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Sep-Nov;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Business;Sep-Nov;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Business;Sep-Nov;5
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Couples;Dec-Feb;4
Hilton Grand Vacations at the Flamingo;315;YES;YES;NO;NO;NO;Families;Dec-Feb;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Friends;Dec-Feb;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Dec-Feb;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Dec-Feb;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Dec-Feb;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Friends;Mar-May;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Mar-May;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Mar-May;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Mar-May;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Mar-May;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Business;Mar-May;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Jun-Aug;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Jun-Aug;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Jun-Aug;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Friends;Jun-Aug;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Jun-Aug;3
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Jun-Aug;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Friends;Sep-Nov;5
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Business;Sep-Nov;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Sep-Nov;3
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Couples;Sep-Nov;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Sep-Nov;3
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Sep-Nov;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Families;Dec-Feb;4
Wyndham Grand Desert;787;YES;YES;YES;NO;NO;Friends;Dec-Feb;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Business;Dec-Feb;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Solo;Dec-Feb;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Families;Dec-Feb;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Mar-May;3
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Mar-May;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Families;Mar-May;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Mar-May;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Business;Jun-Aug;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Families;Jun-Aug;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Families;Dec-Feb;5
The Venetian Las Vegas Hotel;4027;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Solo;Dec-Feb;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Families;Dec-Feb;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Business;Dec-Feb;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Mar-May;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Business;Mar-May;2
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Business;Mar-May;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Families;Mar-May;2
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Friends;Mar-May;3
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Mar-May;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Business;Jun-Aug;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Families;Jun-Aug;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Solo;Jun-Aug;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Business;Sep-Nov;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Friends;Sep-Nov;5
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Business;Dec-Feb;4
Bellagio Las Vegas;3933;YES;YES;NO;YES;YES;Families;Dec-Feb;2
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Dec-Feb;2
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Friends;Dec-Feb;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Mar-May;2
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Mar-May;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Business;Mar-May;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Friends;Mar-May;3
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Friends;Mar-May;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Mar-May;3
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Jun-Aug;3
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Families;Jun-Aug;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Families;Jun-Aug;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Sep-Nov;2
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Couples;Dec-Feb;5
Paris Las Vegas;2916;YES;YES;NO;YES;YES;Friends;Dec-Feb;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Dec-Feb;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Families;Dec-Feb;3
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Solo;Dec-Feb;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Dec-Feb;3
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Business;Mar-May;5
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Friends;Mar-May;5
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Business;Mar-May;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Solo;Mar-May;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Friends;Mar-May;3
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Mar-May;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Solo;Jun-Aug;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Business;Jun-Aug;3
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Families;Jun-Aug;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Jun-Aug;5
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Families;Jun-Aug;3
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Jun-Aug;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Solo;Sep-Nov;5
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Sep-Nov;3
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Sep-Nov;5
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Couples;Sep-Nov;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Friends;Sep-Nov;4
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Families;Dec-Feb;2
The Westin las Vegas Hotel Casino & Spa;826;YES;YES;NO;YES;YES;Families;Dec-Feb;4

35
igazi.txt Normal file
View File

@ -0,0 +1,35 @@
az
igazi
programozó
a
szimbólum
manipulációt
fortranban
csinálja
az
igazi
programozó
a
szövegkezelést
fortranban
csinálja
az
igazi
programozó
a
gépidőelszámolást
már
ha
megcsinálja
egyáltalán
fortranban
csinálja
az
igazi
programozó
a
mesterséges
intelligencia
programokat
fortranban
csinálja

1435
investments.txt Normal file

File diff suppressed because it is too large Load Diff

BIN
linreg_1d.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

10
matrix.txt Normal file
View File

@ -0,0 +1,10 @@
0 1 1 0 1 0 1 1 0 1
0 0 1 0 1 1 0 1 0 1
0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 1 0 0
1 0 1 1 0 0 1 0 1 1
1 0 1 0 0 1 1 0 1 0
1 1 1 0 1 1 1 0 1 1
0 0 0 0 0 1 0 1 0 1
1 1 0 1 0 1 1 1 0 0
1 0 1 0 1 0 0 1 0 1

386
pl.txt Normal file
View File

@ -0,0 +1,386 @@
# Premier League, 2011-12-es szezon
# 1. oszlop: fordulo
# 2. oszlop: hazai csapat
# 3. oszlop: vendegcsapat
# 4. oszlop: hazai csapat goljainak szama
# 5. oszlop: vendegcsapat goljainak szama
1 Blackburn Rovers Wolverhampton Wanderers 1 2
1 Fulham FC Aston Villa 0 0
1 Liverpool FC Sunderland AFC 1 1
1 Queens Park Rangers Bolton Wanderers 0 4
1 Wigan Athletic Norwich City 1 1
1 Newcastle United Arsenal FC 0 0
1 Stoke City Chelsea FC 0 0
1 West Bromwich Albion Manchester United 1 2
1 Manchester City Swansea City 4 0
1 Tottenham Hotspur Everton FC 2 0
2 Sunderland AFC Newcastle United 0 1
2 Arsenal FC Liverpool FC 0 2
2 Aston Villa Blackburn Rovers 3 1
2 Everton FC Queens Park Rangers 0 1
2 Swansea City Wigan Athletic 0 0
2 Chelsea FC West Bromwich Albion 2 1
2 Norwich City Stoke City 1 1
2 Wolverhampton Wanderers Fulham FC 2 0
2 Bolton Wanderers Manchester City 2 3
2 Manchester United Tottenham Hotspur 3 0
3 Aston Villa Wolverhampton Wanderers 0 0
3 Wigan Athletic Queens Park Rangers 2 0
3 Blackburn Rovers Everton FC 0 1
3 Chelsea FC Norwich City 3 1
3 Swansea City Sunderland AFC 0 0
3 Liverpool FC Bolton Wanderers 3 1
3 Newcastle United Fulham FC 2 1
3 Tottenham Hotspur Manchester City 1 5
3 West Bromwich Albion Stoke City 0 1
3 Manchester United Arsenal FC 8 2
4 Arsenal FC Swansea City 1 0
4 Everton FC Aston Villa 2 2
4 Manchester City Wigan Athletic 3 0
4 Stoke City Liverpool FC 1 0
4 Sunderland AFC Chelsea FC 1 2
4 Wolverhampton Wanderers Tottenham Hotspur 0 2
4 Bolton Wanderers Manchester United 0 5
4 Norwich City West Bromwich Albion 0 1
4 Fulham FC Blackburn Rovers 1 1
4 Queens Park Rangers Newcastle United 0 0
5 Blackburn Rovers Arsenal FC 4 3
5 Aston Villa Newcastle United 1 1
5 Bolton Wanderers Norwich City 1 2
5 Everton FC Wigan Athletic 3 1
5 Swansea City West Bromwich Albion 3 0
5 Wolverhampton Wanderers Queens Park Rangers 0 3
5 Tottenham Hotspur Liverpool FC 4 0
5 Fulham FC Manchester City 2 2
5 Sunderland AFC Stoke City 4 0
5 Manchester United Chelsea FC 3 1
6 Manchester City Everton FC 2 0
6 Arsenal FC Bolton Wanderers 3 0
6 Chelsea FC Swansea City 4 1
6 Liverpool FC Wolverhampton Wanderers 2 1
6 Newcastle United Blackburn Rovers 3 1
6 West Bromwich Albion Fulham FC 0 0
6 Wigan Athletic Tottenham Hotspur 1 2
6 Stoke City Manchester United 1 1
6 Queens Park Rangers Aston Villa 1 1
6 Norwich City Sunderland AFC 2 1
7 Everton FC Liverpool FC 0 2
7 Aston Villa Wigan Athletic 2 0
7 Blackburn Rovers Manchester City 0 4
7 Manchester United Norwich City 2 0
7 Sunderland AFC West Bromwich Albion 2 2
7 Wolverhampton Wanderers Newcastle United 1 2
7 Bolton Wanderers Chelsea FC 1 5
7 Fulham FC Queens Park Rangers 6 0
7 Swansea City Stoke City 2 0
7 Tottenham Hotspur Arsenal FC 2 1
8 Liverpool FC Manchester United 1 1
8 Manchester City Aston Villa 4 1
8 Norwich City Swansea City 3 1
8 Queens Park Rangers Blackburn Rovers 1 1
8 Stoke City Fulham FC 2 0
8 Wigan Athletic Bolton Wanderers 1 3
8 Chelsea FC Everton FC 3 1
8 West Bromwich Albion Wolverhampton Wanderers 2 0
8 Arsenal FC Sunderland AFC 2 1
8 Newcastle United Tottenham Hotspur 2 2
9 Wolverhampton Wanderers Swansea City 2 2
9 Aston Villa West Bromwich Albion 1 2
9 Bolton Wanderers Sunderland AFC 0 2
9 Newcastle United Wigan Athletic 1 0
9 Liverpool FC Norwich City 1 1
9 Arsenal FC Stoke City 3 1
9 Fulham FC Everton FC 1 3
9 Manchester United Manchester City 1 6
9 Blackburn Rovers Tottenham Hotspur 1 2
9 Queens Park Rangers Chelsea FC 1 0
10 Everton FC Manchester United 0 1
10 Chelsea FC Arsenal FC 3 5
10 Manchester City Wolverhampton Wanderers 3 1
10 Norwich City Blackburn Rovers 3 3
10 Sunderland AFC Aston Villa 2 2
10 Swansea City Bolton Wanderers 3 1
10 Wigan Athletic Fulham FC 0 2
10 West Bromwich Albion Liverpool FC 0 2
10 Tottenham Hotspur Queens Park Rangers 3 1
10 Stoke City Newcastle United 1 3
11 Newcastle United Everton FC 2 1
11 Arsenal FC West Bromwich Albion 3 0
11 Aston Villa Norwich City 3 2
11 Blackburn Rovers Chelsea FC 0 1
11 Liverpool FC Swansea City 0 0
11 Manchester United Sunderland AFC 1 0
11 Queens Park Rangers Manchester City 2 3
11 Wolverhampton Wanderers Wigan Athletic 3 1
11 Bolton Wanderers Stoke City 5 0
11 Fulham FC Tottenham Hotspur 1 3
12 Norwich City Arsenal FC 1 2
12 Everton FC Wolverhampton Wanderers 2 1
12 Manchester City Newcastle United 3 1
12 Stoke City Queens Park Rangers 2 3
12 Sunderland AFC Fulham FC 0 0
12 West Bromwich Albion Bolton Wanderers 2 1
12 Wigan Athletic Blackburn Rovers 3 3
12 Swansea City Manchester United 0 1
12 Chelsea FC Liverpool FC 1 2
12 Tottenham Hotspur Aston Villa 2 0
13 Stoke City Blackburn Rovers 3 1
13 Bolton Wanderers Everton FC 0 2
13 Chelsea FC Wolverhampton Wanderers 3 0
13 Manchester United Newcastle United 1 1
13 Norwich City Queens Park Rangers 2 1
13 Sunderland AFC Wigan Athletic 1 2
13 West Bromwich Albion Tottenham Hotspur 1 3
13 Arsenal FC Fulham FC 1 1
13 Swansea City Aston Villa 0 0
13 Liverpool FC Manchester City 1 1
14 Newcastle United Chelsea FC 0 3
14 Blackburn Rovers Swansea City 4 2
14 Manchester City Norwich City 5 1
14 Queens Park Rangers West Bromwich Albion 1 1
14 Tottenham Hotspur Bolton Wanderers 3 0
14 Wigan Athletic Arsenal FC 0 4
14 Aston Villa Manchester United 0 1
14 Everton FC Stoke City 0 1
14 Wolverhampton Wanderers Sunderland AFC 2 1
14 Fulham FC Liverpool FC 1 0
15 Arsenal FC Everton FC 1 0
15 Bolton Wanderers Aston Villa 1 2
15 Liverpool FC Queens Park Rangers 1 0
15 Manchester United Wolverhampton Wanderers 4 1
15 Norwich City Newcastle United 4 2
15 Swansea City Fulham FC 2 0
15 West Bromwich Albion Wigan Athletic 1 2
15 Sunderland AFC Blackburn Rovers 2 1
15 Stoke City Tottenham Hotspur 2 1
15 Chelsea FC Manchester City 2 1
16 Blackburn Rovers West Bromwich Albion 1 2
16 Everton FC Norwich City 1 1
16 Fulham FC Bolton Wanderers 2 0
16 Newcastle United Swansea City 0 0
16 Wolverhampton Wanderers Stoke City 1 2
16 Wigan Athletic Chelsea FC 1 1
16 Queens Park Rangers Manchester United 0 2
16 Aston Villa Liverpool FC 0 2
16 Tottenham Hotspur Sunderland AFC 1 0
16 Manchester City Arsenal FC 1 0
17 Wolverhampton Wanderers Norwich City 2 2
17 Blackburn Rovers Bolton Wanderers 1 2
17 Aston Villa Arsenal FC 1 2
17 Manchester City Stoke City 3 0
17 Newcastle United West Bromwich Albion 2 3
17 Queens Park Rangers Sunderland AFC 2 3
17 Wigan Athletic Liverpool FC 0 0
17 Everton FC Swansea City 1 0
17 Fulham FC Manchester United 0 5
17 Tottenham Hotspur Chelsea FC 1 1
18 Chelsea FC Fulham FC 1 1
18 Bolton Wanderers Newcastle United 0 2
18 Liverpool FC Blackburn Rovers 1 1
18 Manchester United Wigan Athletic 5 0
18 Sunderland AFC Everton FC 1 1
18 West Bromwich Albion Manchester City 0 0
18 Stoke City Aston Villa 0 0
18 Arsenal FC Wolverhampton Wanderers 1 1
18 Swansea City Queens Park Rangers 1 1
18 Norwich City Tottenham Hotspur 0 2
19 Liverpool FC Newcastle United 3 1
19 Manchester United Blackburn Rovers 2 3
19 Arsenal FC Queens Park Rangers 1 0
19 Bolton Wanderers Wolverhampton Wanderers 1 1
19 Chelsea FC Aston Villa 1 3
19 Norwich City Fulham FC 1 1
19 Stoke City Wigan Athletic 2 2
19 Swansea City Tottenham Hotspur 1 1
19 West Bromwich Albion Everton FC 0 1
19 Sunderland AFC Manchester City 1 0
20 Blackburn Rovers Stoke City 1 2
20 Aston Villa Swansea City 0 2
20 Queens Park Rangers Norwich City 1 2
20 Wolverhampton Wanderers Chelsea FC 1 2
20 Fulham FC Arsenal FC 2 1
20 Tottenham Hotspur West Bromwich Albion 1 0
20 Wigan Athletic Sunderland AFC 1 4
20 Manchester City Liverpool FC 3 0
20 Everton FC Bolton Wanderers 1 2
20 Newcastle United Manchester United 3 0
21 Aston Villa Everton FC 1 1
21 Blackburn Rovers Fulham FC 3 1
21 Chelsea FC Sunderland AFC 1 0
21 Liverpool FC Stoke City 0 0
21 Manchester United Bolton Wanderers 3 0
21 Tottenham Hotspur Wolverhampton Wanderers 1 1
21 West Bromwich Albion Norwich City 1 2
21 Newcastle United Queens Park Rangers 1 0
21 Swansea City Arsenal FC 3 2
21 Wigan Athletic Manchester City 0 1
22 Norwich City Chelsea FC 0 0
22 Everton FC Blackburn Rovers 1 1
22 Fulham FC Newcastle United 5 2
22 Queens Park Rangers Wigan Athletic 3 1
22 Stoke City West Bromwich Albion 1 2
22 Sunderland AFC Swansea City 2 0
22 Wolverhampton Wanderers Aston Villa 2 3
22 Bolton Wanderers Liverpool FC 3 1
22 Manchester City Tottenham Hotspur 3 2
22 Arsenal FC Manchester United 1 2
23 Swansea City Chelsea FC 1 1
23 Tottenham Hotspur Wigan Athletic 3 1
23 Wolverhampton Wanderers Liverpool FC 0 3
23 Manchester United Stoke City 2 0
23 Everton FC Manchester City 1 0
23 Aston Villa Queens Park Rangers 2 2
23 Bolton Wanderers Arsenal FC 0 0
23 Sunderland AFC Norwich City 3 0
23 Fulham FC West Bromwich Albion 1 1
23 Blackburn Rovers Newcastle United 0 2
24 Arsenal FC Blackburn Rovers 7 1
24 Norwich City Bolton Wanderers 2 0
24 Queens Park Rangers Wolverhampton Wanderers 1 2
24 Stoke City Sunderland AFC 0 1
24 West Bromwich Albion Swansea City 1 2
24 Wigan Athletic Everton FC 1 1
24 Manchester City Fulham FC 3 0
24 Newcastle United Aston Villa 2 1
24 Chelsea FC Manchester United 3 3
24 Liverpool FC Tottenham Hotspur 0 0
25 Manchester United Liverpool FC 2 1
25 Blackburn Rovers Queens Park Rangers 3 2
25 Bolton Wanderers Wigan Athletic 1 2
25 Everton FC Chelsea FC 2 0
25 Fulham FC Stoke City 2 1
25 Sunderland AFC Arsenal FC 1 2
25 Swansea City Norwich City 2 3
25 Tottenham Hotspur Newcastle United 5 0
25 Wolverhampton Wanderers West Bromwich Albion 1 5
25 Aston Villa Manchester City 0 1
26 Chelsea FC Bolton Wanderers 3 0
26 Newcastle United Wolverhampton Wanderers 2 2
26 Queens Park Rangers Fulham FC 0 1
26 West Bromwich Albion Sunderland AFC 4 0
26 Wigan Athletic Aston Villa 0 0
26 Manchester City Blackburn Rovers 3 0
26 Arsenal FC Tottenham Hotspur 5 2
26 Norwich City Manchester United 1 2
26 Stoke City Swansea City 2 0
26 Liverpool FC Everton FC 3 0
27 Liverpool FC Arsenal FC 1 2
27 Blackburn Rovers Aston Villa 1 1
27 Manchester City Bolton Wanderers 2 0
27 Queens Park Rangers Everton FC 1 1
27 Stoke City Norwich City 1 0
27 West Bromwich Albion Chelsea FC 1 0
27 Wigan Athletic Swansea City 0 2
27 Newcastle United Sunderland AFC 1 1
27 Fulham FC Wolverhampton Wanderers 5 0
27 Tottenham Hotspur Manchester United 1 3
28 Bolton Wanderers Queens Park Rangers 2 1
28 Aston Villa Fulham FC 1 0
28 Chelsea FC Stoke City 1 0
28 Sunderland AFC Liverpool FC 1 0
28 Wolverhampton Wanderers Blackburn Rovers 0 2
28 Everton FC Tottenham Hotspur 1 0
28 Manchester United West Bromwich Albion 2 0
28 Swansea City Manchester City 1 0
28 Norwich City Wigan Athletic 1 1
28 Arsenal FC Newcastle United 2 1
29 Fulham FC Swansea City 0 3
29 Wigan Athletic West Bromwich Albion 1 1
29 Wolverhampton Wanderers Manchester United 0 5
29 Newcastle United Norwich City 1 0
29 Blackburn Rovers Sunderland AFC 2 0
29 Manchester City Chelsea FC 2 1
29 Tottenham Hotspur Stoke City 1 1
29 Everton FC Arsenal FC 0 1
29 Queens Park Rangers Liverpool FC 3 2
29 Aston Villa Bolton Wanderers 1 2
30 Chelsea FC Tottenham Hotspur 0 0
30 Arsenal FC Aston Villa 3 0
30 Bolton Wanderers Blackburn Rovers 2 1
30 Liverpool FC Wigan Athletic 1 2
30 Norwich City Wolverhampton Wanderers 2 1
30 Sunderland AFC Queens Park Rangers 3 1
30 Swansea City Everton FC 0 2
30 Stoke City Manchester City 1 1
30 West Bromwich Albion Newcastle United 1 3
30 Manchester United Fulham FC 1 0
31 Aston Villa Chelsea FC 2 4
31 Everton FC West Bromwich Albion 2 0
31 Fulham FC Norwich City 2 1
31 Manchester City Sunderland AFC 3 3
31 Queens Park Rangers Arsenal FC 2 1
31 Wigan Athletic Stoke City 2 0
31 Wolverhampton Wanderers Bolton Wanderers 2 3
31 Newcastle United Liverpool FC 2 0
31 Tottenham Hotspur Swansea City 3 1
31 Blackburn Rovers Manchester United 0 2
32 Swansea City Newcastle United 0 2
32 Sunderland AFC Tottenham Hotspur 0 0
32 Bolton Wanderers Fulham FC 0 3
32 Chelsea FC Wigan Athletic 2 1
32 Liverpool FC Aston Villa 1 1
32 Norwich City Everton FC 2 2
32 West Bromwich Albion Blackburn Rovers 3 0
32 Stoke City Wolverhampton Wanderers 2 1
32 Manchester United Queens Park Rangers 2 0
32 Arsenal FC Manchester City 1 0
33 Everton FC Sunderland AFC 4 0
33 Newcastle United Bolton Wanderers 2 0
33 Tottenham Hotspur Norwich City 1 2
33 Aston Villa Stoke City 1 1
33 Fulham FC Chelsea FC 1 1
33 Blackburn Rovers Liverpool FC 2 3
33 Manchester City West Bromwich Albion 4 0
33 Wigan Athletic Manchester United 1 0
33 Wolverhampton Wanderers Arsenal FC 0 3
33 Queens Park Rangers Swansea City 3 0
34 Norwich City Manchester City 1 6
34 Sunderland AFC Wolverhampton Wanderers 0 0
34 Swansea City Blackburn Rovers 3 0
34 West Bromwich Albion Queens Park Rangers 1 0
34 Manchester United Aston Villa 4 0
34 Arsenal FC Wigan Athletic 1 2
34 Liverpool FC Fulham FC 0 1
34 Stoke City Everton FC 1 1
34 Chelsea FC Newcastle United 0 2
34 Bolton Wanderers Tottenham Hotspur 1 4
35 Arsenal FC Chelsea FC 0 0
35 Aston Villa Sunderland AFC 0 0
35 Blackburn Rovers Norwich City 2 0
35 Bolton Wanderers Swansea City 1 1
35 Fulham FC Wigan Athletic 2 1
35 Newcastle United Stoke City 3 0
35 Queens Park Rangers Tottenham Hotspur 1 0
35 Manchester United Everton FC 4 4
35 Liverpool FC West Bromwich Albion 0 1
35 Wolverhampton Wanderers Manchester City 0 2
36 Everton FC Fulham FC 4 0
36 Stoke City Arsenal FC 1 1
36 Sunderland AFC Bolton Wanderers 2 2
36 Swansea City Wolverhampton Wanderers 4 4
36 West Bromwich Albion Aston Villa 0 0
36 Wigan Athletic Newcastle United 4 0
36 Norwich City Liverpool FC 0 3
36 Chelsea FC Queens Park Rangers 6 1
36 Tottenham Hotspur Blackburn Rovers 2 0
36 Manchester City Manchester United 1 0
37 Arsenal FC Norwich City 3 3
37 Newcastle United Manchester City 0 2
37 Aston Villa Tottenham Hotspur 1 1
37 Bolton Wanderers West Bromwich Albion 2 2
37 Fulham FC Sunderland AFC 2 1
37 Queens Park Rangers Stoke City 1 0
37 Wolverhampton Wanderers Everton FC 0 0
37 Manchester United Swansea City 2 0
37 Blackburn Rovers Wigan Athletic 0 1
37 Liverpool FC Chelsea FC 4 1
38 Chelsea FC Blackburn Rovers 2 1
38 Everton FC Newcastle United 3 1
38 Manchester City Queens Park Rangers 3 2
38 Norwich City Aston Villa 2 0
38 Stoke City Bolton Wanderers 2 2
38 Sunderland AFC Manchester United 0 1
38 Swansea City Liverpool FC 1 0
38 Tottenham Hotspur Fulham FC 2 0
38 West Bromwich Albion Arsenal FC 2 3
38 Wigan Athletic Wolverhampton Wanderers 3 2

BIN
pyprog_bevezetes.pdf Normal file

Binary file not shown.

855
unicef.txt Normal file
View File

@ -0,0 +1,855 @@
Country|United Nations Region|United Nations Sub-Region|World Bank Income Classification|Survey Year|Survey Sample (N)|Severe Wasting|Wasting|Stunting|Underweight|Overweight|Source|Notes|U5 Population ('000s)
AFGHANISTAN|Asia|Southern Asia|Low Income|1997|4846||18,2|53,2|44,9|6,5| Afghanistan 1997 multiple indicator baseline (MICS). Report to UNICEF. Communitiy Information and Epidemiological Technologies Firm (CIET) International, 1998 (and additional analysis)|Converted estimates|3637,632
AFGHANISTAN|Asia|Southern Asia|Low Income|2004|946|3,5|8,6|59,3|32,9|4,6|Summary report of the national nutrition survey, 2004. Kabul, Islamic Republic of Afghanistan: Ministry of Public Health and UNICEF, 2005 (and additional analysis).||4667,487
AFGHANISTAN|Asia|Southern Asia|Low Income|2013|21922|4,0|9,5|40,9|25,0|5,4|Afghanistan National Nutrition Survey 2013.|(pending reanalysis)|5235,867
ALBANIA|Europe|Southern Europe|Upper Middle Income|1996-98|7642||8,1|20,4|7,1|9,5|National study on nutrition in Albania. Institute of Public Health, Food and Nutrition Section, 1999 (and additional analysis).|Converted estimates|307,887
ALBANIA|Europe|Southern Europe|Upper Middle Income|2000|1382|6,2|12,2|39,2|17,0|30,0|Multiple indicator cluster survey report Albania (MICS). Committee on Women and Family, Institute of Public Health, Faculty of Social Sciences and UNICEF (Albania). Tirana, Albania: UNICEF, 2000 (and additional analysis).||278,753
ALBANIA|Europe|Southern Europe|Upper Middle Income|2005|1090|3,7|7,3|26,7|6,6|24,8|Albania multiple indicator cluster survey 2005, final report. Tirana, Albania: Albanian National Institute of Statistics, 2008 (and additional analysis).||219,025
ALBANIA|Europe|Southern Europe|Upper Middle Income|2008-09|1489|5,9|9,6|23,2|6,3|23,2|Albania demographic and health survey 2008-09. Demographic and Health Surveys. Tirana, Albania: Institute of Statistics, Institute of Public Health and ICF Macro, 2010 (and additional analysis).||179,148
ALBANIA|Europe|Southern Europe|Upper Middle Income|2017-18|2367|0,5|1,6|11,3|1,5|16,4|Albania Demographic and Health Survey 2017-18. Tirana, Albania: Institute of Statistics, Institute of Public Health, and ICF (and additional analysis)||177,175
ALGERIA|Africa|Northern Africa|Upper Middle Income|1987|2344||4,0|16,9|8,0||Etat nutritionnel des enfants algériens de 0 à 10 ans et niveaux d'urbanisation d'après les résultats préliminaires de l'enquête épidémiologique sur la malnutrition protéino-énérgétique en 1987. Institut National de Santé Publique, Algiers; 1987.|Converted estimates|3979,1620000000003
ALGERIA|Africa|Northern Africa|Upper Middle Income|1992|4629|3,0|7,1|22,9|9,2|8,7|Enquête Algérienne sur la santé de la mère et de l'enfant. Office national des statistiques. PAPCHILD surveys. Cairo: Ligue des Etats Arabes, 1992 (and additional analysis).||3942,777
ALGERIA|Africa|Northern Africa|Upper Middle Income|1995|3825|4,2|9,6|22,5|11,3|13,2|"Enquête nationale sur les objectifs de la mi-decennie, ""MDG Algerie"", 1995. Alger, Algerie, 1996 (and additional analysis)."||3734,288
ALGERIA|Africa|Northern Africa|Upper Middle Income|2000|4178|1,1|3,1|23,6|5,4|14,7|Enquête nationale sur les objectives de la fin décennie santé mère et enfant EDG Algérie 2000 (MICS). Institut National de Santé Publique. République Algérienne Démocratique et Populaire, 2001 (and additional analysis).||3087,8309999999997
ALGERIA|Africa|Northern Africa|Upper Middle Income|2002|4357|5,0|9,6|24,0|11,1|15,1|Enquête Algérienne sur la santé de la famille-2002: Rapport principal. Alger, Algérie: Agence Nationale de la Documentation en Santé, 2004 (and additional analysis).||2885,61
ALGERIA|Africa|Northern Africa|Upper Middle Income|2005|13976|1,6|4,0|15,9|3,7|12,9|Suivi de la situation des enfant et des femmes. Enquête nationale à indicateurs multiples: Rapport principal. MICS3. République Algérienne Démocratique et Populaire, Décembre 2008 (and additional analysis).||2964,659
ALGERIA|Africa|Northern Africa|Upper Middle Income|2012-13|13860|1,4|4,1|11,7|3,0|12,4|République Algérienne Démocratiqe et Populaire enquête par grappes à indicateurs mulitples (MICS) 2012-2013. Rapport final. Ministère de la Santé, de la Population et de la Réforme Hospitalière, 2015 (and additional analysis)||4340,456
ANGOLA|Africa|Middle Africa|Lower Middle Income|1996|3016|3,3|8,6|61,7|37,0|1,6|Inquerito de indicadores multiplos (MICS) 1996. Instituto Nacional de Estatistica - Gabinete de Monitorizaçao das Condiçoes de Vida da Populaçao. Luanda, Angola, 1999 (and additional analysis).||2875,53
ANGOLA|Africa|Middle Africa|Lower Middle Income|2007|10224|4,3|8,2|29,2|15,6||Relatorio do inquerito sobre a nutriçao em Angola 2007. Luanda, Republica de Angola: Ministerio da Saude, Direcçao nacional de Saude Publica, 2008.||4091,763
ANGOLA|Africa|Middle Africa|Lower Middle Income|2015-16|7468|1,1|4,9|37,6|19,0|3,4|Inquérito de Indicadores Múltiplos e de Saúde em Angola 2015-2016. Luanda, Angola e Rockville, Maryland, EUA: INE, MINSA, MINPLAN e ICF International (and additional analysis)||5277,121999999999
ARGENTINA|Latin America and the Caribbean|South America|High Income|1994|5296||1,6|7,1|1,7|11,1|The organisation of a national survey for evaluating child psychomotor development in Argentina. Paediatric and Perinatal Epidemiology 1997;11:359-373 (and additional analysis).|Converted estimates|3523,0209999999997
ARGENTINA|Latin America and the Caribbean|South America|High Income|1995-96|91943||4,2|16,9|4,7|13,5|Encuesta antropometrica en menores de 6 años bajo programa materno infantil. In: Estudios antropometricos en la poblacion infanto-juvenil. Rep. Argentina 1993-1996. Ministerio de Salud y Accion Social. Buenos Aires, 1999 (and additional analysis).|Converted estimates|3514,0679999999998
ARGENTINA|Latin America and the Caribbean|South America|High Income|2004-05|999999|0,2|1,2|8,2|2,3|9,9|Nutrition status in Argentinean children 6 to 72 months old. Results from the National Nutrition and Health Survey (ENNyS). Archivos Argentinos de Pediatria 2009;107:397-404 (and additional analysis).||3594,8759999999997
ARMENIA|Asia|Western Asia|Upper Middle Income|1998|3241|1,0|3,3|15,1|2,7|10,8|The health and nutritional status of children an women in Armenia. National Institute of Nutrition - Italy, 1998 (and additional analysis).||222,671
ARMENIA|Asia|Western Asia|Upper Middle Income|2000-01|1486|0,7|2,5|17,3|2,6|15,7|Armenia demographic and health survey 2000. Demographic and Health Surveys. Calverton, Maryland: National Statistical Service, Ministry of Health, and ORC Macro, 2001 (and additional analysis).||196,554
ARMENIA|Asia|Western Asia|Upper Middle Income|2005|1377|2,6|5,4|17,9|4,2|11,4|Armenia demographic and health survey 2005. Demographic and Health Surveys. Calverton, Maryland: National Statistical Service, Ministry of Health, and ORC Macro, 2006 (and additional analysis).||186,628
ARMENIA|Asia|Western Asia|Upper Middle Income|2010|1411|2,0|4,1|20,9|5,3|16,5|Armenia demographic and health survey 2010. Demographic and Health Surveys. Calverton, Maryland: National Statistical Service, Ministry of Health, and ICF International, 2012 (and additional analysis).||201,083
ARMENIA|Asia|Western Asia|Upper Middle Income|2015-16|1609|1,7|4,5|9,4|2,6|13,7|Armenia Demographic and Health Survey 2015-16. Rockville, Maryland, USA: National Statistical Service, Ministry of Health, and ICF (and additional analysis)||202,199
AUSTRALIA|Oceania|Australia/New Zealand|High Income|1995-96|1036810||0,0|0,0|0,0|7,9|National nutrition survey Australia 1995. Canberra: Australian Bureau of Statistics and Commonwealth Department of Health and Family Services, 1997 (and additional analysis).|Age-adjusted; converted estimates|1303,522
AUSTRALIA|Oceania|Australia/New Zealand|High Income|2007|1007|0,0|0,0|2,0|0,2|7,7|The 2007 national children's nutrition and physical activity survey. Canberra, Australia: DoHA, 2010 (and additional analysis).|Age-adjusted;|1329,3670000000002
AZERBAIJAN|Asia|Western Asia|Upper Middle Income|1996|500||3,8|28,0|8,8|6,1|Health and nutrition survey of internally displaced and resident population of Azerbaijan - April 1996. Baku, Azerbaijan, 1996 (and additional analysis).|Converted estimates|855,429
AZERBAIJAN|Asia|Western Asia|Upper Middle Income|2000|1787|4,1|9,0|24,2|14,0|6,2|Azerbaijan multiple indicator cluster survey 2000 (MICS). Baku, Azerbaijan: United Nations Children's Fund, 2001 (and additional analysis).||712,543
AZERBAIJAN|Asia|Western Asia|Upper Middle Income|2001|2426||3,2|18,0|5,9|4,4|UNFPA, UNHCR. Reproductive health survey Azerbaijan, 2001: Final report. Serbanescu F, Morris L, Rahimova S, Stupp P, eds. Atlanta, GA: US Department of Health and Human Services, CDC, 2003 (and additional analysis).|Converted estimates|674,064
AZERBAIJAN|Asia|Western Asia|Upper Middle Income|2006|2125|2,2|6,8|26,5|8,4|13,9|Azerbaijan demographic and health survey 2006. Demographic and Health Surveys. Calverton, Maryland, USA: State Statistical Committee and Macro International Inc., 2008 (and additional analysis).||656,8610000000001
AZERBAIJAN|Asia|Western Asia|Upper Middle Income|2011|2505|2,9|6,6|16,4|6,5|10,4|The Demographic and Health Survey, Azerbaijan, 2011 Final Report|(pending reanalysis)|734,926
AZERBAIJAN|Asia|Western Asia|Upper Middle Income|2013|3613423|1,1|3,2|17,8|4,9|14,1|Azerbaijan nutrition survey (AzNS), 2013. Baku, Republic of Azerbaijan, 2014 (and additional analysis)||813,868
BAHRAIN|Asia|Western Asia|High Income|1989|2033||6,8|13,9|6,3|7,5|Bahrain child health survey 1989. Manama, Bahrain, 1992.|Converted estimates|65,456
BAHRAIN|Asia|Western Asia|High Income|1995|673||6,6|13,6|7,6||Bahrain family health survey 1995: principal report. Manama, Bahrain: Ministry of Health, 2000.|Converted estimates (Bahraini)|61,291000000000004
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1985-86|2675||17,3|70,9|66,8|0,2|Report of the child nutrition status module, Bangladesh household expenditure survey 1985-86. Bangladesh bureau of statistics. Dhaka, Bangladesh, 1987 (and additional analysis).|Converted estimates|15921,293
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1989-90|1914||17,5|63,4|61,5|0,6|Report of the child nutrition status survey 1989-90. Bangladesh bureau of statistics. Dhaka, Bangladesh, 1991 (and additional analysis).|Converted estimates|16461,413
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1991|32493|2,6|15,2|73,6|61,2|0,3|Nutritional Surveillance Project 1991: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16573,078999999998
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1992|36997|3,0|16,1|71,5|60,6|0,2|Nutritional Surveillance Project 1992: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16611,504
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1993|42826|2,5|14,0|69,2|56,1|0,4|Nutritional Surveillance Project 1993: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16603,45
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1994|63753|3,2|16,7|67,3|58,0|0,2|Nutritional Surveillance Project 1994: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16591,037
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1995|87051|2,7|15,1|65,8|55,2|0,2|Nutritional Surveillance Project 1995: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16608,371
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1996|81067|2,8|15,5|63,8|54,0|0,3|Nutritional Surveillance Project 1996: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16641,067
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1996-97|5204|6,9|20,7|59,5|53,6|2,3|Bangladesh demographic and health survey 1996-97. Demographic and Health Surveys. National Institute for Population Research and Training. Dhaka, Bangladesh, 1997 (and additional analysis).||16684,087
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1998|49496|2,3|15,0|59,3|50,7|0,2|Nutritional Surveillance Project 1998: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16734,686
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1999|49374|2,0|13,7|59,9|49,5|0,6|Nutritional Surveillance Project 1999: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16779,926
BANGLADESH|Asia|Southern Asia|Lower Middle Income|1999-00|6007|2,5|12,5|51,1|42,4|0,9|Bangladesh demographic and health survey 1999-2000 (DHS). Dhaka, Bangladesh and Calverton, Maryland: National Institute of Population Research and Training, Mitra and Associates, and ORC Macro, 2001 (and additional analysis).||16814,042
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2001|63444|2,3|12,7|53,2|43,2|0,9|Nutritional Surveillance Project 2001: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16914,645
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2002|53315|2,1|12,4|51,4|41,0|1,0|Nutritional Surveillance Project 2002: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16952,624
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2003|86999|2,1|12,5|47,8|38,9|1,0|Nutritional Surveillance Project 2003: data on rural national (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008.| Adjusted NR to NA; nutritional surveillance|16933,025
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2004|6253|3,5|14,6|50,5|42,8|0,9|Bangladesh demographic and health survey 2004. Demographic and Health Surveys. Dhaka, Bangladesh and Calverton, Maryland [USA]: NIPORT, Mitra and Associates, and ORC Macro, 2005 (and additional analysis).||16860,593
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2005|74758|1,9|11,8|45,9|37,3|1,0|Nutritional Surveillance Project 2005: Rural data (using the WHO Child Growth Standards). Unpublished estimates. Dhakar, Bangladesh: HKI and Institute of Public Health Nutrition, 2007.| Adjusted NR to NA; nutritional surveillance|16744,481
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2006|24302|1,6|11,9|45,1|37,9|0,8|Nutritional Surveillance Project 2006: data on rural national data (using the WHO Child Growth Standards). Unpublished estimates. Dhaka, Bangladesh: HKI and Institute of Public Health Nutrition, 2008 (and additional analysis).| Adjusted NR to NA; nutritional surveillance|16676,261000000002
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2007|5488|2,9|17,5|43,2|41,3|1,1|Bangladesh demographic and health survey 2007. DHS. Dhaka, Bangladesh and Calverton, Maryland, USA: National Institute of Population Research and Training, Mitra and Associates, and Macro International, 2009 (and additional analysis).||16502,793999999998
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2011|8170|4,2|15,7|41,3|36,7|1,9|Bangladesh demographic and health survey 2011. Demographic and Health Surveys. Dhaka, Bangladesh and Calverton, Maryland, USA: NIPORT, Mitra and Associates, and ICF International, 2013 (and additional analysis).||15607,968
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2012-13|19924|2,9|10,7|42,0|32,6|1,6|Bangladesh 2012-13 multiple indicator cluster survey. Final Report. Dhaka, Bangladesh: Bangladesh Bureau of Statistics and UNICEF Bangladesh, 2014 (and additional analysis)||15467,715
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2013|4029|4,9|18,1|38,7|35,1|2,6|Utilization of Essential Service Delivery (UESD) Survey 2013. Dhaka: National Institute of Population Research and Training (NIPORT), 2014.||15390,253999999999
BANGLADESH|Asia|Southern Asia|Lower Middle Income|2014|7642|3,2|14,4|36,2|32,8|1,6|Bangladesh Demographic and Health Survey 2014. Dhaka, Bangladesh, and Rockville, Maryland, USA: NIPORT, Mitra and Associates, and ICF International. 2016 (and additional analysis)||15329,075
BARBADOS|Latin America and the Caribbean|Caribbean|High Income|2012|403|2,0|6,8|7,7|3,5|12,2|Barbados multiple indicator cluster survey 2012: Final report (MICS4). Bridgetown, Barbados: BSS, 2014 (and additional analysis)||17,317999999999998
BELARUS|Europe|Eastern Europe|Upper Middle Income|2005|3031|0,6|2,2|4,5|1,3|9,7|Belarus multiple indicator cluster survey 2005, final report. Minsk, Republic of Belarus: Ministry of Statistics and Analysis [Belarus] and Research Institute of Statistics of the MSA [Belarus], 2007 (and additional analysis).||448,32599999999996
BELIZE|Latin America and the Caribbean|Central America|Upper Middle Income|1992|8516||||5,4||Assessment of the food, nutrition and health situation of Belize. INCAP Publication DC1/002. Kingston: Institute of Nutrition of Central America and Panama, 1992 (and additional analysis).|Converted estimate|30,405
BELIZE|Latin America and the Caribbean|Central America|Upper Middle Income|2006|722|0,8|1,9|22,0|5,0|13,6|Multiple indicator cluster survey Belize, 2006. UNICEF (and additional analysis).||37,928000000000004
BELIZE|Latin America and the Caribbean|Central America|Upper Middle Income|2011|1809|1,2|3,3|19,3|6,2|7,9|Belize multiple indicator cluster survey 2011 (MICS). Belize city, Belize: SIB and UNICEF, 2012 (and additional analysis).||37,53
BELIZE|Latin America and the Caribbean|Central America|Upper Middle Income|2015-16|2426|0,5|1,8|15,0|4,6|7,3|Belize Multiple Indicator Cluster Survey, 2015-2016, Final Report. Belmopan, Belize: Statistical Institute of Belize and UNICEF Belize (and additional analysis)||39,454
BENIN|Africa|Western Africa|Low Income|1996|2601|4,6|12,3|39,1|26,2|2,4|Enquête démographique et de santé 1996. Demographic and Health Surveys. Ministère du Plan, de la Restructuration Economique et de la Promotion de l'Emploi. Cotonou, Benin, 1997 (and additional analysis).|Age-adjusted;|1107,596
BENIN|Africa|Western Africa|Low Income|2001|4158|3,2|9,0|36,2|19,5|3,1|Enquête démographique et de santé au Bénin 2001. Demographic and Health Surveys. Calverton, Maryland, USA: Institut National de la Statistique et de l'Analyse Economique et ORC Macro, 2002 (and additional analysis).||1252,444
BENIN|Africa|Western Africa|Low Income|2006|14176|3,1|8,5|43,4|19,7|11,2|Enquête démographique et de santé (EDSB-III) - Bénin 2006. Demographic and Health Surveys. Calverton, Maryland, USA : Institut National de la Statistique et de l'Analyse Économique et Macro International Inc., 2007 (and additional analysis).||1413,734
BENIN|Africa|Western Africa|Low Income|2014|12025|1,7|5,3|34,0|18,6|1,7|Enquête par grappes à indicateurs multiples 2014, Rapport final , Cotonou, Bénin : Institut national de la statistique et de lanalyse économique (and additional analysis)||1704,411
BENIN|Africa|Western Africa|Low Income|2017-18|12832|1,1|5,0|32,2|16,8|1,9|Enquête Démographique et de Santé au Bénin, 2017-2018 : Indicateurs Clés. Cotonou, Bénin et Rockville, Maryland, USA : INSAE et ICF||1841,7220000000002
BHUTAN|Asia|Southern Asia|Lower Middle Income|1986-88|3273||5,2|60,9|34,0|3,5|Bhutan Directorate of Health Services. Report on the national nutrition survey. Bhutan; December 1989.|Converted estimates|86,91799999999999
BHUTAN|Asia|Southern Asia|Lower Middle Income|1999|2996|0,8|2,5|47,7|14,1|3,9|National anthropometric survey of under five children in Bhutan. Division of Health Services. Thimpu, Bhutan, 1999 (and additional analysis).||78,02199999999999
BHUTAN|Asia|Southern Asia|Lower Middle Income|2008|2162|1,4|4,7|34,9|10,4|4,4|The nutritional status of children in Bhutan: results from the national nutrition survey of 2008 and trends over time. BMC Pediatrics 2012;12:151.||73,359
BHUTAN|Asia|Southern Asia|Lower Middle Income|2010|6071|2,0|5,9|33,5|12,7|7,6|Bhutan multiple indicator cluster survey (BMIS) 2010. Thimphu, Bhutan: NSB, May 2011 (and additional analysis).||73,48
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1988|151481||||9,8||Situacion alimentaria y nutricional de Bolivia 1992. La Paz: Instituto Nacional de Alimentacion y Nutricion, 1992 (and additional analysis).|SVEN; converted estimate|1027,01
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1989|2563|0,5|1,5|44,0|7,8|7,4|Encuesta nacional de demografia y salud 1989. Demographic and Health Surveys. La Paz, Bolivia, 1990 (and additional analysis).|Age-adjusted;|1035,329
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1990|490699||||9,7||Situacion alimentaria y nutricional de Bolivia 1992. La Paz: Instituto Nacional de Alimentacion y Nutricion, 1992 (and additional analysis).|SVEN; converted estimate|1045,257
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1991|536952||||10,2||Situacion alimentaria y nutricional de Bolivia 1992. La Paz: Instituto Nacional de Alimentacion y Nutricion, 1992 (and additional analysis).|SVEN; converted estimate|1057,088
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1992|666872||||10,5||Bolivia: mapa de la desnutricion 1990-1992. La Paz, Bolivia, 1994 (and additional analysis).|SVEN; converted estimate|1068,007
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1993-94|2730|1,2|3,6|37,1|11,0|6,7|Encuesta nacional de demografia y salud 1994. Demographic and Health Surveys. La Paz, Bolivia, 1994 (and additional analysis).|Age-adjusted;|1089,6660000000002
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|1998|5993|0,7|1,6|33,2|5,9|10,7|Encuesta nacional de demografia y salud 1998. Demographic and Health Surveys. La Paz, Bolivia, 1998 (and additional analysis).||1141,989
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|2003-04|9986|0,6|1,7|32,4|5,8|9,2|Encuesta nacional de demografia y salud (ENDSA) 2003. Demographic and Health Surveys. La Paz, Bolivia: Instituto Nacional de Estadistica, Ministerio de Salud y Deportes, Programa Measure DHS+/ORC Macro, 2004 (and additional analysis).||1180,765
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|2008|8564|0,5|1,4|27,1|4,5|8,7|Encuesta nacional de demografía y salud ENDSA 2008. Demographic and Health Surveys. La Paz, Bolivia: MSD, PRS, INE y Macro International, 2009 (and additional analysis).||1188,421
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|2012|10887|0,5|1,6|18,1|3,6||Encuesta de Evaluación de Salud y Nutrición 2012: Informe de Resultados |(pending reanalysis)|1189,367
BOLIVIA (PLURINATIONAL STATE OF)|Latin America and the Caribbean|South America|Lower Middle Income|2016|5250|0,9|2,0|16,1|3,4|10,1|Bolivia Encuesta de Demografia y Salud - EDSA 2016: Indicadores Priorizados (and additional analysis)||1188,513
BOSNIA AND HERZEGOVINA|Europe|Southern Europe|Upper Middle Income|2000|2598|3,5|7,4|12,1|4,2|16,3|Household survey of women and children: Bosnia and Herzegovina 2000 (B&H MICS 2000): Draft final report, May 29, 2002. Sarajevo, Bosnia and Herzegovina: UNICEF, 2002 (and additional analysis).||235,649
BOSNIA AND HERZEGOVINA|Europe|Southern Europe|Upper Middle Income|2006|3158|1,5|4,0|11,8|1,6|25,6|Bosnia and Herzegovina multiple indicator cluster survey 2006. Sarajevo, Bosnia and Herzegovina: UNICEF, 2007 (and additional analysis).||165,667
BOSNIA AND HERZEGOVINA|Europe|Southern Europe|Upper Middle Income|2011-12|2199|1,6|2,3|8,9|1,6|17,4|Institute for Public Health [Federation of Bosnia and Herzegovina]. Bosnia and Herzegovina multiple indicator cluster survey (MICS) 2011-2012. Final report. Sarajevo, Federation of Bosnia and Herzegovina: UNICEF, 2013 (and additional analysis).||179,641
BOTSWANA|Africa|Southern Africa|Upper Middle Income|1996|||13,2|35,1|15,1||The 1996 Botswana family health survey III. Gaborone: Central Statistics Office, 1999 (and additional analysis).|Converted estimates|222,23
BOTSWANA|Africa|Southern Africa|Upper Middle Income|2000|177285|2,7|5,9|29,1|11,1|10,1|Multiple indicator survey (MIS) 2000. Full report. Gaborone, Botswana, 2001 (and additional analysis).||220,976
BOTSWANA|Africa|Southern Africa|Upper Middle Income|2007-08|2623|3,2|7,2|31,4|11,2|11,2|2007 Botswana family health survey IV report. Gaborone, Botswana: CSO, 2009 (and additional analysis by UNICEF).||221,702
BRAZIL|Latin America and the Caribbean|South America|Upper Middle Income|1989|7276|||19,4|5,3||Growth and nutritional status of the Brazilian children: findings from the 1989 National Health and Nutrition Survey. Country Studies on Nutritional Anthropometry NUT/ANTREF/1/91. Geneva: World Health Organization, 1991 (and additional analysis).||18121,635
BRAZIL|Latin America and the Caribbean|South America|Upper Middle Income|1996|4139|1,0|2,8|13,0|4,5|6,0|Pesquisa nacional sobre demografia e saude 1996. Demographic and Health Surveys. Rio de Janeiro, Brasil: Litografia Tucano Ltda., 1997 (and additional analysis).||17560,196
BRAZIL|Latin America and the Caribbean|South America|Upper Middle Income|2002-03|17107||||3,7||Pesquisa de orçamentos familiares (POF - 2002-03). Rio de Janeiro, Brazil, 2007 (http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2003medidas/default.shtm).||17389,623
BRAZIL|Latin America and the Caribbean|South America|Upper Middle Income|2006-07|12754059|0,4|1,8|7,0|2,2|6,4|Pesquisa nacional de demografia e saúde da criança e da mulher - PNDS 2006. Relatório da pesquisa. Sao Paulo: CEBRAP, 2008 (and additional analysis).||15733,44
BRUNEI DARUSSALAM|Asia|South-Eastern Asia|High Income|2009|1126|0,4|2,9|19,7|9,6|8,3|2nd National health and nutritional status survey (NHANSS). Phase 1: 0-5 years old. Brunei Darussalam, January 2013.||31,444000000000003
BULGARIA|Europe|Eastern Europe|Upper Middle Income|2004|315|1,3|3,2|8,8|1,6|13,6|National monitoring of dietary intake and nutritional status of Bulgarian population, 2004. Department of Nutrition and Public Health, National Center of Public Health Protection, Sofia, Bulgaria (and additional analysis).|Age interval 1-5; unadjusted;|322,05400000000003
BURKINA FASO|Africa|Western Africa|Low Income|1992-93|4557|5,9|15,4|38,7|28,7|2,8|Enquête démographique et de santé, Burkina Faso 1993. Demographic and Health Surveys. Ouagadougou, Burkina Faso, 1994 (and additional analysis).||1794,8529999999998
BURKINA FASO|Africa|Western Africa|Low Income|1998-99|3941|5,6|15,6|41,4|30,9|1,9|Enquête démographique et de santé, Burkina Faso 1998-1999. Demographic and Health Surveys. Calverton, Maryland (USA): Macro International Inc., 2000 (and additional analysis).||2113,626
BURKINA FASO|Africa|Western Africa|Low Income|2003|9290|9,7|21,2|43,1|35,2|5,4|Enquête démographique et de santé du Burkina Faso 2003. Demographic and Health Surveys. Calverton, Maryland, USA: INSD et ORC Macro, 2004 (and additional analysis).||2360,659
BURKINA FASO|Africa|Western Africa|Low Income|2006|4321|12,1|24,4|40,0|35,9|7,0|Burkina Faso, suivi de la situation des enfants et des femmes. Enquête par grappes à indicateurs multiples 2006. Burkina Faso, 2008 (and additional analysis).||2564,729
BURKINA FASO|Africa|Western Africa|Low Income|2009|15318|2,7|11,3|35,1|26,0||Enquête nutritionnelle nationale 2009. Ouagadougou, Burkina Faso: Direction de la Nutrition, 2009 (and additional analysis).||2773,744
BURKINA FASO|Africa|Western Africa|Low Income|2010|7222|5,9|15,5|34,7|26,2|2,8|Enquête démographique et de santé et à indicateurs multiples du Burkina Faso 2010. Demographic and Health Surveys and MICS. Calverton, Maryland, USA: INSD, 2012 (and additional analysis).||2842,945
BURKINA FASO|Africa|Western Africa|Low Income|2011|47342|2,2|10,4|34,6|25,1|0,7|Rapport enquête nutritionnelle nationale 2011. Ouagadougou, Burkona Faso, 2012 (and additional analysis)||2920,98
BURKINA FASO|Africa|Western Africa|Low Income|2012|18172|1,9|10,7|32,8|24,3|0,6|Enquête nutritionnelle nationale 2012. Rapport final. Ouagadougou, Burkina Faso, 2012 (and additional analysis)||2986,453
BURKINA FASO|Africa|Western Africa|Low Income|2013|15312|1,6|8,1|31,3|20,9|0,8|Enquete Nutritionnelle Nationale 2013 (and additional analysis)||3044,453
BURKINA FASO|Africa|Western Africa|Low Income|2014|15881|1,8|8,6|29,0|20,1|1,1|Enquete Nutritionnelle Nationale - Rapport final, Burkina Faso, Décembre 2014 (and additonal analysis)||3101,095
BURKINA FASO|Africa|Western Africa|Low Income|2016|9684|1,4|7,5|26,8|18,9|1,2|Enquête nutritionnelle nationale 2016. Burkina Faso SMART Survey, Rapport final, December 2016 (and additional analysis).||3220,6459999999997
BURKINA FASO|Africa|Western Africa|Low Income|2017|19504|2,0|8,6|21,1|16,2|1,7|Enquête Nutritionnelle Nationale, Burkina Faso 2017 (and additional analysis)||3281,716
BURUNDI|Africa|Eastern Africa|Low Income|1987|1956|1,3|6,7|56,2|33,6|1,3|Enquête démographique et de la santé au Burundi, 1987. Demographic and Health Surveys. Gsitega, Burundi, 1988 (and additional analysis).|Age-adjusted;|1006,087
BURUNDI|Africa|Eastern Africa|Low Income|2000|2359|3,8|9,9|64,0|40,0|1,5|Enquête nationale d'evaluation des conditions de vie de l'enfant et de la femme au Burundi (ENECEF-BURUNDI 2000): Rapport final (MICS). Bujumbura: République du Burundi and UNICEF, 2001 (and additional analysis).||1154,396
BURUNDI|Africa|Eastern Africa|Low Income|2005|7065||9,0|57,7|35,2||Rapport de l'enquête nationale de nutrition de la population, 2005. Bujumbura, Burundi, October 2006 (and additional analysis).|Converted estimates|1279,3310000000001
BURUNDI|Africa|Eastern Africa|Low Income|2010-11|3646|1,4|6,0|57,6|29,1|2,9|Enquête démographique et de santé Burundi 2010. Demographic and Health Surveys. Bujumbura, Burundi : ISTEEBU, MSPLS, et ICF International, 2012 (and additional analysis).||1577,319
BURUNDI|Africa|Eastern Africa|Low Income|2016-17|6464|0,9|5,1|55,9|29,3|1,4|Troisième Enquête Démographique et de Santé. Bujumbura, Burundi 2016-17: ISTEEBU, MSPLS, et ICF (and additional analysis)||1901,345
CABO VERDE|Africa|Western Africa|Lower Middle Income|1985|9450||4,2|26,8|13,7||Better health data with a portable microcomputer at the periphery: an anthropometric survey in Cape Verde. Bulletin of the World Health Organization 1987;65:651-657 (and additional analysis).|Age-adjusted; converted estimates|57,03
CABO VERDE|Africa|Western Africa|Lower Middle Income|1994|1610||6,9|21,4|11,8||A saude das crianças menores de cinco anos em Cabo Verde. Ministério de Saude e Promoçao Social e UNICEF. Cabo Verde, 1996 (and additional analysis).|Converted estimates|63,597
CAMBODIA|Asia|South-Eastern Asia|Lower Middle Income|1996|5773|4,5|13,4|58,6|42,6|6,5|Socio economic survey of Cambodia 1996: Volume 1, summary results. National Institute of Statistics. Phnom Penh, Cambodia, 1997 (and additional analysis).||1750,3029999999999
CAMBODIA|Asia|South-Eastern Asia|Lower Middle Income|2000|3617|7,5|17,1|49,0|39,7|4,0|Cambodia demographic and health survey 2000. Demographic and Health Surveys. Phnom Penh, Cambodia, and Calverton, Maryland, USA: National Institute of Statistics, Directorate General for Health, and ORC Macro, 2001 (and additional analysis).||1574,6570000000002
CAMBODIA|Asia|South-Eastern Asia|Lower Middle Income|2005-06|3696|1,8|8,5|42,7|28,3|1,6|Cambodia demographic and health survey 2005. Demographic and Health Surveys. Phnom Penh, Cambodia and Calverton, Maryland, USA: National Institute of Public Health, National Institute of Statistics and ORC Macro, 2006 (and additional analysis).||1531,38
CAMBODIA|Asia|South-Eastern Asia|Lower Middle Income|2008|49833504|1,9|9,1|39,5|28,3|2,0|Cambodia anthropometrics survey 2008. Phnom Penh, Cambodia: National Institute of Statistics, Ministry of Planning and UNICEF Cambodia, 2009 (and additional analysis).||1620,999
CAMBODIA|Asia|South-Eastern Asia|Lower Middle Income|2010-11|4087|2,8|11,0|39,8|28,9|1,9|Cambodia demographic and health survey 2010. Demographic and Health Surveys. Phnom Penh, Cambodia and Calverton, Maryland, USA: National Institute of Statistics, Directorate General for Health, and ICF Macro, 2011 (and additional analysis).||1671,681
CAMBODIA|Asia|South-Eastern Asia|Lower Middle Income|2014|5005|2,5|9,8|32,4|24,1|2,2|Cambodia Demographic and Health Survey 2014. Phnom Penh, Cambodia, and Rockville, Maryland, USA: National Institute of Statistics, Directorate General for Health, and ICF International (and additional analysis)||1758,251
CAMEROON|Africa|Middle Africa|Lower Middle Income|1991|2421|1,1|4,5|31,6|12,9|4,7|Enquête démographique et de santé Cameroun, 1991. Demographic and Health Surveys. Yaoundé, République du Cameroun, 1992 (and additional analysis).||2239,077
CAMEROON|Africa|Middle Africa|Lower Middle Income|1998|2070|1,8|6,2|38,2|17,3|8,2|Enquete démographique et de santé, Cameroun 1998. Demographic and Health Surveys. Calverton, Maryland, U.S.A. : Bureau Central des Recensements et des Études de Population et Macro International Inc., 1999 (and additional analysis).|Age-adjusted;|2520,186
CAMEROON|Africa|Middle Africa|Lower Middle Income|2004|3867|2,3|6,2|35,6|15,1|8,7|Enquête démographique et de santé du Cameroun 2004. Demographic and Health Surveys. Calverton, Maryland, USA: INS et ORC Macro, 2004 (and additional analysis).||2899,3979999999997
CAMEROON|Africa|Middle Africa|Lower Middle Income|2006|6077|2,9|8,2|37,1|16,5|10,2|Cameroun: Suivi de la situation des enfants et des femmes. Enquête par grappee à indicateurs multiples 2006. Rapport principal. Yaoundé, Cameroun: Institut National de la Statistique et UNICEF, 2008 (and additional analysis).||3081,8920000000003
CAMEROON|Africa|Middle Africa|Lower Middle Income|2011|6014|2,0|5,7|32,6|15,2|6,4|Enquête démographique et de santé et à indicateurs multiples du Cameroun 2011. Demographic and Health Surveys and MICS. Calverton, Maryland, USA : INS et ICF International, 2012 (and additional analysis)||3477,5640000000003
CAMEROON|Africa|Middle Africa|Lower Middle Income|2014|6776|1,3|5,2|31,7|14,8|6,7|Enquête par grappes à indicateurs multiples (MICS5), 2014, Rapport Final. Yaoundé, Cameroun, Institut National de la Statistique (and additional analysis)||3679,344
CANADA|Northern America|Northern America|High Income|2004||||||10,4|Canadian childhood obesity estimates based on WHO, IOTF and CDC cut-points. International Journal of Pediatric Obesity 2010;5:265-73.|Age-adjusted; overweight using BMI-for-age z-scores|1704,406
CENTRAL AFRICAN REPUBLIC (THE)|Africa|Middle Africa|Low Income|1994-95|2448|2,6|8,7|41,5|24,0|3,7|Enquête demographique et de santé République Centrafricaine 1994-95. Demographic and Health Surveys. Calverton, Maryland, USA: Direction des Statistiques Démographiques et Sociales et Macro Inc., 1995 (and additional analysis).|Age-adjusted;|539,518
CENTRAL AFRICAN REPUBLIC (THE)|Africa|Middle Africa|Low Income|2000|11700|4,7|10,4|44,4|21,3|10,8|Enquête à indicateurs mutliples - MICS 2000. Rapport Final. Bangui, République Centrafricaine: BBA editions, 2001 (and additional analysis).||612,089
CENTRAL AFRICAN REPUBLIC (THE)|Africa|Middle Africa|Low Income|2006|7775|5,2|12,6|43,1|26,1|8,1|Suivi de la situation des enfants et des femmes. MICS-3 Résultats de l'enquête nationale à indicateurs multiples couplée avec la sérologie VIH et enémie en RCA 2006. Bangui, Republique Centrafricaine: ICASEES, 2009 (and additional analysis).||686,053
CENTRAL AFRICAN REPUBLIC (THE)|Africa|Middle Africa|Low Income|2010-11|10233|3,0|8,3|40,7|24,0|1,8|Suivi de la situation des enfants, des femmes et des hommes. Enquête par grappes à indicateurs multiples - MICS couplée avec la sérologie VIH, RCA, 2010: Rapport final. Bangui, RCA: ICASEES, 2012 (and additional analysis)||713,165
CENTRAL AFRICAN REPUBLIC (THE)|Africa|Middle Africa|Low Income|2012|15458|1,8|7,6|39,6|24,6|1,9|Enquete Nationale Sur La Situation Nutritionnelle et la Mortalité en Republique Centrafricaine, Rapport Finale du 30 Mai au 15 Juillet 2012 (and additional analysis)||724,416
CHAD|Africa|Middle Africa|Low Income|1996-97|5913|6,1|16,5|44,5|34,3|2,7|Enquête démographique et de santé, Tschad 1996-97. Demographic and Health Surveys. Calverton, Maryland, USA: Bureau Central du Recensement et Macro International Inc., 1998 (and additional analysis).||1515,2420000000002
CHAD|Africa|Middle Africa|Low Income|2000|5191|4,2|13,9|38,9|29,2|2,7|Enquête par grappes à indicateurs multiples: Rapport complet (MICS). N'Djamena: Direction Generale, Direction de la Statistique, des Etudes Economiques et Demographiques, Bureau Central de Recensement et UNICEF,January 2001 (and additional analysis).||1684,3120000000001
CHAD|Africa|Middle Africa|Low Income|2004|4871|6,6|16,2|44,4|33,8|4,2|Enquête démographique et de santé Tchad 2004. Demographic and Health Surveys. Calverton, Maryland, U.S.A. : INSEED et ORC Macro, 2005 (and additional analysis).||1947,111
CHAD|Africa|Middle Africa|Low Income|2010|12903|9,9|19,4|38,7|33,0|2,7|Enquête par grappes à indicateurs multiples (MICS), Tchad 2010: Rapport final. N'Djamena, République du Tchad, 2011 (and additional analysis)||2293,915
CHAD|Africa|Middle Africa|Low Income|2014-15|11253|4,4|13,3|39,8|29,4|2,8|Enquête Démographique et de Santé et à Indicateurs Multiples du Tchad 2014-2015. Rockville, Maryland, USA: INSEED, MSP et ICF International, 2016 (and additional analysis)||2600,644
CHILE|Latin America and the Caribbean|South America|High Income|1986|196467||0,7|13,5|2,2|15,4|Estado nutricional de la poblacion infantil, 1986. Santiago, Republica de Chile, 1987 (and additional analysis).|Converted estimates|1346,1860000000001
CHILE|Latin America and the Caribbean|South America|High Income|1994|1181816||0,5|4,2|0,8|10,1|National health service system. Santiago: Nutrition Unit, 1994 (and additional analysis).|Converted estimates|1413,911
CHILE|Latin America and the Caribbean|South America|High Income|1995|||0,5|3,9|0,8|10,9|National health service system. Santiago, Chile, December 1995 (and additional analysis).|Converted estimates|1398,9679999999998
CHILE|Latin America and the Caribbean|South America|High Income|1996|1148353||0,5|3,7|0,7|10,7|National health service system. Santiago, Chile, 1997 (and additional analysis).|Converted estimates|1372,7420000000002
CHILE|Latin America and the Caribbean|South America|High Income|1998|1063064||0,6|3,3|0,7|11,2|Boletin anual de vigilancia nutricional, año 1998. Departamento Coordinacion e Informatica. Santiago, Republica de Chile, 1999 (and additional analysis).|Converted estimates|1343,818
CHILE|Latin America and the Caribbean|South America|High Income|1999|1031657||0,5|3,1|0,7|11,9|Boletin anual de vigilancia nutricional, año 1999. Departamento Coordinacion e Informatica. Santiago, Republica de Chile, 2000 (and additional analysis).|Converted estimates|1333,0720000000001
CHILE|Latin America and the Caribbean|South America|High Income|2001|1002454||0,5|2,8|0,7|12,9|National health service system. Santiago, Chile, 2002 (and additional analysis).|Converted estimates|1305,382
CHILE|Latin America and the Caribbean|South America|High Income|2002|1022552||0,5|2,5|0,7|12,0|National health service system. Santiago, Chile, 2003 (and additional analysis).|Converted estimates|1290,797
CHILE|Latin America and the Caribbean|South America|High Income|2003|1022896||0,5|2,5|0,6|12,1|National health service system. Santiago, Chile, 2005. http://deis.minsal.cl/ev/en/ capturado el 9 de junio 2005 (and additional analysis).|Converted estimates|1275,786
CHILE|Latin America and the Caribbean|South America|High Income|2004|1008335||0,5|2,4|0,6|12,1|National health service system. Santiago, Chile, 2005. http://deis.minsal.cl/ev/en/ capturado el 9 de junio 2005 (and additional analysis).|Converted estimates|1262,786
CHILE|Latin America and the Caribbean|South America|High Income|2006|973578||0,5|2,2|0,6|11,7|National health service system. Santiago, Chile, 2006. http://deis.minsal.cl/ev/en/ (and additional analysis).|Converted estimates|1248,194
CHILE|Latin America and the Caribbean|South America|High Income|2007|946528||0,3|2,1|0,6|9,8|Ministerio de Salud. National Health Service System. Santiago, Chile, December 2007 (www.minsal.cl).||1246,249
CHILE|Latin America and the Caribbean|South America|High Income|2008|964033||0,3|2,0|0,5|9,5|Ministerio de Salud. National Health Service System. Santiago, Chile, December 2008 (www.minsal.cl).||1246,285
CHILE|Latin America and the Caribbean|South America|High Income|2013|988663||0,3|1,8|0,5|10,1|National health service system: 2013. Santiago, Chile, 2014 (and additional analysis).||1220,741
CHILE|Latin America and the Caribbean|South America|High Income|2014|839435||0,3|1,8|0,5|9,3|National health service system: 2014. Santiago, Chile, 2015 (and additional analysis).||1206,927
CHINA|Asia|Eastern Asia|Upper Middle Income|1987|76130||4,8|38,3|18,7||The third national growth and development survey of children in China, 1987 (and additional analysis).|Converted estimates-9 province|120606,621
CHINA|Asia|Eastern Asia|Upper Middle Income|1990|4332|1,4|4,2|32,3|12,6|5,3|Nutritional status of children aged 0-5 years old in China (1990) - National surveillance system in 7 provinces. Beijing, China: Chinese Center for Disease Control and Prevention, 2010.|NSS: 7 provinces|133229,699
CHINA|Asia|Eastern Asia|Upper Middle Income|1992|5535|1,3|3,9|38,0|14,2|7,2|The dietary and nutritional status of Chinese population: 1992 national nutrition survey. Beijing: Institute of Nutrition and Food Hygiene, 1995 (and additional analysis).||131239,77800000002
CHINA|Asia|Eastern Asia|Upper Middle Income|1995|2832|1,8|5,0|31,2|10,7|13,6|Nutritional status of children aged 0-5 years old in China (1995) - National surveillance system in 7 provinces. Beijing, China: Chinese Center for Disease Control and Prevention, 2010.|NSS: 7 provinces|103277,82199999999
CHINA|Asia|Eastern Asia|Upper Middle Income|1998|13838|0,6|2,4|19,8|6,9|5,5|Nutritional status of children aged 0-5 years old in China (1998) - National (40 nutrition surveillance sites from 26 provinces). Beijing, China: Chinese Center for Disease Control and Prevention, 2010.|NSS: 26 provinces|82804,567
CHINA|Asia|Eastern Asia|Upper Middle Income|2000|16460|0,5|2,5|17,8|7,4|3,4|Nutritional status of children aged 0-5 years old in China (2000) - National (40 nutrition surveillance sites from 26 provinces). Beijing, China: Chinese Center for Disease Control and Prevention, 2010.|NSS: 26 provinces|81757,54400000001
CHINA|Asia|Eastern Asia|Upper Middle Income|2002|16564|0,8|3,0|21,8|6,8|9,2|[Trends and prevalence of malnutrition among Chinese children under five years old.] Acta Nutrimenta Sinica 2005;25:185-88 (and additional analysis).||82161,492
CHINA|Asia|Eastern Asia|Upper Middle Income|2005|15987|0,8|2,9|11,7|4,5|5,9|Nutritional status of children aged 0-5 years old in China (2005) - National (40 nutrition surveillance sites from 26 provinces). Beijing, China: Chinese Center for Disease Control and Prevention, 2010.|NSS: 26 provinces|79269,322
CHINA|Asia|Eastern Asia|Upper Middle Income|2008|10726|0,6|2,6|9,8|3,8|5,8|Nutritional status of children aged 0-5 years old in China (2008) - National (26 nutrition surveillance sites from rural areas). Beijing, China: Chinese Center for Disease Control and Prevention, 2010.|Adjusted NR to NA; NSS: 26 surveillance sites|81658,41900000001
CHINA|Asia|Eastern Asia|Upper Middle Income|2009|10635|0,7|2,6|9,0|3,4|5,7|Nutrition and rapid economic development - 2010 research report on nutrition policy in China. Beijing, China: Chinese Center for Disease Control and Prevention, 2010 (and additional analysis).|Adjusted NR to NA; NSS: 26 surveillance sites|81971,341
CHINA|Asia|Eastern Asia|Upper Middle Income|2010|15399|0,7|2,3|9,4|3,4|6,6|Nutritional status of children aged 0-5 years old in China (2010) - National (38 nutrition surveillance sites from 25 provinces). Beijing, China: Chinese Center for Disease Control and Prevention, 2012 (and additional analysis).|NSS: 25 provinces|82581,42599999999
CHINA|Asia|Eastern Asia|Upper Middle Income|2013|28840||1,9|8,1|2,4|9,1|China Nutrition and Health Surveillance (CNHS) 2013||84981,605
COLOMBIA|Latin America and the Caribbean|South America|Upper Middle Income|1986|1317|0,3|1,0|26,6|8,9|4,2|Tercera encuesta nacional de prevalencia del uso de anticonceptivos y primera de demografia y salud, 1986. Demographic and Health Surveys. Institute for Resource Development. Bogota, Colombia, 1988 (and additional analysis).|Age-adjusted;|4301,99
COLOMBIA|Latin America and the Caribbean|South America|Upper Middle Income|1989|1973||3,8|21,8|8,8||Consistent improvement in the nutritional status of Colombian children between 1965 and 1989. Bulletin of PAHO 1992;26:1-13 (and additional analysis).|Converted estimates|4334,596
COLOMBIA|Latin America and the Caribbean|South America|Upper Middle Income|1995|4458|0,5|1,7|19,6|6,3|4,5|Encuesta nacional de demografia y salud 1995. Demographic and Health Surveys. Bogota, Colombia, 1995 (and additional analysis).||4351,073
COLOMBIA|Latin America and the Caribbean|South America|Upper Middle Income|2000|4119|0,4|1,0|18,2|4,9|5,3|Salud sexual y reproductiva en Colombia, encuesta nacional de demografia y salud 2000. Demographic and Health Surveys. Bogota, Colombia: PROFAMILIA, 2000 (and additional analysis).||4151,616
COLOMBIA|Latin America and the Caribbean|South America|Upper Middle Income|2004-05|12752|0,4|1,6|16,0|5,0|4,2|Resultados encuesta nacional de demografia y salud 2005. Demographic and Health Surveys. Bogota, Colombia: Profamilia y Macro International Inc., 2005 (and additional analysis).||4112,844
COLOMBIA|Latin America and the Caribbean|South America|Upper Middle Income|2009-10|15775|0,2|0,9|12,6|3,4|4,8|Encuesta nacional de demografia y salud 2010. Demographic and Health Surveys. Bogota, Colombia: Profamilia, 2011 (and additional analysis).||3929,005
COMOROS (THE)|Africa|Eastern Africa|Low Income|1991-92|1954||5,3|38,5|15,2||Rapport sur l'état nutritionnel et les facteurs impliqués chez les enfants de moins de deux ans en République Fédérale Islamique des Comores 1991. Direction de la Santé Familiale. Comores, 1995 (and additional analysis).|Age-adjusted; converted estimates|77,982
COMOROS (THE)|Africa|Eastern Africa|Low Income|1996|1005|4,5|10,7|40,0|21,1|5,3|Enquête demographique et de santé, Comores 1996. Demographic and Health Surveys. Centre National de Documentation et de Recherche Scientifique. Moroni, Comores, 1997 (and additional analysis).|Age-adjusted;|83,016
COMOROS (THE)|Africa|Eastern Africa|Low Income|2000|4314|7,2|13,3|46,9|25,1|21,5|Enquête a indicateurs multiples (MICS 2000): Rapport final (1er draft Février 2001). Moroni, Comoros: UNICEF, 2001 (and additional analysis).||88,75200000000001
COMOROS (THE)|Africa|Eastern Africa|Low Income|2012|3169|4,5|11,3|31,1|16,9|10,6|Enquête démographique et de santé et à indicateurs multiples aux Comores 2012. Demographic and Health Surveys and MICS. Rockville, MD 20850, USA : DGSP et ICF International, 2014 (and additional analysis).||111,399
CONGO (THE)|Africa|Middle Africa|Lower Middle Income|1987|2429||6,6|30,1|16,4|1,6|Enquête nationale sur l'état nutritionnel des enfants d'age prescolaire au Congo. Collection Etudes et Theses. Paris: ORSTOM, Institut Français de Recherche Scientifique pour le Développement en Coopération, 1990 (and additional analysis).|Adjusted NR to NA; Converted estimates|379,792
CONGO (THE)|Africa|Middle Africa|Lower Middle Income|2005|4697|3,0|8,0|31,2|11,9|8,5|Enquête démographique et de santé du Congo 2005. Demographic and Health Surveys. Calverton, Maryland, USA : CNSEE et ORC Macro, 2006 (and additional analysis).||615,452
CONGO (THE)|Africa|Middle Africa|Lower Middle Income|2011-12|4648|1,7|6,0|24,4|11,8|3,5|Enquête démographique et de santé du Congo (EDSC-II) 2011-2012. Demographic and Health Surveys. Calverton, Maryland, USA : CNSEE et ICF International, 2013 (and additional analysis).||754,671
CONGO (THE)|Africa|Middle Africa|Lower Middle Income|2014-15|8757|2,6|8,2|21,2|12,3|5,9|Enquête par grappes à indicateurs multiples (MICS5 2014-2015), Rapport final. Brazzaville, Congo : Institut National de la Statistique et UNICEF (and additional analysis)||813,95
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1989|197000||||2,4||Analisis del estado nutricional de la poblacion Costarricense 1992. Departamento de Nutricion y Atencion Integral, Seccion Vigilancia Nutricional. San Jose, Costa Rica, 1994 (and additional analysis).|NSS; converted estimate|395,31800000000004
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1990|190000||||2,5||Analisis del estado nutricional de la poblacion Costarricense 1992. Departamento de Nutricion y Atencion Integral, Seccion Vigilancia Nutricional. San Jose, Costa Rica, 1994 (and additional analysis).|NSS; converted estimate|400,13
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1991|191000||||2,2||Analisis del estado nutricional de la poblacion Costarricense 1992. Departamento de Nutricion y Atencion Integral, Seccion Vigilancia Nutricional. San Jose, Costa Rica, 1994 (and additional analysis).|NSS; converted estimate|402,564
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1992|176935||||2,0||Analisis del estado nutricional de la poblacion Costarricense 1992. Departamento de Nutricion y Atencion Integral, Seccion Vigilancia Nutricional. San Jose, Costa Rica, 1994 (and additional analysis).|NSS; converted estimate|404,279
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1993|174000||||2,0||Estado nutricional de preescolares atendidos por el programa de atencion primaria. Departamento de Nutriticion, Seccion de Vigilancia Nutricional. San José, Costa Rica, 1996 (and additional analysis).|NSS; converted estimate|405,24199999999996
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1994|161000||||1,9||Estado nutricional de preescolares atendidos por el programa de atencion primaria. Departamento de Nutriticion, Seccion de Vigilancia Nutricional. San José, Costa Rica, 1996 (and additional analysis).|NSS; converted estimate|405,64599999999996
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|1996|1008||2,4|8,2|3,8|9,5|Encuesta nacional de nutricion: 1 fasciculo antropometria. San Jose, Costa Rica, 1996 (and additional analysis).|Age-adjusted; converted estimates|404,29400000000004
COSTA RICA|Latin America and the Caribbean|Central America|Upper Middle Income|2008-09|351||1,0|5,6|1,1|8,1|Encuesta nacional de nutricion 2008-2009. San Jose, Costa Rica, 2011.||356,955
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|1986|1947||10,3|22,5|10,8||Malnutrition in Côte d'Ivoire, prevalence and determinants. Working paper No. 4. Washington D.C.: The World Bank, 1990 (and additional analysis).|Converted estimates|1959,655
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|1994|3486|2,2|8,3|34,2|20,3|2,5|Enquête demographique et de santé, Côte d'Ivoire 1994. Demographic and Health Surveys. Abidjan, Côte d'Ivoire, 1995 (and additional analysis).|Age-adjusted;|2454,409
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|1998-99|1690|1,9|6,9|31,2|18,2|4,6|Enquête démographique et de santé, Côte d'Ivoire 1998-99. Demographic and Health Surveys. Calverton, Maryland, USA: Institut National de la Statistique et ORC Macro, 2001 (and additional analysis).||2757,551
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|2006|8482|3,4|9,0|40,5|16,5|8,9|Enquête à indicateurs multiples, Côte d'Ivoire 2006, Rapport final, Abidjan, Côte d'Ivoire : INS, 2007 (and additional analysis).||3146,3
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|2007|854|5,4|14,0|39,0|29,4|4,9|Evaluation des carences en vitamine A et fer en Côte d'Ivoire (Rapport final). Ministère de la Santé et de l'Hygiène Publique et Helen Keller Int., Abidjan, Côte d'Ivoire, 2009 (and additional analysis).||3188,212
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|2011-12|3680|1,8|7,6|29,9|15,7|3,2|Enquête démographique et de santé et à indicateurs multiples de Côte d'Ivoire 2011-2012. Demographic and Health Surveys and MICS. Calverton, Maryland, USA : INS et ICF International, 2012 (and additional analysis).||3511,797
COTE D'IVOIRE|Africa|Western Africa|Lower Middle Income|2016|8809|1,2|6,1|21,6|12,8|1,5|Enquête par grappes à indicateurs multiples - Côte dIvoire 2016, Rapport Final, Septembre 2017 (and additional analysis)||3860,612
CUBA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2000|1571||2,4|7,0|3,4||Encuesta de agrupacion de indicadores multiples: Informe final, diciembre del 2000 (MICS2). La Habana, Cuba, 2000 (and additional analysis).|Converted estimates|753,523
CZECHIA|Europe|Eastern Europe|High Income|1991|32345||2,8|3,1|0,9|6,7|Vth. Nation-wide anthropological survey of children and adolescents 1991 (Czech Republic). Prague: National Institute of Public Health, 1993 (and additional analysis).|Converted estimates|669,528
CZECHIA|Europe|Eastern Europe|High Income|2001-02|16932|1,0|4,6|2,6|2,1|4,4|6th nationwide anthropological survey of children and adolescents 2001, Czech Republic. Summary results. Prague, Czech Republic: National Institute of Public Health, 2006 (and additional analysis).||417,626
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|1998|1263||20,8|63,9|55,5||Nutrition survey of the Democratic People's Republic of Korea. Report by the EU, UNICEF and WFP of a study undertaken in collaboration with the Government to DPRK (Internet, 7 January 1999 at http://www.wfp.org/OP/Countries/dprk/nutrion_survey.html).|Converted estimates; subtotals|2064,2329999999997
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|2000|4175||12,2|51,0|24,7||Report of the second multiple indicator cluster survey 2000, DPRK (MICS). Pyongyang, Democratic People's Republic of Korea, 2000.|Converted estimates|1987,652
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|2002|5297|3,5|8,7|44,7|17,8|0,9|Nutrition assessment 2002 D.P.R. Korea. Pyongyang: Government of D.P.R. Korea, United Nations Children's Fund and World Food Programme, 2003 (and additional analysis).||1931,5610000000001
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|2004|4795||8,5|43,1|20,6||DPRK 2004 nutrition assessment, report of survey results. Democratic People's Republic of Korea: Central Bureau of Statistics, 2005.|Converted estimates|1924,503
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|2009|2172|0,5|5,2|32,4|18,8|0,0|The Democratic People's Republic of Korea (DPR Korea) multiple indicator cluster survey 2009 (MICS4). Final Report. Pyongyang, DPR Korea: CBS and UNICEF, 2010.||1773,511
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|2012|8036|0,6|4,0|27,9|15,2||Final report of the national nutrition survey 2012, September 17th to October 17th 2012. Pyongyang, Democratic People's Republic of Korea, 2013.||1696,64
DEMOCRATIC PEOPLE'S REP. OF KOREA (THE)|Asia|Eastern Asia|Low Income|2017|2271|0,5|2,5|19,1|9,3|2,3|DPR Korea Multiple Indicator Cluster Survey 2017, Survey Findings Report. Pyongyang, DPR Korea: Central Bureau of Statistics and UNICEF ||1733,371
DEMOCRATIC REP. OF THE CONGO (THE)|Africa|Middle Africa|Low Income|1995|4362||11,4|51,0|30,7||Enquête nationale sur la situation des enfants et des femmes au Zaire en 1995. Kinshasa, Zaire, 1996 (and additional analysis).|Converted estimates|7692,581999999999
DEMOCRATIC REP. OF THE CONGO (THE)|Africa|Middle Africa|Low Income|2001|9170|11,9|20,9|44,4|33,6|6,5|Enquête nationale sur la situation des enfants et des femmes MICS2 / 2001. Rapport d'analyse. Kinshasa, République Démocratique du Congo, juillet 2002 (and additional analysis).||8927,312
DEMOCRATIC REP. OF THE CONGO (THE)|Africa|Middle Africa|Low Income|2007|4149|4,8|10,4|45,8|25,6|7,0|Enquête démographique et de santé, République Démocratique du Congo 2007. Demographic and Health Surveys. Calverton, Maryland, U.S.A.: Ministère du Plan et Macro International, 2008 (and additional analysis).||10986,313999999998
DEMOCRATIC REP. OF THE CONGO (THE)|Africa|Middle Africa|Low Income|2010|10784|5,2|10,7|43,4|25,6|4,7|Enquête par grappes à indicateurs multiples en République Démocratique du Congo (MICS-RDC 2010). Rapport final, mai 2011. Kinshasa, République Démocratique du Congo, 2011 (and additional analysis).||12126,623
DEMOCRATIC REP. OF THE CONGO (THE)|Africa|Middle Africa|Low Income|2013-14|9397|2,9|8,1|42,7|23,4|4,4|Enquête démographique et de santé en République Démocratique du Congo 2013-2014. Demographic and Health Surveys. Rockville, Maryland, USA : MPSMRM, MSP et ICF International, 2014 (and additional analysis).||13347,831
DJIBOUTI|Africa|Eastern Africa|Lower Middle Income|1989|3750||12,5|28,0|20,2||Enquete couverture vaccinale malnutrition. Republique de Djibouti, Djibouti: Ministere de la Sante Publique et des Affaires Sociales,1990 (and additional analysis).|Converted estimates|103,074
DJIBOUTI|Africa|Eastern Africa|Lower Middle Income|1996|||14,9|31,7|16,0||Enquête djiboutienne auprès des ménages indicateurs sociaux (EDAM-IS 1996). Ministère du Commerce et du Tourisme, Direction Nationale de la Statistique. Djibouti ville, République de Djibouti, 1997 (and additional analysis).|Converted estimates|96,75200000000001
DJIBOUTI|Africa|Eastern Africa|Lower Middle Income|2002|1425|9,5|19,4|26,8|24,4|8,4|Enquête djiboutienne sur la santé de la famille (EDSF/PAPFAM) 2002, PAPFAM Rapport final. Djibouti, 2004 (and additional analysis).||105,119
DJIBOUTI|Africa|Eastern Africa|Lower Middle Income|2012|3153|9,2|21,6|33,5|29,9|8,1|Enquête djiboutienne à indicateurs multiples (EDIM): Rapport preliminaire. Djibouti: Ministère de la Santé et PAPFAM, 2013 (and additional analysis).||99,06700000000001
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|1986|1794|1,0|3,3|20,4|8,7|3,8|Encuesta demografica y de salud, 1986. Demographic and Health Surveys. Consejo Nacional de Poblacion y Familia. Santo Domingo, Republica Dominicana, 1987 (and additional analysis).|Age-adjusted;|961,232
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|1991|2991|0,6|2,1|21,1|8,4|4,2|Encuesta demografica y de salud 1991. Demographic and Health Surveys. Santo Domingo, Republica Dominicana, 1992 (and additional analysis).||993,17
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|1996|3565|0,6|2,0|13,5|4,7|6,7|Encuesta demografica y de salud 1996 (DHS). Centro de Estudios Sociales y Demograficos, Asociacion Dominicana Pro Bienestar de la Familia, Oficina Nacional de Planificacion. Santo Domingo, Republica Dominicana, 1997 (and additional analysis).||1032,126
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|2000|1869|0,5|1,5|7,7|3,3|6,9|Encuesta por conglomerados de indicadores multiples (MICS-2000). Santo Domingo, D.N.: Secretariado Técnico de la Presidencia, Fondo de las Naciones Unidas para la Infancia (UNICEF), 2001 (and additional analysis).||1019,829
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|2002|10666|0,8|2,2|11,6|4,2|8,6|Encuesta demografica y de salud, ENDESA 2002. Demographic and Health Surveys. Santo Domingo, Republica Dominicana: Centro de Estudios Sociales y Demograficos, 2003 (and additional analysis).||1022,1310000000001
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|2006|3782||1,9|10,5|4,6|7,4|Encuesta nacional de hogares de proposito multiples (ENHOGAR 2006): Informe general. Santo Domingo, Republica Dominicana: ONE, 2008 (and additional analysis).|Converted estimates|1065,649
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|2007|10770|0,9|2,3|10,1|3,4|8,3|Encuesta demográfica y de salud 2007. Demographic and Health Surveys. Santo Domingo, República Dominicana: CESDEM y Macro International Inc., 2008 (and additional analysis).||1070,143
DOMINICAN REPUBLIC (THE)|Latin America and the Caribbean|Caribbean|Upper Middle Income|2013|3667|0,8|2,4|7,1|4,0|7,6|Encuesta demográfica y de salud 2013. Demographic and Health Surveys. Santo Domingo, República Dominicana: CESDEM y ICF International, 2014 (and additional analysis).||1063,448
ECUADOR|Latin America and the Caribbean|South America|Upper Middle Income|1986|7798||2,3|40,2|14,5||[Diagnostico de la situacion alimentaria, nutricional y de salud de la poblacion ecuatoriana menor de cinco años. Quito: Ministerio de Salud Publica y Consejo Nacional de Desarrollo, 1988 (and additional analysis).|Converted estimates|1335,5179999999998
ECUADOR|Latin America and the Caribbean|South America|Upper Middle Income|1998|1368536|0,4|2,7|27,9|10,4|2,6|Equidad desde el principio - situacion nutricional de los niños ecuatorianos. Encuesta de condiciones de vida, 1998. Organizacion Panamericana de la Salud y Ministerio de Salud Publica, Ecuador. Washington, D.C.: OPS, 2001 (and additional analysis).||1507,441
ECUADOR|Latin America and the Caribbean|South America|Upper Middle Income|2004|5263|0,7|2,0|29,2|6,7|5,3|Encuesta demografía y de salud materna e infantil, ENDEMAIN 2004: Informe final. Quito, Ecuador: CEPAR, 2005 (and additional analysis).||1515,4920000000002
ECUADOR|Latin America and the Caribbean|South America|Upper Middle Income|2005-06|1438765|0,5|2,1|25,9|6,8|5,2|Ecuador - Encuesta de Condiciones De Vida 2005-2006 v.1.4, V Ronda (and additional analysis)||1518,099
ECUADOR|Latin America and the Caribbean|South America|Upper Middle Income|2012-13|1621518|0,7|2,4|25,4|6,4|7,5|RESUMEN EJECUTIVO. TOMO I. Encuesta Nacional de Salud y Nutrición del Ecuador. ENSANUT-ECU 2011-2013 Ministerio de Salud Pública/Instituto Nacional de Estadística y Censos. (and additional analysis).||1603,808
ECUADOR|Latin America and the Caribbean|South America|Upper Middle Income|2013-14|1523946|0,6|1,6|23,9|5,1|8,0|Tabulados Encuesta de Condiciones de Vida 2014 - Sexta Ronda (and additional analysis)||1607,961
EGYPT|Africa|Northern Africa|Lower Middle Income|1988|2077|0,6|1,9|34,0|9,4|6,9|Egypt demographic and health survey 1988. Demographic and Health Surveys. Egypt National Population Council. Cairo, Egypt, 1989 (and additional analysis).|Age-adjusted;|8787,823
EGYPT|Africa|Northern Africa|Lower Middle Income|1991|3614|2,3|4,5|34,9|10,5|14,9|Egyptian maternal and child health survey (EMCHS). PAPCHILD Surveys. Agency for Public Mobilisation and Statistics. Cairo, Arab Republic of Egypt, 1992 (and additional analysis).||9132,702
EGYPT|Africa|Northern Africa|Lower Middle Income|1992-93|7644|1,8|4,0|31,1|8,2|14,3|Egypt demographic and health survey 1992. Demographic and Health Surveys. Cairo, Egypt, 1993 (and additional analysis).||8873,349
EGYPT|Africa|Northern Africa|Lower Middle Income|1995-96|10226|2,3|5,7|34,8|10,8|14,6|Egypt demographic and health survey 1995. Demographic and Health Surveys. National Population Council. Cairo, Egypt, 1996 (and additional analysis).||8510,313
EGYPT|Africa|Northern Africa|Lower Middle Income|1997-98|3328||7,5|30,9|10,2||Egypt demographic and health survey 1997. Demographic and Health Surveys. El-Zanaty and Associates, Cairo, Egypt, 1998 (and additional analysis).|Converted estimates|8156,704000000001
EGYPT|Africa|Northern Africa|Lower Middle Income|1998|3997||6,4|26,3|9,4||Egypt demographic and health survey 1998. Demographic and Health Surveys. Cairo, Egypt, 1999 (and additional analysis).|Converted estimates|8158,771
EGYPT|Africa|Northern Africa|Lower Middle Income|2000|10675|||24,4|||Egypt demographic and health survey 2000. Demographic and Health Surveys. Calverton, Maryland, USA: Ministry of Health and Population [Egypt], National Population Council and ORC Macro, 2001 (and additional analysis).| Weight data possibly flawed|8272,629
EGYPT|Africa|Northern Africa|Lower Middle Income|2003|5940|1,8|5,2|20,2|8,7|9,2|2003 Egypt interim demographic and health survey. Demographic and Health Survey. Cairo, Egypt: Ministry of Health and Population [Egypt], National Population Council, El-Zanaty and Asociates, and ORC Macro, 2004 (and additional analysis).||8696,987
EGYPT|Africa|Northern Africa|Lower Middle Income|2005|12828|2,5|5,3|23,9|5,4|14,1|Egypt demographic and health survey 2005. Demographic and Health Surveys. Caire, Egypt: Ministry of Health and Population, National Population Council, El-Zanaty and Associates, and ORC Macro, 2006 (and additional analysis).||9000,943000000001
EGYPT|Africa|Northern Africa|Lower Middle Income|2008|10047|3,8|7,9|30,7|6,8|20,4|Egypt demographic and health survey 2008. Demographic and Health Surveys. Cairo, Egypt: Ministry of Health, 2009 (and additional analysis).||9427,461
EGYPT|Africa|Northern Africa|Lower Middle Income|2014|14899|4,8|9,5|22,3|7,0|15,7| Egypt demographic and health survey 2014. Demographic and Health Surveys. Cairo, Egypt and Rockville, Maryland, USA: Ministry of Health and Population and ICF International, 2015 (and additional analysis)||11982,538999999999
EL SALVADOR|Latin America and the Caribbean|Central America|Lower Middle Income|1988|2002|0,5|2,2|36,7|11,1|3,0|Evaluacion de la situacion alimentaria nutricional en El Salvador (ESANES-88). Ministerio de Salud Publica y Asistencia Social. San Salvador, El Salvador, 1990 (and additional analysis).||738,903
EL SALVADOR|Latin America and the Caribbean|Central America|Lower Middle Income|1993|3598|0,4|1,4|29,5|7,2|3,9|National family health survey 1993 (FESAL-93). San Salvador: Government of El Salvador, 1994 (and additional analysis).||764,618
EL SALVADOR|Latin America and the Caribbean|Central America|Lower Middle Income|1998|13788|0,4|1,5|32,3|9,7|3,9|National family health survey 1998: final report (FESAL-98). San Salvador, Republica de San Salvador, C.A., 2000 (and additional analysis).||772,357
EL SALVADOR|Latin America and the Caribbean|Central America|Lower Middle Income|2002-03|6368|0,3|1,3|24,6|6,1|5,8|Encuesta nacional de salud familiar (FESAL) 2002/03. Informe final (and additional analysis)||687,987
EL SALVADOR|Latin America and the Caribbean|Central America|Lower Middle Income|2008|605724|0,5|1,6|20,8|6,7|5,7|Encuesta nacional de salud familiar, FESAL 2008. Informe resumido. San Salvador, El Salvador: ADS, 2009 (and additional analysis).||611,036
EL SALVADOR|Latin America and the Caribbean|Central America|Lower Middle Income|2014|7229|0,4|2,1|13,6|5,0|6,4|Encuesta nacional de salud 2014 - Encuesta de indicadores multiples por conglomerados 2014, Resultados principales. San Salvador, El Salvador: Ministerio de Salud e Instituto Nacional de Salud.||584,868
EQUATORIAL GUINEA|Africa|Middle Africa|Upper Middle Income|1997|412|2,5|4,0|38,7|13,8|3,4|The economic and nutrition transition in Equatorial Guinea coincided with a double burden of over- and under nutrition. Economics and Human Biology 2010;8:80-87 (and additional analysis).||90,985
EQUATORIAL GUINEA|Africa|Middle Africa|Upper Middle Income|2000|2429|4,2|9,2|42,6|15,7|13,9|Encuesta de indicadores multiples (MICS 2000): Informe final. Malabo, República de Guinea Educatorial:Ministerio de Planificación y Desarrollo Económico y UNICEF, 2001 (and additional analysis).||102,044
EQUATORIAL GUINEA|Africa|Middle Africa|Upper Middle Income|2004|33334|1,3|2,8|35,0|10,6|8,3|Nutritional status and its correlates in Equatorial Guinean preschool children: Results from a nationally representative survey. Food and Nutrition Bulletin 2008;29:49-58 (and additional analysis).||118,949
EQUATORIAL GUINEA|Africa|Middle Africa|Upper Middle Income|2011|1094|1,7|3,1|26,2|5,6|9,7|Encuesta demográfica y de salud en Guinea Ecuatorial (EDSGE-I). Demographic and Health Surveys. Guinea Ecuatorial y Calverton, Maryland, USA: MSBS, MEPIP e ICF, 2012.||155,894
ERITREA|Africa|Eastern Africa|Low Income|1993|||11,8|69,6|36,9||Children and women in Eritrea: 1994. Government of the State of Eritrea/UNICEF Situation Analysis. Asmara, Eritrea, 1994 (and additional analysis).|Converted estimates|536,756
ERITREA|Africa|Eastern Africa|Low Income|1995-96|2371|5,1|17,0|47,8|39,6|1,3|Eritrea demographic and health survey 1995. Demographic and Health Surveys. Calverton, Maryland: National Statistics Office and Macro International Inc, 1997 (and additional analysis).|Age-adjusted;|516,888
ERITREA|Africa|Eastern Africa|Low Income|2002|5721|4,8|15,0|43,0|34,3|1,6|Eritrea demographic and health survey 2002. Demographic and Health Surveys. Calverton, Maryland, USA: National Statistics amd Evaluation Office and ORC Macro, 2003 (and additional analysis).||552,486
ERITREA|Africa|Eastern Africa|Low Income|2010|6634|4,5|15,3|52,0|39,4|2,0|Eritrea population and health survey 2010. Asmara, Eritrea: National Statistics Office and Fafo Institute for Applied International Studies, 2013. (and additional analysis)||715,42
ESWATINI|Africa|Southern Africa|Lower Middle Income|2000|3406|0,7|1,7|36,5|9,1|14,9|Multiple indicator cluster survey (MICS): Model full report. Maseru, Swaziland: Central Statistical Office, 2002 (and additional analysis)||157,286
ESWATINI|Africa|Southern Africa|Lower Middle Income|2006-07|3029|1,3|2,9|29,2|6,0|11,1|Swaziland demographic and health survey 2006-07. Demographic and Health Surveys. Mbabane, Swaziland: Central Statistical Office and Macro International Inc., 2008 (and additional analysis).||159,558
ESWATINI|Africa|Southern Africa|Lower Middle Income|2008|3817|0,3|1,1|40,4|7,3||Swaziland national nutrition survey report (November 2008). Mbabane, Swaziland: Ministry of Health, 2009.||163,95
ESWATINI|Africa|Southern Africa|Lower Middle Income|2010|2572|0,7|1,1|30,9|6,2|10,7|Swaziland multiple indicator cluster survey 2010 (MICS): Final report. Mbabane, Swaziland, Central Statistical Office and UNICEF, 2011 (and additional analysis).||169,062
ESWATINI|Africa|Southern Africa|Lower Middle Income|2014|2641|0,4|2,0|25,5|5,8|9,0|Swaziland Multiple Indicator Cluster Survey 2014. Final Report. Mbabane, Swaziland, Central Statistical Office and UNICEF (and additional analysis)||176,87900000000002
ETHIOPIA|Africa|Eastern Africa|Low Income|1992|20230||9,2|66,9|41,9||Report on the National Rural Nutrition Survey, Core Module. Transitional Government of Ethiopia, Central Statistical Authority. Statistical Bulletin No 113. Addis Ababa, Ethiopia; 1993.|Adjusted NR to NA; converted est. (22/29 regions)|9725,636999999999
ETHIOPIA|Africa|Eastern Africa|Low Income|2000|10901|3,8|12,4|57,6|42,0|2,0|Ethiopia demographic and health survey 2000. Demographic and Health Surveys. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Authority and ORC Macro, 2001 (and additional analysis).||12409,891000000001
ETHIOPIA|Africa|Eastern Africa|Low Income|2005|5015|4,7|12,4|50,4|34,4|5,1|Ethiopia demographic and health survey 2005. Demographic and Health Surveys. Addis Ababa, Ethiopia and Calverton, Maryland, USA: General Statistical Agency and ORC Macro, 2006 (and additional analysis).||13485,013
ETHIOPIA|Africa|Eastern Africa|Low Income|2010-11|11224|2,9|9,8|44,4|29,2|1,8|Ethiopia demographic and health survey 2011. Demographic and Health Surveys. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ICF International, 2012 (and additional analysis).||14053,5
ETHIOPIA|Africa|Eastern Africa|Low Income|2014|4921|2,5|8,7|40,4|25,2|2,6|Ethiopia mini demographic and health survey 2014. Addis Ababa, Ethiopia, 2014.||14688,673
ETHIOPIA|Africa|Eastern Africa|Low Income|2016|10552|3,0|10,0|38,4|23,6|2,9|Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA. CSA and ICF (and additional analysis)||15177,181
FIJI|Oceania|Melanesia|Upper Middle Income|1993|618||9,8|4,3|6,9|2,2|1993 National nutrition survey - main report. Suva: National Food and Nutrition Committee, 1995 (and additional analysis).|Converted estimates|98,52
FIJI|Oceania|Melanesia|Upper Middle Income|2004|818|2,0|6,3|7,5|5,3|5,1|2004 Fiji national nutrition survey: Main report. Suva, Fiji, 2007 (and additional analysis).||89,95200000000001
GABON|Africa|Middle Africa|Upper Middle Income|2000-01|3179|1,5|4,2|25,9|9,0|5,5|Enquête démographique et de santé Gabon 2000. DHS. Calverton, Maryland: Direction Générale de la Statistique et des Etudes Economiques, et Fonds des Nations Unies pour la Population, et ORC Macro, 2001 (and additional analysis).||185,356
GABON|Africa|Middle Africa|Upper Middle Income|2012|3999|1,3|3,4|17,0|6,4|7,7|Enquête démographique et de santé du Gabon 2012. Demographic and Health Surveys. Calverton, Maryland, et Libreville, Gabon : DGS et ICF International, 2013 (and additional analysis).||247,01
GAMBIA (THE)|Africa|Western Africa|Low Income|1996|2401|||36,1|23,2||Report of the progress of the mid-decade goals in the Gambia (MICS), 1996. Banjul: The Republic of The Gambia and UNICEF, 1998 (and additional analysis).|Converted estimates|208,08900000000003
GAMBIA (THE)|Africa|Western Africa|Low Income|2000|2596|2,5|9,1|24,1|15,4|3,0|The Gambia multiple indicator cluster survey report, 2000 (MICS). Banjul, The Gambia, 2002 (and additional analysis).||232,55900000000003
GAMBIA (THE)|Africa|Western Africa|Low Income|2005-06|6421|1,8|7,4|27,7|15,8|2,7|The Gambia Multiple Indicator Cluster Survey 2005/2006 Report. Banjul, The Gambia: GBoS, 2007 (and additional analysis).||279,808
GAMBIA (THE)|Africa|Western Africa|Low Income|2010|11480|2,2|9,7|23,4|17,6|1,9|The Gambia multiple indicator cluster survey 2010 (MICS): Final report. Banjul, The Gambia: GBOS, 2012 (and additional analysis)||310,434
GAMBIA (THE)|Africa|Western Africa|Low Income|2012|7050|1,6|9,6|21,2|18,0|1,1|2012 National Nutrition Survey in the Gambia using the Standardised Monitoring and Assessment of Relief Transition (SMART) methods (and additional analysis)||327,281
GAMBIA (THE)|Africa|Western Africa|Low Income|2013|3680|4,3|11,0|24,6|16,5|3,2|The Gambia Demographic and Health Survey 2013. Banjul, The Gambia, and Rockville, Maryland, USA: GBOS and ICF International, 2014 (and additional analysis)||335,659
GEORGIA|Asia|Western Asia|Lower Middle Income|1999|3434||3,1|16,1|2,7|17,9|Georgia multiple indicator cluster survey 1999 (MICS). Tibilisi, Georgia, 2000 (and additional analysis).|Converted estimates|301,226
GEORGIA|Asia|Western Asia|Lower Middle Income|2005|1924|1,1|3,0|14,6|2,4|20,8|Georgia monitoring the situation of children and women. Mulitple indicator cluster survey 2005 (and additional analysis).||249,646
GEORGIA|Asia|Western Asia|Lower Middle Income|2009|3020|0,6|1,6|11,3|1,1|19,9|Report of the Georgia national nutrition survey (GNNS) 2009. Tbilisi, Georgia: NCDC&PH and UNICEF, 2010.||273,752
GERMANY|Europe|Western Europe|High Income|2003-06|4667|0,1|1,0|1,3|1,1|3,5|2003-2005 Ergebnisse des bundesweiten Kinder- und Jugendgesundheitssurveys (KiGGS).||3599,277
GHANA|Africa|Western Africa|Lower Middle Income|1988|1934|1,6|7,0|42,6|24,8|0,8|Ghana demographic and health survey 1988. Demographic and Health Surveys. Ghana Statistical Service. Accra, Ghana, 1989 (and additional analysis).|Age-adjusted;|2368,05
GHANA|Africa|Western Africa|Lower Middle Income|1993-94|1970|3,8|10,9|41,2|25,8|2,5|Ghana demographic and health survey 1993. Demographic and Health Surveys. Calverton, Maryland: GSS and MI, 1994 (and additional analysis).|Age-adjusted;|2602,14
GHANA|Africa|Western Africa|Lower Middle Income|1998-99|2656|2,5|9,9|30,6|20,1|2,7|Ghana demographic and health survey 1998. Demographic and Health Surveys. Calverton, Maryland: GSS and MI, 1999 (and additional analysis).||2916,815
GHANA|Africa|Western Africa|Lower Middle Income|2003|3356|2,8|8,4|35,4|19,0|4,5|Ghana demographic and health survey 2003. Demographic and Health Surveys. Calverton, Maryland: GSS, NMIMR, and ORC Macro, 2004 (and additional analysis).||3135,8940000000002
GHANA|Africa|Western Africa|Lower Middle Income|2006|3237|1,8|6,0|27,9|13,9|2,6|Monitoring the situation of children, women and men. Multiple indicator cluster survey 2006 (and additional analysis).||3301,68
GHANA|Africa|Western Africa|Lower Middle Income|2008|2708|2,4|8,7|28,4|14,4|5,7|Ghana demographic and health survey 2008. Demographic and Health Surveys. Accra, Ghana: GSS, GHS, and ICF Macro, 2009 (and additional analysis).||3455,835
GHANA|Africa|Western Africa|Lower Middle Income|2011|7374|2,2|6,9|22,8|14,0|2,5|Ghana multiple indicator cluster survey (MICS) with an enhanced malaria module and biomarker 2011: Final report. Accra, Ghana, 2012 (and additional analysis)||3728,445
GHANA|Africa|Western Africa|Lower Middle Income|2014|2911|0,7|4,7|18,8|11,2|2,6| Ghana Demographic and Health Survey 2014. Rockville, Maryland, USA: GSS, GHS, and ICF International (and additional analysis)||3963,27
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|1987|2227|0,4|1,9|66,2|27,9|2,4|Encuesta nacional de salud materno infantil 1987. Demographic and Health Surveys. Ministerio de Salud Publica y Asistencia Social. Guatemala, Central America, 1989 (and additional analysis).|Age-adjusted;|1530,355
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|1995|8028|1,5|3,8|55,4|21,7|6,2|Encuesta nacional de salud materno infantil 1995. Demographic and Health Surveys. Ciudad de Guatemala, Guatemala, 1996 (and additional analysis).||1766,975
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|1998-99|3762|1,4|2,9|53,1|20,3|6,9|Encuesta nacional de salud materno infantil 1998-1999. Demographic and Health Surveys. Ciudad de Guatemala, Guatemala, 1999 (and additional analysis).||1874,5629999999999
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|2000|1684954|1,6|3,7|51,0|18,8|7,3|Guatemala Living Standards Measurement Survey 2000. Washington DC, United States: World Bank (and additional analysis)||1895,158
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|2002|5625|0,8|1,9|54,8|18,2|5,2|Guatemala encuesta nacional de salud materno infantil 2002. Ciudad de Guatemala, Republica de Guatemala: Oscar de Leon Palacios, 2003 (and additional analysis).||1931,725
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|2008-09|8647|0,2|1,1|48,0|13,0|4,9|Encuesta nacional de salud materno infantil 2008 (ENSMI-2008/09). Ciudad de Guatemala, Guatemala: Ministerio de Salud Pública, MSPAS, INE y CDC, 2010 (and additional analysis).||1956,264
GUATEMALA|Latin America and the Caribbean|Central America|Upper Middle Income|2014-15|12609|0,1|0,8|46,7|12,4|4,9| Encuesta Nacional de Salud Materno Infantil 2014-2015. Ciudad de Guatemala, Guatemala, 2015 (and additional analysis)||1994,029
GUINEA|Africa|Western Africa|Low Income|1994-95|3542||14,0|35,3|21,2||Enquête intégrale sur les conditions de vie des ménages avec module budget et consommation (EIBC) 1994-95. Ministère du Plan et de la Coopération, Direction Nationale de la Statistique. Conakry, République de Guinée, 1998.|Converted estimates|1353,171
GUINEA|Africa|Western Africa|Low Income|1999|3098|4,0|9,7|31,1|20,0|4,4|Enquête démographique et de santé, Guinée 1999. Demographic and Health Surveys. Direction Nationale de la Statistique. Conakry , Guinée, 2000 (and additional analysis).||1524,316
GUINEA|Africa|Western Africa|Low Income|2005|2903|4,2|11,0|39,2|22,7|5,2|Enquête démographique et de santé, Guinée 2005. Demographic and Health Surveys. Direction Nationale de la Statistique. Calverton, Maryland, U.S.A.: DNS et ORC Macro, 2006 (and additional analysis).||1659,749
GUINEA|Africa|Western Africa|Low Income|2007-08|11781|2,8|8,3|40,0|20,8||le suivi des principaux indicateurs de survie de l'enfant. Rapport provisoire, Mai 2008 (30/12/09 http://ochaonline.un.org/CoordinationIASC/Securitealimentairenutrition/tabid/5651/language/fr-FR/Default.aspx).| Période de récolte|1720,787
GUINEA|Africa|Western Africa|Low Income|2011-12|6967|1,1|5,1|34,1|15,8|3,1|Enquête nationale nutrition-santé, basée sur la méthodologie SMART, 2011-12. Rapport final. Conakry, Republique de Guinée, 2012 (and additional analysis).||1839,6589999999999
GUINEA|Africa|Western Africa|Low Income|2012|3674|4,1|10,0|31,1|18,8|3,8|Enquête démographique et de santé (EDS-IV) et enquête par grappe à indicateurs multiples (MICS). L'EDS-MICS 2012. Conakry, Guinée et Calverton, MD: INS et ICF, 2013 (and additional analysis).||1866,37
GUINEA|Africa|Western Africa|Low Income|2016|7138|2,9|8,1|32,4|18,3|4,0|Enquête par grappes à indicateurs multiples (MICS, 2016), Rapport final, Conakry, Guinée. 2017 (and additional analysis)||1982,894
GUINEA-BISSAU|Africa|Western Africa|Low Income|2000|4497|4,8|11,8|33,8|19,8|5,0|Multiple indicator cluster survey Guinea-Bissau, 2000 (MICS). Bissau, Guinea-Bissau: General Direction of Planning, National Institute of Statistics and Census and UNICEF, 2000 (and additional analysis).||213,452
GUINEA-BISSAU|Africa|Western Africa|Low Income|2006|5282|4,5|8,8|47,7|17,4|16,9|Enquête par grappes à indicateurs multiples, Guinée-Bissau, 2006, Rapport final. Bissau, Guinée-Bissau : Ministère de l`Economie - Secrétariat d`Etat du Plan et à l`Intégration Régionale, 2006 (and additional analysis).||232,97099999999998
GUINEA-BISSAU|Africa|Western Africa|Low Income|2010|12420|0,9|5,8|32,2|18,1|3,2|Inquérito aos indicadores múltiplos (MICS), inquérito demográfico de saúde reprodutiva - Guiné-Bissau, 2010: Relatório final. Bissau, Guiné-Bissau, 2011.|(pending reanalysis)|255,954
GUINEA-BISSAU|Africa|Western Africa|Low Income|2014|7460|1,4|6,0|27,6|17,0|2,3|Inquérito aos Indicadores Múltiplos (MICS) 2014, Principais Resultados. Bissau, Guiné-Bissau: Ministério da Economia e Finanças, Direcçao Geral do Plano Instituto Nacional de Estatística (INE), 2015 (and additional analysis)||280,44599999999997
GUYANA|Latin America and the Caribbean|South America|Upper Middle Income|1993|581||||16,1||Household income and expenditure survey 1993 and Guyana living standards measurement survey. In: Guyana strategies for reducing poverty. Report No. 12861-GUA. Washington: The World Bank, 1994:50-67 (and additional analysis).|Converted estimate|94,65299999999999
GUYANA|Latin America and the Caribbean|South America|Upper Middle Income|1997|289||13,3|14,0|10,3|1,9|Micronutrient study report - Guyana survey - Vitamin A, beta-carotene, iron and iodine status. PAHO/CFNI/97.J5. Kingston, Jamaica, 1997 (and additional analysis).|Converted estimates|102,931
GUYANA|Latin America and the Caribbean|South America|Upper Middle Income|2000|2562|4,3|12,1|13,9|11,9|5,5|Guyana multiple indicator cluster survey (MICS). Georgetown, Guyana, 2001 (and additional analysis).||95,93700000000001
GUYANA|Latin America and the Caribbean|South America|Upper Middle Income|2006-07|2267|2,6|8,3|17,9|10,8|6,8|Guyana multiple indicator cluster survey 2006, final report. Georgetown, Guyana: Bureau of Statistics and UNICEF, 2008 (and additional analysis).||81,19
GUYANA|Latin America and the Caribbean|South America|Upper Middle Income|2009|1656|1,2|5,6|19,3|11,0|6,7|Guyana demographic and health survey 2009. Demographic and Health Surveys. Georgetown, Guyana: MOH, BOS, and ICF Macro, 2010 (and additional analysis).||75,544
GUYANA|Latin America and the Caribbean|South America|Upper Middle Income|2014|3134|1,7|6,4|11,3|8,2|5,3|Guyana Multiple Indicator Cluster Survey 2014, Final Report. Georgetown, Guyana: Bureau of Statistics, Ministry of Public Health and UNICEF (and additional analysis)||74,768
HAITI|Latin America and the Caribbean|Caribbean|Low Income|1990|1843||5,9|40,1|23,7||Haiti's nutrition situation in 1990: A report based on anthropometric data of the 1990 nutrition surveys. Port-au-Prince, Haiti, 1993 (and additional analysis).|Converted estimates|1158,5739999999998
HAITI|Latin America and the Caribbean|Caribbean|Low Income|1994-95|2914|3,1|9,3|37,1|23,8|4,3|Enquête mortalité, morbidité et utlisation des services (EMMUS-II) Haiti 1994/95. Demographic and Health Surveys. Pétionville, Haiti, 1995 (and additional analysis).||1177,202
HAITI|Latin America and the Caribbean|Caribbean|Low Income|2000|6263|1,5|5,5|28,8|13,9|3,1|Enquête mortalité, morbidité et utilisation des services, Haiti 2000. Demographic and Health Surveys. Calverton, Maryland: Ministère de la Santé Publique et de la Population, Institut Haitien de l'Enfance et ORC Macro, 2001 (and additional analysis).||1218,649
HAITI|Latin America and the Caribbean|Caribbean|Low Income|2005-06|2905|3,3|10,2|29,6|18,9|3,9|Enquête mortalité, morbidité et utilisation des services, Haïti, 2005-2006. DHS. Calverton, Maryland, USA: Ministère de la Santé Publique et de la Population, Institut Haïtien de l'Enfance et Macro International Inc., 2007 (and additional analysis).||1227,4289999999999
HAITI|Latin America and the Caribbean|Caribbean|Low Income|2012|4591|1,3|5,1|22,0|11,6|3,6|Enquête mortalité, morbidité et utilisation des services, Haïti, 2012. Demographic and Health Surveys. Calverton, Maryland, USA : MSPP, IHE et ICF International, 2012 (and additional analysis).||1253,345
HAITI|Latin America and the Caribbean|Caribbean|Low Income|2016-17|6646|0,8|3,7|21,9|9,5|3,4|Enquête Mortalité, Morbidité et Utilisation des Services (EMMUS-VI 2016-2017) Pétion-Ville, Haïti, et Rockville, Maryland, USA : IHE et ICF (and additional analysis)||1232,271
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|1987|3244||2,3|43,3|18,1|2,7|Encuesta nacional de nutricion, Honduras, 1987. Cuadros de frequencias por regiones de salud y nacionales. Ministerio de Salud Publica. Tegucigalpa, Republica de Honduras, 1988 (and additional analysis).|Converted estimates|809,829
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|1991-92|5961||2,1|42,5|15,8||Encuesta nacional de epidemiologia y salud familiar (ENESF), 1991/92. Tegucigalpa, Republica de Honduras, 1993 (and additional analysis).|Converted estimates|892,59
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|1993-94|1875||2,7|45,7|16,1||National survey of socio-economic indicators 1993/94. Tegucigalpa, Republica de Honduras, 1996 (and additional analysis).|Converted estimates|930,674
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|1996|1456|0,3|1,6|38,6|17,9|2,8|National micronutrient survey Honduras 1996. Tegucigalpa, Republic of Honduras, 1997 (and additional analysis).|Age-adjusted;|965,578
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|2001|5663|0,2|1,3|35,5|12,8|3,0|Honduras encuesta nacional de epidemiologia y salud familiar ENESF-2001/encuesta nacional de salud masculina ENSM-2001: Informe final. Tegucigalpa, Honduras, 2002 (and additional analysis).||1009,513
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|2005-06|9733|0,3|1,4|29,8|8,7|5,8|Encuesta nacional de salud y demografía 2005-2006. Demographic and Health Surveys. Tegucigalpa, Honduras: SS, INE y Macro International, 2006 (and additional analysis).||1030,28
HONDURAS|Latin America and the Caribbean|Central America|Lower Middle Income|2011-12|10254|0,3|1,4|22,6|7,1|5,2|Encuesta nacional de salud y demografía 2011-2012. Demographic and Health Surveys. Tegucigalpa, Honduras: SS, INE e ICF International, 2013 (and additional analysis).||976,935
INDIA|Asia|Southern Asia|Lower Middle Income|1988-90|13548||20,3|62,7|55,5||National Nutrition Monitoring Bureau, 1988-90 (8 States pooled data). Hyderabad, India; 1993 (data reanalyzed for WHO).|Adjusted NR to NA; 8 States; converted estimates|120678,709
INDIA|Asia|Southern Asia|Lower Middle Income|1991-92|2948||20,0|61,9|52,8||National Nutrition Monitoring Bureau, 1991-92 (8 States pooled data). Hyderabad, India; 1993 (data reanalyzed for WHO).|Adjusted NR to NA; 8 States; converted estimates|122660,364
INDIA|Asia|Southern Asia|Lower Middle Income|1992-93|38418|7,0|19,9|57,7|51,2|2,9|National family health survey, India 1992-93. Demographic and Health Surveys. Bombay, India, 1995 (and additional analysis).|Age-adjusted;|123230,57
INDIA|Asia|Southern Asia|Lower Middle Income|1996-97|22959||18,4|45,9|38,4|5,9|Diet and nutrition situation in rural India. Indian Journal of Medical Research 1998;108:243-253 (and additional analysis).|Adjusted NR to NA; 11 States; converted estimates|125787,455
INDIA|Asia|Southern Asia|Lower Middle Income|1998-99|26403|5,7|17,1|54,2|46,3|2,9|National family health survey (NFHS-2) 1998-99. Demographic and Health Surveys. Mumbai, India, 2000 (and additional analysis).|Age-adjusted;|127025,304
INDIA|Asia|Southern Asia|Lower Middle Income|2005-06|49149|6,8|20,0|47,8|43,5|1,9|National family health survey (NFHS-3), 2005-06: India: Volume I. Demographic and Health Surveys. Mumbai, India: IIPS, 2007 (and additional analysis).||129854,049
INDIA|Asia|Southern Asia|Lower Middle Income|2013-14|91273|4,6|15,1|38,7|29,4||Rapid survey on children 2013-2014. India factsheet. . http://wcd.nic.in/ accessed 14 August 2014.|(pending reanalysis)|122588,114
INDIA|Asia|Southern Asia|Lower Middle Income|2015-16|230448|7,7|20,8|37,9|36,3|2,4|National Family Health Survey (NFHS-4), 2015-16: India. Mumbai: IIPS. 2017 (and additional analysis)||121415,293
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|1987|28169||||35,9||National socioeconomic survey 1987 (SUSENAS-1987). Central Bureau of Statistics. Jakarta, Indonesia, 1992 (and additional analysis).|Converted estimate|22820,857999999997
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|1989|14101||||31,0||The effect of economic crisis on the nutritional status of Indonesian pre-school children. Gizi Indonesia 2000;33-41 (and additional analysis), and http://www.gizi.net, accessed 18/12/03.||22413,764
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|1992|33742||||29,8||The effect of economic crisis on the nutritional status of Indonesian pre-school children. Gizi Indonesia 2000;33-41 (and additional analysis), and http://www.gizi.net, accessed 18/12/03.||21964,595
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|1995|9227||14,9|48,1|30,3|6,5|Indonesia multiple indicator cluster survey (MICS) 1995. Jakarta: UNICEF, 1997 (preliminary results provided by the Centers for Disease Control and Prevention; and additional analysis).|Converted estimates|21890,868
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|1998|25505||||25,8||The effect of economic crisis on the nutritional status of Indonesian pre-school children. Gizi Indonesia 2000;33-41 (and additional analysis), and http://www.gizi.net, accessed 18/12/03.||21544,138
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|1999|78849||||22,8||The effect of economic crisis on the nutritional status of Indonesian pre-school children. Gizi Indonesia 2000;33-41 (and additional analysis), and http://www.gizi.net, accessed 18/12/03.||21349,842
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2000|106147|0,9|5,5|42,4|24,8|1,5|Summary: Second Annual Report of the Nutrition and Health Surveillance System in Indonesia with data from the period 2000-2001, http://www.hki.org/research/nutrition_surveillance.html (and additional analysis).||21307,215
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2001|96417|0,8|5,4|41,6|23,4|1,5|Summary: Second Annual Report of the Nutrition and Health Surveillance System in Indonesia with data from the period 2000-2001, http://www.hki.org/research/nutrition_surveillance.html (and additional analysis).||21510,112
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2002|74360||||23,0||Indonesian nutritional status of children 1989-2005: Poverty and household food security, dietary diversity and infection: which is the most important risk? Gizi Indonesia 2005;28: (and additional analysis).||21757,811
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2003|77110||||23,1||National socioeconomic survey 2003 (SUSENAS-2003). Central Bureau of Statistics. Jakarta, Indonesia, 2006 (and additional analysis).||22064,384
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2004|3116|5,1|14,4|28,6|19,7|5,1|National Institute of Health Research and Development, 2005. National Household Health Survey (SKRT) 2004, Volume 2: Community Health Status in Indonesia. Jakarta, Indonesia, 2007 (and additional analysis).||22387,338
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2005|94652||||24,4||National socioeconomic survey 2005 (SUSENAS-2005). Central Bureau of Statistics. Jakarta, Indonesia, 2006 (and additional analysis).||22680,512000000002
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2007|77808|6,8|14,8|40,1|19,6|11,2|"Basic Health Survey, Riskesdas, 2007. Results to be presented at the ICN in Bangkok, October 2009: ""Changes in malnutrition from 1989 to 2007 in Indonesia"" by Ita Atmarita, Ministry of Health."||23122,406000000003
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2010|18768|5,4|12,3|39,2|18,6|12,3|National report on basic health research, Riskesdas, 2010. Jakarta, Indonesia, 2012 (and additional analysis).||23793,077999999998
INDONESIA|Asia|South-Eastern Asia|Lower Middle Income|2013|75232|6,7|13,5|36,4|19,9|11,5|National report on basic health research, RISKESDAS, 2013. Jakarta, Indonesia, 2014 (and additional analysis).||24249,408
IRAN (ISLAMIC REPUBLIC OF)|Asia|Southern Asia|Upper Middle Income|1995|11139||8,1|24,4|13,8|5,5|Cluster survey for evaluation of mid decade goal indicators (MICS). Theran, Islamic Republic of Iran, April 1996 (and additional analysis).|Converted estimates|7630,74
IRAN (ISLAMIC REPUBLIC OF)|Asia|Southern Asia|Upper Middle Income|1998|2536||6,1|20,4|9,5|6,9|The nutritional status of children, October-November 1998 (ANIS). Teheran: Ministry of Health and Medical Education and UNICEF, 2000 (and additional analysis).|Converted estimates|6747,56
IRAN (ISLAMIC REPUBLIC OF)|Asia|Southern Asia|Upper Middle Income|2004|34200||4,8|7,1|4,6||Current status and the 10 years trend in the malnutrition indexes of children under 5 years in Iran. Iranian Journal of Epidemiology Spring 2008;4:21-8 (and additional analysis).|Converted estimates|5578,539000000001
IRAN (ISLAMIC REPUBLIC OF)|Asia|Southern Asia|Upper Middle Income|2010-11||1,4|4,0|6,8|4,1||Iran“s Multiple Indicator Demographic and Health Survey - 2010.|(pending reanalysis)|6630,397
IRAQ|Asia|Western Asia|Upper Middle Income|1991|2565||4,4|27,6|10,4||Infant and child mortality and nutritional status of Iraqi children after the Gulf conflict: Results of a community-based study. Center for Population and Development Studies, Harvard University, Cambridge, MA, USA; 1992 (and additional analysis).|Converted estimates|3066,48
IRAQ|Asia|Western Asia|Upper Middle Income|2000|14188|2,4|6,6|28,1|12,8|5,5|Multiple indicator cluster survey (MICS) for the year 2000 (detailed report). Baghdad, Republic of Iraq: UNICEF, 2001 (and additional analysis).||3840,776
IRAQ|Asia|Western Asia|Upper Middle Income|2003|||5,6|33,7|10,1||Baseline food security analysis in Iraq. Baghdad, Iraq: WFP Iraq Country Office, September 2004 (and additional analysis).|Converted estimates|4095,05
IRAQ|Asia|Western Asia|Upper Middle Income|2004|16464||6,9|20,0|8,0||Iraq living conditions survey 2004. Volume 1: Tabulation report. Baghdad, Iraq: Central Organization for Statistics and Information Technology, Ministry of Planning and Development Cooperation, 2005 (and additional analysis).|Converted estimates|4161,09
IRAQ|Asia|Western Asia|Upper Middle Income|2006|16263|2,7|5,8|27,5|7,1|15,0|Iraq multiple indicator cluster survey 2006, Final report. Iraq, 2007 (and additional analysis).||4318,21
IRAQ|Asia|Western Asia|Upper Middle Income|2011|35633|2,7|6,5|22,1|7,2|11,4|Iraq multiple indicator cluster survey (MICS) 2011: Final report. Baghdad, Iraq: The Central Statistics Organization and the Kurdistan Regional Statistics Office, 2012 (and additional analysis)||5018,159000000001
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1989|860||4,4|12,4|6,3||Jamaica Living Standards and Measurement Survey 1989. Kingston: The World Bank, 1990 (and additional analysis).|Converted estimates|296,683
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1991|709|1,2|5,5|11,8|5,6|2,3|Jamaica survey of living conditions - report 1991. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1992 (and additional analysis).||288,856
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1992|1797|0,3|2,7|14,4|5,7|3,1|Jamaica survey of living conditions 1992. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1994 (and additional analysis).||287,545
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1993|910|2,7|4,4|12,6|6,1|4,6|Jamaica survey of living conditions 1993. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1995 (and additional analysis).||288,711
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1994|951|0,8|2,9|12,1|4,6|6,2|Jamaica survey of living conditions, 1994. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1996 (and additional analysis).||290,48
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1995|976|0,8|4,8|9,7|4,8|5,9|Jamaica survey of living conditions, 1995. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1997 (and additional analysis).||291,551
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1996|980|0,1|2,5|11,2|5,6|3,8|Jamaica survey of living conditions, 1996. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1997 (and additional analysis).||293,447
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1997|918|0,3|2,2|8,7|3,5|5,5|Jamaica survey of living conditions, 1997. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1998 (and additional analysis).||294,212
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1998|2321|0,9|2,6|9,5|3,8|4,3|Jamaica survey of living conditions, 1998. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 1999 (and additional analysis).||293,687
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|1999|736|0,9|2,4|5,7|2,1|6,3|Jamaica survey of living conditions, 1999. Kingston: The Planning Institute and the Statistical Institute of Jamaica, 2000 (and additional analysis).||291,936
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2000|732|1,5|3,0|7,2|3,9|7,3|Jamaica survey of living conditions data set 2000. The Planning Institute and the Statistical Institute of Jamaica, 2001 (and additional analysis).||289,019
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2001|582|1,0|3,2|6,6|4,0|5,8|Jamaica survey of living conditions data set 2001. The Planning Institute and the Statistical Institute of Jamaica, 2002 (and additional analysis).||285,733
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2002|3251|0,7|2,4|8,1|2,7|8,5|Jamaica survey of living conditions data set 2002. The Planning Institute and the Statistical Institute of Jamaica, 2003 (and additional analysis).||279,722
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2004|793|1,1|4,5|4,9|3,1|7,5|Jamaica survey of living conditions data set 2004. The Planning Institute and the Statistical Institute of Jamaica, 2005 (and additional analysis).||264,375
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2006|615|0,9|3,7|7,5|4,8|6,1|Jamaica survey of living conditions data set 2006. The Planning Institute and the Statistical Institute of Jamaica, 2013 (and additional analysis).||247,68599999999998
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2007|665|1,2|2,7|5,4|1,8|8,7|Jamaica survey of living conditions data set 2007. The Planning Institute and the Statistical Institute of Jamaica, 2013 (and additional analysis).||241,847
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2008|1581|0,3|2,5|6,9|2,4|7,7|Jamaica survey of living conditions data set 2008. The Planning Institute and the Statistical Institute of Jamaica, 2013 (and additional analysis).||238,482
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2010|592|1,5|5,0|6,0|3,4|4,1|Jamaica survey of living conditions data set 2010. The Planning Institute and the Statistical Institute of Jamaica, 2013 (and additional analysis).||230,567
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2012|1740|0,8|3,0|6,8|2,7|7,8|Jamaica survey of living conditions data set 2012. The Planning Institute and the Statistical Institute of Jamaica, 2015(and additional analysis).||222,66400000000002
JAMAICA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2014|584|0,5|3,6|6,0|2,2|8,3|Jamaica survey of living conditions data set 2014. The Planning Institute and the Statistical Institute of Jamaica, 2017 (and additional analysis)||208,845
JAPAN|Asia|Eastern Asia|High Income|2010|6643|0,2|2,3|7,1|3,4|1,5|Updated Japanese growth references for infants and preschool children, based on historical, ethnic and environmental characteristics. Acta Paediatrica 2014;103(6):e251-e261 (and additional analysis).||5554,595
JORDAN|Asia|Western Asia|Upper Middle Income|1990|6762|1,5|4,1|19,9|5,1|8,4|Jordan population and family health survey 1990. Demographic and Health Surveys. Ministry of Health. Amman, Jordan, 1992 (and additional analysis).||598,145
JORDAN|Asia|Western Asia|Upper Middle Income|1997|5651|0,6|2,4|11,1|3,8|4,3|Jordan population and family health survey 1997. Demographic and Health Surveys. Calverton, Maryland: DOS and MI, 1998 (and additional analysis).||722,1510000000001
JORDAN|Asia|Western Asia|Upper Middle Income|2002|4762|0,8|2,5|11,6|3,7|4,4|Jordan population and family health survey 2002. Demographic and Health Surveys. Calverton, Maryland, USA: Department of Statistics and ORC Macro, 2003 (and additional analysis).||754,696
JORDAN|Asia|Western Asia|Upper Middle Income|2009|4118|0,2|1,6|8,2|1,9|6,6|Jordan population and family health survey 2009. Demographic and Health Surveys. Calverton, Maryland, USA: Department of Statistics and ICF Macro, 2010 (and additional analysis).||922,842
JORDAN|Asia|Western Asia|Upper Middle Income|2012|5924|0,7|2,4|7,8|3,0|4,7|Jordan population and family health survey 2012. Demographic and Health Surveys. Calverton, Maryland, USA: Department of Statistics and ICF International, 2013 (and additional analysis).||1084,774
KAZAKHSTAN|Asia|Central Asia|Upper Middle Income|1995|729|1,8|6,4|23,3|4,4|4,1|Kazakhstan demographic and health survey 1995. Demographic and Health Surveys. Almaty, Kazakhstan, 1996 (and additional analysis).|Age-adjusted;|1470,319
KAZAKHSTAN|Asia|Central Asia|Upper Middle Income|1999|624|1,0|2,5|13,2|3,8|4,9|Kazakhstan demographic and health survey 1999. Demographic and Health Surveys. Calverton, Maryland: Academy of Preventive Medicine [Kazakhstan] and Macro International Inc., 1999 (and additional analysis).||1139,462
KAZAKHSTAN|Asia|Central Asia|Upper Middle Income|2006|4400|2,3|4,9|17,5|4,9|16,9|Kazakhstan multiple indicator cluster survey 2006. Final report. Astana, Kazakhstan: UNICEF and Agency of the Republic of Kazakhstan on Statistic, 2007 (and additional analysis).||1313,736
KAZAKHSTAN|Asia|Central Asia|Upper Middle Income|2010-11|5015|1,7|4,1|13,1|3,7|13,3|Multiple indicator cluster survey (MICS) in the Republic of Kazakhstan (RK), 2010-2011. Final report. Astana, Kazakhstan: the Agency of Statistics, RK and the Republican State Enterprise Information Computing Center, 2012 (and additional analysis).||1606,237
KAZAKHSTAN|Asia|Central Asia|Upper Middle Income|2015|5304|1,1|3,1|8,0|2,0|9,3|2015 Kazakhstan Multiple Indicator Cluster Survey, Final Report. Astana, Kazakhstan: The Statistics Committee of the Ministry of National Economy of the Republic of Kazakhstan, 2016. ||1991,066
KENYA|Africa|Eastern Africa|Lower Middle Income|1985-89|6957||5,5|37,0|||Fourth Rural Child Nutrition Survey, 1987. Central Bureau of Statistics, Ministry of Planning and National Development. Republic of Kenya, Nairobi; 1991 (and additional analysis).|Adjusted NR to NA; converted estimates|4204,81
KENYA|Africa|Eastern Africa|Lower Middle Income|1993|5006|2,6|7,1|40,2|19,4|5,8|Kenya demographic and health survey 1993. Demographic and Health Surveys. Central Bureau of Statistics. Nairobi, Kenya, 1994 (and additional analysis).||4565,4259999999995
KENYA|Africa|Eastern Africa|Lower Middle Income|1994|3712355|2,4|6,8|41,1|17,9|5,1|Fifth child nutrition survey, 1994. Welfare monitoring survey. Nairobi, Kenya, 1995 (and additional analysis)||4598,795999999999
KENYA|Africa|Eastern Africa|Lower Middle Income|1998|3050|3,1|7,2|37,4|17,5|5,8|Kenya demographic and health survey 1998. Demographic and Health Surveys. Central Bureau of Statistics. Calverton, Maryland: NDPD, CBS, and MI., 1999 (and additional analysis).|Age-adjusted;|5062,827
KENYA|Africa|Eastern Africa|Lower Middle Income|2000|6418|2,9|7,4|40,8|17,1|8,1|Kenya multiple indicator cluster survey 2000 (MICS). Government of Kenya and Unicef. Nairobi, Kenya, 2002 (and additional analysis).||5422,693
KENYA|Africa|Eastern Africa|Lower Middle Income|2003|5544|2,4|6,2|35,8|16,4|5,8|Kenya demographic and health survey 2003. Demographic and Health Surveys. Calverton, Maryland: CBS, MOH, and ORC Macro, 2004 (and additional analysis).||5881,097
KENYA|Africa|Eastern Africa|Lower Middle Income|2005-06|3818246|2,4|6,9|40,2|18,0|7,9|Kenya integrated household budget survey (KIHBS), 2006/06: Revised edition, basic report. Nairobi, Kenya 2006 (and additional analysis).||6079,73
KENYA|Africa|Eastern Africa|Lower Middle Income|2008-09|5705|2,1|6,9|35,5|16,5|5,0|Kenya demographic and health survey 2008-09. Demographic and Health Surveys. Calverton, Maryland: KNBS and ICF Macro, 2010 (and additional analysis).||6614,54
KENYA|Africa|Eastern Africa|Lower Middle Income|2014|19250|1,0|4,2|26,2|11,2|4,1|National Council for Population and Development (NCPD). Kenya demographic and health Survey (2014 KDHS): Key indicators. Demongraphic and Health Surveys. Nairobi, Kenya: KNBS, Ministry of Health, NACC, KEMRI, NCPD, 2015 (and additional analysis).||6950,404
KIRIBATI|Oceania|Micronesia|Lower Middle Income|1985|2941||12,6|34,4|11,3|15,9|National nutrition survey, 1985. Government of Kiribati. South Tarawa, Republic of Kiribati, 1990 (draft version; and additional analysis).|Converted estimates|10,009
KIRIBATI|Oceania|Micronesia|Lower Middle Income|2009|1045||||14,9||Kiribati demographic and health survey. Noumea, Kiribati: SPC, 2009.||13,196
KUWAIT|Asia|Western Asia|High Income|1996-97|12376||1,7|5,0|1,5|8,9|Kuwait national nutritional surveillance system. Nutrition unit, Ministry of Health. Al Shaab, Kuwait, 1998 (and additional analysis).|NSS; converted estimate|172,83
KUWAIT|Asia|Western Asia|High Income|2001|4878|0,4|2,2|4,0|2,2|11,0|Kuwait nutrition surveillance system, 2005 report: 2001-2005 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2006 (and additional analysis).|National Surveillance System|231,22400000000002
KUWAIT|Asia|Western Asia|High Income|2002|3842|0,5|2,2|3,6|2,1|6,6|Kuwait nutrition surveillance system, 2005 report: 2001-2005 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2006 (and additional analysis).|National Surveillance System|227,484
KUWAIT|Asia|Western Asia|High Income|2003|4308|0,7|2,6|3,9|2,3|6,8|Kuwait nutrition surveillance system, 2005 report: 2001-2005 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2006 (and additional analysis).|National Surveillance System|218,64
KUWAIT|Asia|Western Asia|High Income|2004|4381|1,1|3,4|4,1|2,8|7,1|Kuwait nutrition surveillance system, 2005 report: 2001-2005 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2006 (and additional analysis).|National Surveillance System|211,955
KUWAIT|Asia|Western Asia|High Income|2005|5601|1,0|3,3|4,5|2,7|7,5|Kuwait nutrition surveillance system, 2005 report: 2001-2005 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2006 (and additional analysis).|National Surveillance System|213,65200000000002
KUWAIT|Asia|Western Asia|High Income|2006|3422|0,6|2,8|4,6|2,7|8,7|Kuwait nutrition surveillance system: 2006-2009 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2010 (and additional analysis).|National Surveillance System|211,59799999999998
KUWAIT|Asia|Western Asia|High Income|2007|3949|0,8|3,6|5,1|2,9|8,5|Kuwait nutrition surveillance system: 2006-2009 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2010 (and additional analysis).|National Surveillance System|220,34900000000002
KUWAIT|Asia|Western Asia|High Income|2008|4199|0,5|2,2|5,1|2,3|9,3|Kuwait nutrition surveillance system: 2006-2009 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2010 (and additional analysis).|National Surveillance System|237,334
KUWAIT|Asia|Western Asia|High Income|2009|4099|0,3|1,8|3,8|1,7|9,0|Kuwait nutrition surveillance system: 2006-2009 trends. Kuwait, State of Kuwait: Administration of Food and Nutrition, Ministry of Health, 2010 (and additional analysis).|National Surveillance System|256,791
KUWAIT|Asia|Western Asia|High Income|2010|4062|0,6|2,4|4,1|1,7|7,8|Kuwait Nutrition Surveillance System [KNSS] 2010-2012. Kuwait city, Kuwait: Food & Nutrition Administration, 2013 (and additional analysis).||273,83799999999997
KUWAIT|Asia|Western Asia|High Income|2011|4200|0,4|1,7|4,0|2,1|8,3|Kuwait Nutrition Surveillance System [KNSS] 2010-2012. Kuwait city, Kuwait: Food & Nutrition Administration, 2013 (and additional analysis).||291,37
KUWAIT|Asia|Western Asia|High Income|2012|3860|0,6|2,4|4,3|2,2|9,5|Kuwait Nutrition Surveillance System [KNSS] 2010-2012. Kuwait city, Kuwait: Food & Nutrition Administration, 2013 (and additional analysis).||302,623
KUWAIT|Asia|Western Asia|High Income|2013|3571|0,7|2,7|4,8|3,1|7,8|Kuwait Nutrition Surveillance System [KNSS] 2013-2014. Kuwait city, Kuwait: Food & Nutrition Administration, 2015.||307,95
KUWAIT|Asia|Western Asia|High Income|2014|2864|0,6|2,4|5,8|3,0|8,7|Kuwait Nutrition Surveillance System [KNSS] 2013-2014. Kuwait city, Kuwait: Food & Nutrition Administration, 2015.||309,91200000000003
KUWAIT|Asia|Western Asia|High Income|2015|3571||3,1|4,9||6,0|The Kuwait Nutrition Surveillance System [KNSS] 2015 Annual Report. Kuwait City. Food & Nutrition Administration|overweight using BMI-for-age z-scores|310,784
KYRGYZSTAN|Asia|Central Asia|Lower Middle Income|1997|1034|0,8|2,9|36,2|10,4|8,1|Kyrgyz Republic demographic and health survey 1997. Demographic and Health Surveys. Bishkek City, Kyrgyz Republic, 1998 (and additional analysis).|Age-adjusted;|564,401
KYRGYZSTAN|Asia|Central Asia|Lower Middle Income|2005-06|2944|1,0|3,4|18,1|2,7|10,7|Multiple indicator cluster survey 2006, Kyrkyz Republic. Final report. Bishkek, Kyrkyzstan: National Statistical Committee of the Kyrkyz Republic and United Nations Children's Fund, 2007 (and additional analysis).||495,77099999999996
KYRGYZSTAN|Asia|Central Asia|Lower Middle Income|2009|1743|0,3|1,3|22,6|4,7|4,4|National survey of the nutritional status of children 6-59 months of age and their mothers, Kyrgyzstan 2009. Bishkek: Ministry of Health, National Statistical Committee, UNICEF, Kyrgyz-Swiss-Swedish Health Project, US CDC, 2010.||573,163
KYRGYZSTAN|Asia|Central Asia|Lower Middle Income|2012|4421|1,3|2,9|17,9|3,8|8,9|Kyrgyz Republic demographic and health survey 2012. Demographic and Health Surveys. Bishkek, Kyrgyz Republic, and Calverton, Maryland, USA: NSC, MOH, and ICF International, 2013 (and additional analysis).||678,7489999999999
KYRGYZSTAN|Asia|Central Asia|Lower Middle Income|2014|4441|0,8|2,8|12,9|2,8|7,0|Kyrgyzstan multiple indicator cluster survey 2014: Final Report (MICS). Bishkek, Kyrgyzstan: National Statistical Committee of the Kyrgyz Republic and UNICEF, 2014. ||732,295
LAO PEOPLE'S DEMOCRATIC REP. (THE)|Asia|South-Eastern Asia|Lower Middle Income|1993|1365||11,8|53,6|39,8||Women and children in the Lao People's Democratic Republic. Results from the LAO social indicator survey (LSIS). Vientiane: Mother and Child Institute, 1994 (and additional analysis).|Converted estimates|819,674
LAO PEOPLE'S DEMOCRATIC REP. (THE)|Asia|South-Eastern Asia|Lower Middle Income|1994|2950||12,3|52,9|35,9||Diagnostic de la situation nutritionnel et consommationn alimentaire au Laos. Rapport complet de l'étude sur l'état nutritionnel de la population Laotienne. ESNA: TCP/LAO/2354. Rome: Food and Agriculture Organization, 1995 (and additional analysis).|Converted estimates|832,15
LAO PEOPLE'S DEMOCRATIC REP. (THE)|Asia|South-Eastern Asia|Lower Middle Income|2000|1505|7,6|17,5|48,2|36,4|2,7|Report on national health survey: Health status of the people in Lao PDR. Vientiane, Lao People's Democratic Republic, January 2001 (and additional analysis).||796,669
LAO PEOPLE'S DEMOCRATIC REP. (THE)|Asia|South-Eastern Asia|Lower Middle Income|2006|3992|1,7|7,4|47,7|31,6|1,3|Lao PDR multiple indicator cluster survey 2006, final report. Vientiane, Lao PDR: Department of Statistics and UNICEF, 2008 (and additional analysis).||755,6510000000001
LAO PEOPLE'S DEMOCRATIC REP. (THE)|Asia|South-Eastern Asia|Lower Middle Income|2011-12|10814|1,9|6,4|44,2|26,9|2,0|Lao social indicator survey LSIS (MICS/DHS). Vientiane, Lao PDR: MoH and LSB, 2012 (and additional analysis).||789,4630000000001
LEBANON|Asia|Western Asia|Upper Middle Income|1996|1824|1,6|3,6|17,2|3,5|20,8|Lebanon maternal and child health survey (summary report). PAPCHILD Surveys. Cairo: The League of Arab States, 1998 (and additional analysis).||328,07199999999995
LEBANON|Asia|Western Asia|Upper Middle Income|2004|1128|2,9|6,6|16,5|4,2|16,7|Lebanon family health survey 2004: Principal report. Tutelian M, Khayyat M , Monem AA, eds. The Pan Arab Project for Family Health, 2006 (additional analysis conducted by PAPFAM).||328,825
LESOTHO|Africa|Southern Africa|Lower Middle Income|1992|4687||3,2|39,2|13,8||National nutrition survey report, May-June 1992. Maseru, Kingdom of Lesotho, 1992 (and additional analysis).|Converted estimates|257,092
LESOTHO|Africa|Southern Africa|Lower Middle Income|1993|449||22,4|37,5|18,9||National survey on iodine, vitamin A and iron status of women and children in Lesotho. Maseru, Lesotho, 1994 (and additional analysis).|Age-adjusted; converted estimates|259,601
LESOTHO|Africa|Southern Africa|Lower Middle Income|2000|3530|3,0|6,8|52,7|14,9|21,0|Kingdom of Lesotho 2000 end decade multiple indicator cluster survey (EMICS). Draft preliminary report. Maseru, Lesotho: Government of Lesotho, Bureau of Statistics and UNICEF, 2002 (and additional analysis).||272,42900000000003
LESOTHO|Africa|Southern Africa|Lower Middle Income|2004-05|1754|2,2|5,6|44,7|16,6|6,7|Lesotho demographic and health survey 2004. Demographic and Health Surveys. Calverton, Maryland: MOH, BOS, and ORC Macro, 2005 (and additional analysis).||260,186
LESOTHO|Africa|Southern Africa|Lower Middle Income|2009-10|2138|1,5|3,8|39,3|13,4|7,3|Lesotho demographic and health survey 2009. Demographic and Health Surveys. Maseru, Lesotho: MOHSW and ICF Macro, 2010 (and additional analysis).||254,949
LESOTHO|Africa|Southern Africa|Lower Middle Income|2014|1914|0,6|2,8|33,4|10,5|7,5|Lesotho demographic and health survey (2014 LDHS): Key indicators. Demographic and Health Surveys. Maseru, Lesotho: Ministry of Health and ICF International, 2015 (and additional analysis).||276,04200000000003
LIBERIA|Africa|Western Africa|Low Income|1999-00|4702|2,2|7,4|45,3|22,8|4,6|Liberia national nutrition survey 1999-2000. Monrovia, Liberia, 2001 (and additional analysis).||495,149
LIBERIA|Africa|Western Africa|Low Income|2006-07|5441|3,0|7,9|39,6|20,4|4,2|Liberia demographic and health survey 2007. Demographic and Health Surveys. Monrovia, Liberia: Liberia Institute of Statistics and Geo-Information Services (LISGIS) and Macro International Inc., 2008 (and additional analysis).||598,804
LIBERIA|Africa|Western Africa|Low Income|2010|6288|0,2|2,8|41,8|14,9||The 2010 State of Food and Nutrition Security in Liberia.|(pending reanalysis)|653,631
LIBERIA|Africa|Western Africa|Low Income|2013|3625|2,0|5,6|32,1|15,3|3,2|Demographic and health survey 2013. Demographic and Health Surveys. Monrovia, Liberia: Liberia Institute of Statistics and Geo-Information Services (LISGIS) and ICF International, 2014 (and additional analysis).||686,582
LIBYA|Africa|Northern Africa|Upper Middle Income|1995|4681|1,5|3,6|21,1|4,2|13,4|Libyan maternal and child health survey. PAPCHILD Surveys. Cairo: The League of Arab States, 1997 (and additional analysis).||601,7280000000001
LIBYA|Africa|Northern Africa|Upper Middle Income|2007|10723|2,9|6,5|21,0|5,6|22,4|National Libyan family health survey. PAPFAM surveys. Cairo: The league of Arab States, 2008 (and additional analysis conducted by PAPFAM).||592,638
MADAGASCAR|Africa|Eastern Africa|Low Income|1992|4319|1,2|6,4|60,5|35,2|1,6|Enquête nationale démographique et sanitaire 1992. Demographic and Health Surveys. Centre National de Recherches sur l'Environnement. Antananarivo, Madagascar, 1994 (and additional analysis).||2226,883
MADAGASCAR|Africa|Eastern Africa|Low Income|1993-94|3131||16,4|54,1|40,9||Enquête permanente aupres des menages - rapport principal, décembre 1995. Antananarivo, Madagascar, 1995 (and additional analysis).|Converted estimates|2292,7129999999997
MADAGASCAR|Africa|Eastern Africa|Low Income|1995|5049||9,0|55,2|30,4||Enquête par grappes a indicateurs multiples [multiple indicators cluster survey (MICS)], Madagascar 1995 (rapport préliminaires). Antananarivo, Madagascar: Institut National de la Statistique et UNICEF, 1996 (and additional analysis).|Converted estimates|2438,716
MADAGASCAR|Africa|Eastern Africa|Low Income|1997|3331|2,5|8,9|58,2|38,0|2,2|Enquête démographique et de santé, Madagascar 1997. Demographic and Health Surveys. Institut Nacional de la Statistique. Antananarivo, Madgascar, 1998 (and additional analysis).|Age-adjusted;|2611,192
MADAGASCAR|Africa|Eastern Africa|Low Income|2003-04|5766|5,6|15,2|52,6|36,7|6,2|Enquête Démographique et de Santé de Madagascar 2003-2004. Demographic and Health Surveys. Calverton, Maryland, USA : INSTAT et ORC Macro, 2005 (and additional analysis).||3079,3579999999997
MADAGASCAR|Africa|Eastern Africa|Low Income|2008-09|5845|||49,4|||Enquête démographique et de santé de Madagascar 2008-2009. Demographic and Health Surveys. Antananarivo, Madagascar: INSTAT et ICF Macro, 2010 (and additional analysis).|Weight data not validated|3352,2009999999996
MADAGASCAR|Africa|Eastern Africa|Low Income|2012-13|10877|1,3|7,9|48,9|32,9|1,1|Madagascar 2012-13 Millenium Development Goals National Monitoring Survey -ENSOMD (and additional analysis)||3579,718
MALAWI|Africa|Eastern Africa|Low Income|1992|3419|2,1|6,6|55,4|24,4|9,8|Malawi demographic and health survey 1992. Demographic and Health Surveys. National Statistics Office. Zomba, Malawi, 1993 (and additional analysis).||1843,902
MALAWI|Africa|Eastern Africa|Low Income|1995|3654||8,5|53,8|26,5||Malawi social indicators survey 1995. MICS surveys. National Statistical Office and the Centre for Social Research. Lilongwe, Malawi, 1996 (and additional analysis).|Converted estimates|1834,6370000000002
MALAWI|Africa|Eastern Africa|Low Income|1997-98|1038651|4,1|8,7|62,3|24,5|17,3|A relative profile of poverty in Malawi, 1998: A quintile-based poverty analysis of the Malawi integrated household survey, 1997-98. Poverty Monitoring System (and additional analysis).||1958,961
MALAWI|Africa|Eastern Africa|Low Income|2000|10728|2,9|6,8|54,6|21,5|8,8|Malawi demographic and health survey 2000. Demographic and Health Surveys. Zomba, Malawi and Calverton, Maryland, USA: National Statistical Office and ORC Macro, 2001 (and additional analysis).||2080,159
MALAWI|Africa|Eastern Africa|Low Income|2004-05|9440|3,2|6,3|52,4|18,6|10,2|Malawi demographic and health survey 2004. Demographic and Health Surveys. Calverton, Maryland: NSO and ORC Macro, 2005 (and additional analysis).||2286,081
MALAWI|Africa|Eastern Africa|Low Income|2006|22348|1,5|4,2|53,1|15,6|11,3|Malawi multiple indicator cluster survey 2006, Final report. Lilongwe, Malawi: National Statistical Office and UNICEF, 2008. http://www.childinfo.org/mics3_surveys.html accessed 6 February 2009 (and additional analysis).||2415,187
MALAWI|Africa|Eastern Africa|Low Income|2009|981||1,8|48,8|12,1|4,9|UNICEF and CDC. The national micronutrient survey 2009. Lilongwe, Malawi: Ministry of Health, UNICEF, Irish Aid and CDC, 2011.||2656,238
MALAWI|Africa|Eastern Africa|Low Income|2010|5167|1,5|4,1|47,3|13,9|9,0|Malawi demographic and health survey 2010. Demographic and Health Surveys. Zomba, Malawi, and Calverton, Maryland, USA: NSO and ICF Macro. 2011 (and additional analysis).||2721,433
MALAWI|Africa|Eastern Africa|Low Income|2013-14|18523|1,1|3,8|42,4|16,7|5,1|Malawi MDG endline survey 2014. Final Report. Zomba, Malawi: National Statistical Office, 2014 (and additional analysis)||2854,9959999999996
MALAWI|Africa|Eastern Africa|Low Income|2015-16|5786|0,6|2,8|37,4|11,8|4,6|Malawi Demographic and Health Survey 2015-16. Zomba, Malawi, and Rockville, Maryland, USA. NSO and ICF (and additional analysis)||2887,867
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1990|316306||||22,1||Annual reports, 1990-1993. Family Health Information System. Information and Documentation Unit. Kuala Lumpur, Malaysia, 1994 (and additional analysis).|NSS; converted estimate|2438,54
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1991|323299||||23,1||Annual reports, 1990-1993. Family Health Information System. Information and Documentation Unit. Kuala Lumpur, Malaysia, 1994 (and additional analysis).|NSS; converted estimate|2470,317
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1992|325469||||22,6||Annual reports, 1990-1993. Family Health Information System. Information and Documentation Unit. Kuala Lumpur, Malaysia, 1994 (and additional analysis).|NSS; converted estimate|2501,874
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1993|313246||||20,5||Annual reports, 1990-1993. Family Health Information System. Information and Documentation Unit. Kuala Lumpur, Malaysia, 1994 (and additional analysis).|NSS; converted estimate|2533,864
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1994|317551||||19,7||Annual reports, 1994 and 1995. Family Health Information System. Division of Family Health Development. Kuala Lumpur, Malaysia, 1996 (and additional analysis).|NSS; converted estimate|2565,97
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1995|344736||||17,7||Annual reports, 1994 and 1995. Family Health Information System. Division of Family Health Development. Kuala Lumpur, Malaysia, 1996 (and additional analysis).|NSS; converted estimate|2596,542
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|1999|5108||15,3|20,7|16,7|5,5|A study of malnutrition in under five children in Malaysia. Kuala Lumpur, Malaysia: Ministry of Health, 2000 (and additional analysis).|Converted estimates|2684,1620000000003
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|2006|5546|||17,2|12,9||Nutritional status of children below five years in Malaysia: Anthropometric analyses from the third national health and morbidity survey III (NHMS, 2006). Malaysian Journal of Nutrition 2009;15:121-36.||2479,848
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|2015|2486||8,0|17,7|12,4|7,1|National Health and Morbidity Survey 2015 (NHMS 2015). Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems. Kuala Lumpur, Malaysia: IPH, 2015.||2569,345
MALAYSIA|Asia|South-Eastern Asia|Upper Middle Income|2016|||11,5|20,7|13,7|6,0|National Health and Morbidity Survey 2015 (NHMS 2016)||2612,2470000000003
MALDIVES|Asia|Southern Asia|Upper Middle Income|1994|1995|3,5|16,1|36,1|32,5|1,2|Nutritional status and child feeding practices of Maldivian children. Department of Public Health. Male, Maldives, 1994.||40,933
MALDIVES|Asia|Southern Asia|Upper Middle Income|1995|798||18,9|33,0|39,0|2,2|Maldives multiple indicator survey report (MICS). United Nations Children's Fund. Malé, Maldives, June 1996 (and additional analysis).|Converted estimates|39,92
MALDIVES|Asia|Southern Asia|Upper Middle Income|1997-98|1486|9,2|19,9|43,0|36,7|9,8|Vulnerability and poverty assessment 1998. Male', Republic of Maldives, 1999 (and additional analysis).|Age-adjusted;|36,94
MALDIVES|Asia|Southern Asia|Upper Middle Income|2001|746|3,5|13,4|31,9|25,7|3,9|Multiple indicator cluster survey (MICS 2) Maldives (draft). Ministry of Health. Male, Republic of Maldives, 2001 (and additional analysis).||31,522
MALDIVES|Asia|Southern Asia|Upper Middle Income|2009|2840|2,7|10,8|18,6|17,7|6,1|Maldives demographic and health survey 2009. Demographic and Health Surveys. Calverton, Maryland: MOHF and ICF Macro, 2010 (and additional analysis).||31,933000000000003
MALI|Africa|Western Africa|Low Income|1987|1525|3,2|11,3|35,8|28,6|0,5|Enquête démographique et de santé au Mali, 1987. Demographic and Health Surveys. Bamako, Mali, 1989 (and additional analysis).|Age-adjusted;|1503,1889999999999
MALI|Africa|Western Africa|Low Income|1995-96|4987|9,8|22,0|39,9|37,7|2,3|Enquête demographique et de santé Mali 1995-1996. Demographic and Health Surveys. Cellule de Planification et de Statistique. Bamako, Mali, 1996 (and additional analysis).|Age-adjusted;|1867,412
MALI|Africa|Western Africa|Low Income|2001|10568|4,2|12,6|42,5|30,0|3,1|Enquête démographique et de santé au Mali 2001. Demographic and Health Surveys. Calverton, Maryland, USA: CPS/MS, DNSI et ORC Macro, 2002 (and additional analysis).||2143,647
MALI|Africa|Western Africa|Low Income|2006|12602|6,1|15,4|37,6|27,9|4,7|de l'Économie, de l'Industrie et du Commerce (DNSI/MEIC) et Macro International Inc. Enquête démographique et de santé du Mali 2006. DHS. Calverton, Maryland, USA: CPS/DNSI et Macro International Inc., 2007 (and additional analysis).||2573,9970000000003
MALI|Africa|Western Africa|Low Income|2009-10|22934|2,2|9,0|27,8|19,1|1,0|Enquête par Grappes à Indicateurs Multiples 2009 - 2010, Rapport final, Bamako Mali, 2011 (and additional analysis)||2931,546
MALI|Africa|Western Africa|Low Income|2015|14941|3,4|13,5|30,4|25,0|1,9|Enquête par Grappes à Indicateurs Multiples au Mali (MICS-Mali), 2015, Résultats clés. Bamako, Mali, INSTAT (and additional analysis)||3274,1459999999997
MARSHALL ISLANDS|Oceania|Micronesia|Upper Middle Income|2017|876|1,1|3,5|34,8|11,9|4,1|Republic of the Marshall Islands Integrated Child Health and Nutrition Survey 2017, Final Report. Majuro, Republic of the Marshall Islands: RMI Ministry of Health and Human Services, RMI Economic, Policy Planning and Statistic Office, 2017 (and additional analysis)|oedema not considered|1,0
MAURITANIA|Africa|Western Africa|Lower Middle Income|1988|931||19,1|40,2|||The socio-economic determinants of nutritional status among children under five in Mauritania. Social Dimensions of Adjustment Surveys. Washington D.C.: The World Bank, 1990 (and additional analysis).|Converted estimates|336,885
MAURITANIA|Africa|Western Africa|Lower Middle Income|1990|4294|8,0|17,4|54,6|43,1|6,8|Mauritania maternal and child health survey 1990-91 (MMCHS). PAPCHILD Surveys. Nouakchott, Islamic Republic of Mauritania; 1992 (and additional analysis).||353,026
MAURITANIA|Africa|Western Africa|Lower Middle Income|1995-96|3733||8,7|49,8|20,3||Enquête nationale sur les indicateurs des objectifs à mi-terme en Mauritanie (MICS). Nouakchott, République Islamique de Mauritanie, 1996 (and additional analysis).|Converted estimates|405,332
MAURITANIA|Africa|Western Africa|Lower Middle Income|2000-01|3824|7,2|15,3|38,6|29,7|3,8|Enquête démographique et de santé Mauritanie 2000-2001. Demographic and Health Surveys. Calverton, Maryland, USA: ONS et ORC Macro, 2001 (and additional analysis).||447,05800000000005
MAURITANIA|Africa|Western Africa|Lower Middle Income|2007|8107|3,8|13,6|31,5|25,5|2,3|Mauritanie, enquête par grappes à indicateurs multiples 2007. Nouakchott, Mauritania: ONS and UNICEF, 2008 (and additional analysis).||526,951
MAURITANIA|Africa|Western Africa|Lower Middle Income|2008|6338|1,1|8,1|23,0|15,9|1,0|Enquête rapide nationale sur la nutrition et survie de l'enfant en Mauritanie: Rapport final. Nouakchott, Mauritanie: ANED, ONS et UNICEF, 2008 (and additional analysis).||539,113
MAURITANIA|Africa|Western Africa|Lower Middle Income|2011|8527|9,0|18,1|29,7|27,7|3,1|Suivi de la situation des femmes et des enfants. Enquête par grappes à indicateurs multiples (MICS) 2011: Rapport final. Nouakchott, Mauritanie: ONS, 2012 (and additional analysis)||581,069
MAURITANIA|Africa|Western Africa|Lower Middle Income|2012|6569|1,9|11,6|22,0|19,5|1,2|Enquête nutritionnelle nationale utilisant la méthodologie SMART: Résultats préliminaires. Nouakchott, Mauritanie, Juillet 2012 (and additional analysis).||596,372
MAURITANIA|Africa|Western Africa|Lower Middle Income|2015|9926|3,5|14,8|27,9|24,9|1,3|Mauritanie Enquête par Grappes à Indicateurs Multiples (MICS) 2015 - Rapport Final, Mars 2017 (and additional analysis)||640,1669999999999
MAURITIUS|Africa|Eastern Africa|Upper Middle Income|1985|2430||18,3|27,3|21,1|8,8|Mauritius national nutrition survey 1985: summary report. Evaluation and Nutrition Unit. Port Louis, Mauritius, 1988 (and additional analysis).|Converted estimates|104,34100000000001
MAURITIUS|Africa|Eastern Africa|Upper Middle Income|1995|1537||15,7|13,6|13,0|6,5|A survey on nutrition in Mauritius and Rodrigues, 1995 (final report). Port Louis, Mauritius, 1996 (and additional analysis).|Converted estimates|111,01100000000001
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|1988|7422||7,4|28,7|12,4|6,1|Estado nutricional de preescolares y las mujeres en Mexico: resultados de una encuesta probabilistica nacional. Gaceta Medica de Mexico 1990;126:207-226 (and additional analysis).|Converted estimates|11393,073999999999
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|1989|14932|1,7|6,1|26,0|9,6|11,0|Encuesta nacional de alimentacion en el medio rural, 1989 (ENAL). Instituto de la Nutricion 'Salvador Zubiran'. Comision Nacional de Alimentacion. Division de Nutricion, INNSZ. Tlalpan, Mexico, D.F, 1990 (and additional analysis).|Adjusted NR to NA;|11447,713
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|1996|31601||8,5|25,8|10,3||La desnutricion infantil en el medio rural mexicano. Salud Publica de Mexico 1998;40:150-160.|Adjusted NR to NA; converted estimates|11885,226999999999
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|1998-99|10125945|0,7|2,0|21,4|5,6|7,5|Encuesta nacional de nutricion 1999. Tomo 1: Resultados, niños menores de 5 años. Instituto Nacional de Salud Publica. Cuernavaca, Mexico, 2000 (and additional analysis).||11995,837
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|2006|9400075|0,4|2,0|15,5|3,4|7,5|Encuesta nacional de salud y nutrición 2006. Cuernavaca, México: Instituto Nacional de Salud Pública, 2006 (and additional analysis).||11623,607
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|2011-12|10747724|0,4|1,6|13,6|2,8|9,0|Encuesta nacional de salud y nutrición 2012. Resultados nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública, 2012 (and additional analysis).||11459,499
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|2015|7806|0,4|1,0|12,4|3,9|5,2|Encuesta Nacional de Niños, Niñas y Mujeres 2015 - Encuesta de Indicadores Múltiples por Conglomerados 2015, Informe Final. Ciudad de México, México: Instituto Nacional de Salud Pública y UNICEF México (and additional analysis)||11533,065
MEXICO|Latin America and the Caribbean|Central America|Upper Middle Income|2016|11093877|0,3|2,0|10,0|4,2|5,3|Encuesta nacional de salud y nutrición 2016. Cuernavaca, México: Instituto Nacional de Salud Pública, 2016 (and additional analysis)||11581,28
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|1992|1679||2,4|33,1|11,8||Report of a consultancy on the Mongolian Child Nutrition Survey. Institute of Nutrition. Nakornpathom, Thailand, 1992 (and additional analysis).|Age-adjusted; converted estimates|326,29200000000003
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|1999|4146|1,9|4,3|30,1|10,8|7,0|Report on the 2nd national child and nutrition survey, Mongolia 1999. Institute of Nutrition and Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Thailand, 2000 (and additional analysis).||239,324
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|2000|5918|3,0|7,1|29,8|11,6|12,7|Mongolia child and development survey - 2000 (MICS-2): National report 2001. Ulaanbaatar, Mongolia: National Statistics Office, 2001 (and additional analysis).||233,94
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|2004|1247|0,1|0,6|23,5|4,8|6,1|Nutritional status of Mongolian children and women: 3rd National nutrition survey report. Ulaanbaatar, Mongolia, 2006.||219,17700000000002
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|2005|3357|1,1|2,7|27,5|5,3|14,2|"Mongolia ""Child and Development 2005"" survey (MICS-3), final report. Ulaanbaatar, Mongolia, 2007 (and additional analysis)."||221,60299999999998
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|2010|21390978|0,6|1,9|15,5|4,7|6,7|Population nutrition status. Fourth national survey report. Ulaanbaatar, Mongolia: NTC, 2013 (and additional analysis).||280,317
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|2013|5744|0,4|1,0|10,8|1,6|10,5|Social indicator sample survey 2013 (MICS). Final Report.Ulaanbaatar, Mongolia: National Statistical Office, 2014.||337,111
MONGOLIA|Asia|Eastern Asia|Lower Middle Income|2016|2243|0,5|1,3|7,3|0,9|11,7|Nutrition Status of the Population of Mongolia: Fifth National Nutrition Survey Report, Ulanbaatar, Mongolia 2017 (and additional analysis)||367,586
MONTENEGRO|Europe|Southern Europe|Upper Middle Income|2005-06|891|2,2|4,2|7,9|2,2|15,6|Montenegro multiple indicator cluster survey 2005, Final report. Podgorica, Montenegro: MONSTAT, SMMRI and UNICEF, 2006. (and additional analysis).||40,302
MONTENEGRO|Europe|Southern Europe|Upper Middle Income|2013|1392|1,2|2,8|9,4|1,0|22,3|2013 Montenegro multiple indicator cluster survey and 2013 Montenegro Roma settlements multiple indicator cluster survey, (MICS): Final Report. Podgorica, Montenegro: MONSTAT and UNICEF, 2014 (and additional analysis)||38,514
MOROCCO|Africa|Northern Africa|Lower Middle Income|1987|4404|1,5|3,9|31,0|10,4|5,6|Enquête national sur la planification familiale, la fécondité et la santé de la population au Maroc (ENPS) 1987. Demographic and Health Surveys. Ministère de la Santé Publique. Rabat, Maroc, 1989 (and additional analysis).||3543,885
MOROCCO|Africa|Northern Africa|Lower Middle Income|1992|4649|1,1|2,6|30,1|8,1|10,8|Enquête nationale sur la population et la santé (ENPS-II) 1992. Demographic and Health Surveys. Rabat, Royaume du Maroc, 1993 (and additional analysis).||3344,383
MOROCCO|Africa|Northern Africa|Lower Middle Income|1996-97|3653|2,0|4,7|28,9|7,7|13,7|Enquête de santé materno-infantil sur la population Marocaine 1996-97. Pan Arab project for child development (PAPCHILD). Rabat, Maroc, 2000 (and additional analysis).||3283,03
MOROCCO|Africa|Northern Africa|Lower Middle Income|2003-04|5602|5,0|10,8|23,1|9,8|13,3|Enquête dur la population et la santé familiale (EPSF) 2003-2004. Demographic and Health Surveys. Calverton, Maryland, USA: Ministère de la Santé et ORC Macro, 2005 (and additional analysis).||3037,949
MOROCCO|Africa|Northern Africa|Lower Middle Income|2010-11|6873|1,0|2,3|14,9|2,9|10,8|Enquête nationale sur la population et la santé familiale (ENPSF) 2010-2011. Rapport préliminaire. Rabat, Royaume de Maroc: Ministère de la Santé, 2012 (and additional analysis).||3212,909
MOZAMBIQUE|Africa|Eastern Africa|Low Income|1995|4586||9,6|59,9|23,9||Multiple indicator cluster survey Mozambique - 1995. MICS Surveys. Ministry of Planning and Finance. Maputo, Mozambique, 1996 (and additional analysis).|Converted estimates|2840,304
MOZAMBIQUE|Africa|Eastern Africa|Low Income|1997|3621|4,3|9,8|48,7|26,3|5,9|Moçambique inquérito demográfico e de saude 1997. Demographic and Health Surveys. Instituto Nacional de Estatistica. Maputo, Moçambique, 1998 (and additional analysis).|Age-adjusted;|3051,434
MOZAMBIQUE|Africa|Eastern Africa|Low Income|2000-01|1868604|3,6|8,1|50,7|24,5|8,8|Questionario de indicadores basicos de bem-estar (QUIBB): Relatorio final. Maputo, Moçambique: Instituto Nacional de Estadisticas, 2001 (and additional analysis).||3401,7090000000003
MOZAMBIQUE|Africa|Eastern Africa|Low Income|2003|9052|2,1|5,4|46,9|21,2|6,3|Moçambique inquérito demográfico e de saúde 2003. Demographic and Health Surveys. Calverton, Maryland, USA: Instituto Nacional de Estatística, Ministério da Saúde and ORC Macro, 2005 (and additional analysis).||3613,88
MOZAMBIQUE|Africa|Eastern Africa|Low Income|2008|10691|1,3|4,2|43,5|18,2|3,6|Mozambique multiple indicator cluster survey 2008 (MICS). Maputo, Mozambique: INE, 2009 (and additional analysis).||4145,28
MOZAMBIQUE|Africa|Eastern Africa|Low Income|2011|10696|2,4|6,1|42,9|15,6|7,8|Moçambique inquérito demográfico e de Saúde 2011. Demographic and Health Surveys. Calverton, Maryland, USA: MISAU, INE e ICFI, 2013 (and additional analysis).||4443,616
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|1990|5899||||32,5||Ministry of Health. Nutrition Situation of Myanmar Children. Preliminary report of the national nutrition survey 1990. Rangoon, Myanmar, 1991 (and additional analysis).|Age-adjusted; converted estimates|5165,424
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|1991|5540||12,7|53,6|37,0||Nutrition situation of Myanmar children. Report of the National Nutrition Survey 1991. Ragoon, Myanmar, 1994 (and additional analysis).|Age-adjusted; converted estimates|5064,125
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|1994|5994||9,2|58,7|31,2||National nutrition survey, 1994. National Nutrition Centre. Yangon, Myanmar, 1995 (and additional analysis).|Age-adjusted; converted estimates|4912,187
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|1995|19908||||38,7||Monitoring progress toward the goals of the World Summit for Children through multiple indicator cluster survey (MICS). Yangon, Myanmar, 1995 (and additional analysis).|Converted estimate|4896,417
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|1997|4894||9,6|55,4|28,1|9,7|National nutrition survey 1997. National Nutrition Centre. Yangon, Myanmar, 2000 (and additional analysis).|Age-adjusted; converted estimates|4929,849
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|2000|8492|2,9|10,7|40,8|30,0|2,4|Union of Myanmar monitoring national programme of action goals though multiple indicator cluster survey 2000. Yangon, Myanmar, 2001 (and additional analysis).||5057,418
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|2003|8452|2,9|10,7|40,6|29,6|2,4|Multiple indicator cluster survey 2003 (MICS). Yangon, Myanmar, 2004 (and additional analysis).||5298,581
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|2009-10|15430|2,1|7,9|35,1|22,6|2,6|Myanmar multiple indicator cluster survey 2009 - 2010: Final Report (MICS3). Nay Pyi Taw, Myanmar: Ministry of National Planning and Economic Development and Ministry of Health, 2011.||5021,325
MYANMAR|Asia|South-Eastern Asia|Lower Middle Income|2015-16|4204|1,3|6,6|29,4|18,5|1,5|Myanmar Demographic and Health Survey 2015-16: Final Report. 2016 (and additional analysis)||4537,81
NAMIBIA|Africa|Southern Africa|Upper Middle Income|1992|2553|3,2|9,6|35,6|21,4|4,5|Namibia demographic and health survey 1992. Demographic and Health Surveys. Windhoek, Republic of Namibia, 1993 (and additional analysis).||249,93599999999998
NAMIBIA|Africa|Southern Africa|Upper Middle Income|2000|4273|3,0|10,0|29,3|20,2|3,3|Namibia demographic and health survey 2000 (Demographic and Health Surveys). Windhoek, Namibia: MOHSS, 2003 (and additional analysis).||276,686
NAMIBIA|Africa|Southern Africa|Upper Middle Income|2006-07|5151|2,0|7,6|29,2|17,4|4,7|Namibia demographic and health survey 2006-07. Demographic and Health Surveys. Windhoek, Namibia and Calverton, Maryland, USA: MoHSS and Macro International Inc., 2008 (and additional analysis).||281,507
NAMIBIA|Africa|Southern Africa|Upper Middle Income|2013|2610|2,8|7,1|22,7|13,2|4,0|The Namibia demographic and health survey 2013. Demographic and Health Surveys. Windhoek, Namibia, and Rockville, Maryland, USA: MoHSS and ICF International, 2014 (and additional analysis).||317,961
NAURU|Oceania|Micronesia|Upper Middle Income|2007|267|0,2|1,0|24,0|4,8|2,8|Nauru 2007 demographic and health survey. Demographic and Health Surveys. Auckland, New Zealand: NBS, SPC and Macro, 2009 ( http://www.spc.int/prism/country/nr/stats/Publication/DHS/dhs.htm, accessed 10/05/11).||1,0
NEPAL|Asia|Southern Asia|Low Income|1995|6781||6,0|68,2|42,6||Nepal multiple indicator surveillance: cycle I, Jan to March 1995 health and nutrition - final report (MICS). Kathmandu, Nepal, 1996 (and additional analysis).|Age-adjusted; converted estimates|3350,507
NEPAL|Asia|Southern Asia|Low Income|1996|3972|2,8|12,6|65,7|47,1|0,7|Nepal family health survey, 1996. Demographic and Health Surveys. Ministry of Health. Kathmandu, Nepal, 1997 (and additional analysis).|Age-adjusted;|3422,0429999999997
NEPAL|Asia|Southern Asia|Low Income|1997-98|17471|1,4|7,9|61,1|38,2|0,4|Nepal micronutrient status survey 1998. Kathmandu, Nepal: Ministry of Health, Child Health Division, HMG/N, New ERA, Micronutrient Initiative, UNICEF Nepal and WHO, 2000 (and additional analysis).||3523,677
NEPAL|Asia|Southern Asia|Low Income|2001|6356|2,8|11,3|57,1|42,8|0,7|Nepal demographic and health survey 2001. Demographic and Health Surveys. Calverton, Maryland, USA: Family Health Division, Ministry of Health; New ERA; and ORC Macro, 2002 (and additional analysis).||3585,4829999999997
NEPAL|Asia|Southern Asia|Low Income|2006|5195|2,7|12,7|49,2|38,5|0,6|Nepal demographic and health survey 2006. Demographic and Health Surveys. Kathmandu, Nepal: Ministry of Health and Population, New ERA, and Macro International Inc., 2007 (and additional analysis).||3384,3559999999998
NEPAL|Asia|Southern Asia|Low Income|2011|2521|2,9|11,2|40,5|29,1|1,5|Nepal demographic and health survey 2011. Demographic and Health Surveys. Kathmandu, Nepal: Ministry of Health and Population, New ERA, and ICF International, Calverton, Maryland 2012 (and additional analysis).||3101,5359999999996
NEPAL|Asia|Southern Asia|Low Income|2014|5155|3,2|11,3|37,5|30,1|2,1|Nepal Multiple Indicator Cluster Survey 2014: Final Report (and additional analysis)||2857,447
NEPAL|Asia|Southern Asia|Low Income|2016-17|2477|1,9|9,6|36,0|27,2|1,2|Nepal Demographic and Health Survey 2016. Kathmandu, Nepal: Ministry of Health, Nepal. 2017 (and additional analysis)||2756,281
NICARAGUA|Latin America and the Caribbean|Central America|Lower Middle Income|1993|3609|0,9|2,5|29,5|9,6|5,5|Nicaragua 1993 living standards measurement survey (LSMS). Washington, D.C.: The World Bank, 1997 (and additional analysis).||691,541
NICARAGUA|Latin America and the Caribbean|Central America|Lower Middle Income|1997-98|6837|1,5|3,4|30,5|10,3|6,9|Encuesta nicaragüense de demografia y salud 1998. Demographic and Health Surveys.Instituto Nacional de Estadisticas y Censos. Managua, Nicaragua, 1999 (and additional analysis).||676,9810000000001
NICARAGUA|Latin America and the Caribbean|Central America|Lower Middle Income|2001|5741|0,9|2,3|25,1|7,7|7,2|Encuesta nicaragüense de demografia y salud 2001. Demographic and Health Surveys. Calverton, Maryland, USA: INEC, MINSA, and ORC Macro, 2002 (and additional analysis).||660,342
NICARAGUA|Latin America and the Caribbean|Central America|Lower Middle Income|2003-05|1494|0,0|0,3|18,8|4,3|5,2|Sistema integrado de vigilancia de interventiones nutricionales (SIVIN): Informe de progreso, Nicaragua 2003-05. Managua, Nicaragua 2008 (and additional analysis).||641,307
NICARAGUA|Latin America and the Caribbean|Central America|Lower Middle Income|2006-07|12318|0,5|1,5|23,1|5,7|6,2|Encuesta nicaragüense de demografía y salud ENDESA 2006/07, informe final. Managua, Nicaragua: INIDE y CDC, 2008 (and additional analysis).||632,424
NICARAGUA|Latin America and the Caribbean|Central America|Lower Middle Income|2011-12|10311|0,7|2,2|17,3|4,6|8,3|Encuesta Nicaragüense de Demografía y Salud 2011/12 - Informe Final (and additional analysis)||625,669
NIGER (THE)|Africa|Western Africa|Low Income|1985|1672||25,3|43,8|45,0||Enquête nationale sur la morbidité et la mortalité, rapport No 1. Cellule de Planification. Niamey, République de Niger, 1985 (and additional analysis).|Converted estimates|1430,494
NIGER (THE)|Africa|Western Africa|Low Income|1992|4284|6,7|18,8|45,3|38,7|2,0|Enquête démographique et de santé, Niger 1992. Demographic and Health Surveys. Niamey, Niger, 1993 (and additional analysis).||1726,497
NIGER (THE)|Africa|Western Africa|Low Income|1998|4204|6,5|19,8|50,7|46,9|1,1|Enquête démographique et de santé, Niger 1998. Demographic and Health Surveys. Calverton, Maryland, U.S.A.: Care International/Niger et Macro International Inc., 1998 (and additional analysis).|Age-adjusted;|2173,154
NIGER (THE)|Africa|Western Africa|Low Income|2000|4831|6,1|16,2|53,5|43,1|1,7|Enquête à indicateurs multiples de la fin de la décennie (MICS2): draft. Niamey: République du Niger and UNICEF, 2001 (and additional analysis).||2342,97
NIGER (THE)|Africa|Western Africa|Low Income|2006|4389|4,3|12,5|54,8|39,9|3,5|Enquête démographique et de santé et à indicateurs multiples du Niger 2006. Demographic and Health Surveys adn MICS-3. Calverton, Maryland, USA : INS et Macro International Inc., 2007 (and additional adnalysis).||2949,612
NIGER (THE)|Africa|Western Africa|Low Income|2012|5822|6,7|18,2|43,5|38,0|3,1|Enquête démographique et de santé et indicateurs multiples du Niger 2012. Demographic and Health Surveys and MICS. Calverton, Maryland, USA: INS et ICF International, 2013 (and additional analysis).||3667,929
NIGER (THE)|Africa|Western Africa|Low Income|2016|1698329|2,1|10,1|40,6|31,4|1,1|Evaluation Nationale De La Situation Nutritionnelle par La Methodologie SMART Au Niger, November 2016 (and additional analysis)||4217,879
NIGERIA|Africa|Western Africa|Lower Middle Income|1990|5854|4,4|11,7|48,7|33,1|3,3|Nigerian demographic and health survey 1990. Demographic and Health Surveys. Federal Office of Statistics, Lagos, Nigeria, 1992 (and additional analysis).||16808,703999999998
NIGERIA|Africa|Western Africa|Lower Middle Income|1993|2664||20,6|43,8|35,1|5,5|National micronutrient survey, 1993. Ibadan, Nigeria, 1996 (and additional analysis).|Converted estimates|17839,139
NIGERIA|Africa|Western Africa|Lower Middle Income|2003|5219|4,8|11,2|42,5|26,7|6,2|Nigeria demographic and health survey 2003. Demographic and Health Surveys. Calverton, Maryland: National Population Commission and ORC Macro, 2004 (and additional analysis).||23033,519
NIGERIA|Africa|Western Africa|Lower Middle Income|2007|13323|6,7|13,4|39,2|23,3|13,3|Nigeria multiple indicator cluster survey 2007: Final report (MICS). Abuja, Nigeria: NBS, 2007 (and additional analysis).| High exclusion rate|25765,534
NIGERIA|Africa|Western Africa|Lower Middle Income|2008|23792|7,7|14,5|40,6|26,7|10,4|Nigeria demographic and health survey 2008. Demographic and Health Surveys. Abuja, Nigeria: National Population Commission and ICF Macro, 2009 (and additional analysis).||26394,363999999998
NIGERIA|Africa|Western Africa|Lower Middle Income|2011|24173|4,6|11,6|35,8|25,4|2,9|Nigeria multiple indicator cluster survey 2011 (MICS): Monitoring the situation of children and women. Abuja, Nigeria, 2011 (and additional analysis).||28404,179
NIGERIA|Africa|Western Africa|Lower Middle Income|2013|28947|9,0|18,1|36,5|31,0|5,0|Nigeria demographic and health survey 2013. Demographic and Health Surveys. Abuja, Nigeria, and Rockville, Maryland, USA: NPC and ICF International, 2014 (and additional analysis).||29791,267000000003
NIGERIA|Africa|Western Africa|Lower Middle Income|2014|19945|2,0|7,9|32,9|19,8|1,8|Summary findings of national nutrition and health survey, 9th feb to 5th May 2014, Nigeria: SMART methods (and additional analysis).||30461,065
NIGERIA|Africa|Western Africa|Lower Middle Income|2015||1,8|7,2|32,9|19,4|1,6|National Nutrition and Health Surveys (NNHS) - Report on The Nutrition and Health Situation of Nigeria, November 2015|(pending reanalysis)|31109,161
NIGERIA|Africa|Western Africa|Lower Middle Income|2016-17|27398|2,9|10,8|43,6|31,5|1,5|Multiple Indicator Cluster Survey 2016-17, Final Report. Abuja, Nigeria: National Bureau of Statistics and United Nations Childrens Fund. 2017 (and additional analysis)||31801,515
NORTH MACEDONIA|Europe|Southern Europe|Upper Middle Income|1999|1117|0,4|1,7|8,0|1,9|9,6|Multiple indicator cluster survey in FYR Macedonia with micronutrient component (MICS). National Institute of Nutrition, Rome, Italy, 2000 (and additional analysis).||140,378
NORTH MACEDONIA|Europe|Southern Europe|Upper Middle Income|2005|4223|1,7|3,4|11,3|1,8|16,2|Republic of Macedonia - multiple indicator cluster survey 2005-06. Final report. Skopje: State Statistcial Office of the Republic of Macedonia, 2007 (and additional analysis).||124,035
NORTH MACEDONIA|Europe|Southern Europe|Upper Middle Income|2011|1332|0,2|1,8|4,9|1,3|12,4|Multiple indicator cluster survey 2011 (MICS). Skopje, the former Yugoslav Republic of Macedonia: Ministry of Health, Ministry of Education and Science, Ministry of Labour and Social Policy, 2012 (and additional analysis)||110,93700000000001
OMAN|Asia|Western Asia|High Income|1991|764||7,8|24,2|18,6|8,4|Ministry of Health. National Nutrition Survey of the Sultanate of Oman. UNICEF Muscat, Oman, 1993 (and additional analysis).|Age-adjusted; converted estimates|323,08
OMAN|Asia|Western Asia|High Income|1994-95|639|0,8|7,2|21,1|10,4|1,0|National study on the prevalence of vitamin A deficiency (VAD) among children 6 months to 7 years. Muscat, Sultanate of Oman, 1995 (and additional analysis).|Age-adjusted;|316,531
OMAN|Asia|Western Asia|High Income|1999|14076|1,1|7,3|12,9|11,3|1,6|Implications of the use of the new WHO growth charts on the interpretation of malnutrition and obesity in infants and young children in Oman. Eastern Mediterranean Health Journal 2009;15:890-8 (and additional analysis).||288,705
OMAN|Asia|Western Asia|High Income|2009|8105|0,8|7,1|9,8|8,6|1,7|Second national PEM survey 2009. Ministry of Health. Muscat, Oman, 2011.||275,056
OMAN|Asia|Western Asia|High Income|2014||2,4|7,5|14,1|9,7|4,4|Multiple Indicator Cluster Survey 2014, Key Findings. Muscat, Oman, 2016. ||369,95300000000003
PAKISTAN|Asia|Southern Asia|Lower Middle Income|1985-87|6707||24,0|62,5|44,4|7,8|National nutrition survey 1985-87 report. National Institute of Health, Nutrition Division. Islamabad, Pakistan, 1988 (and additional analysis).|Converted estimates|16239,89
PAKISTAN|Asia|Southern Asia|Lower Middle Income|1990-91|4588|4,8|12,5|54,5|39,0|5,4|Pakistan demographic and health survey 1990/91. Demographic and Health Surveys. National Institute of Population Studies. Islamabad, Pakistan, 1992 (and additional analysis).||18961,337
PAKISTAN|Asia|Southern Asia|Lower Middle Income|1990-94|3240|5,0|17,2|42,7|35,3|1,6|National health survey of Pakistan (NHSP, 1990-94): Health profile of the people of Pakistan. Islamabad, Pakistan, 1998 (and additional analysis).||19244,166
PAKISTAN|Asia|Southern Asia|Lower Middle Income|1995|7368||||34,2||Multiple indicator cluster survey of Pakistan, 1995. MICS surveys. Government of Pakistan. Islamabad, Pakistan, 1996 (and additional analysis).|Converted estimate|19550,139
PAKISTAN|Asia|Southern Asia|Lower Middle Income|2001|10027|5,9|14,2|41,5|31,3|4,8|National nutrition survey 2001-2002. Islamabad, Pakistan: Planning Commission, Government of Pakistan and UNICEF, 2004 (and additional analysis).||20265,38
PAKISTAN|Asia|Southern Asia|Lower Middle Income|2011|29525|5,7|14,8|43,0|30,9|6,4|National nutrition survey Pakistan, 2011. Islamabad, Pakistan: Aga Khan University, PMRC, Government of Pakistan and UNICEF, 2012 (and additional analysis).||23272,257999999998
PAKISTAN|Asia|Southern Asia|Lower Middle Income|2012-13|3838|3,3|10,5|45,0|31,8|4,8|Pakistan demographic and health survey 2012-13. Demographic and Health Surveys. Islamabad, Pakistan, and Calverton, Maryland, USA: NIPS and ICF International, 2013 (and additional analysis).||24171,491
PAKISTAN|Asia|Southern Asia|Lower Middle Income|2017-18|3622|2,4|7,1|37,6|23,1|2,5|Pakistan Demographic and Health Survey 2017-18. Islamabad, Pakistan, and Rockville, Maryland, USA: NIPS and ICF (and additional analysis)||25224,011000000002
PANAMA|Latin America and the Caribbean|Central America|High Income|1997|2289|0,4|1,4|21,5|6,3|6,2|Encuesta de niveles de vida. 1997 Panama living standards survey (LSMS). Ciudad de Panama, Republica de Panama, 1998 (and additional analysis).||327,721
PANAMA|Latin America and the Caribbean|Central America|High Income|2003|313165|0,4|1,6|23,7|5,3|11,1|Situacion nutricional, patron de consumo y acceso a alimentos de la poblacion panameña: Segunda encuesta de niveles de vida - 2003. Panama City, Republica de Panama, 2006 (and additional analysis)||350,213
PANAMA|Latin America and the Caribbean|Central America|High Income|2008|288853|0,3|1,2|19,0|3,9|9,7|Estado nutricional de niños menores de cinco años: Encuesta de niveles de vida, 2008. Panama City, Republica de Panama, 2009 (and additional analysis)||360,62699999999995
PAPUA NEW GUINEA|Oceania|Melanesia|Lower Middle Income|1982-83|27510|1,2|5,5|46,0|22,8|3,1|Summary results by environmental zone from the 1982/83 National Nutrition Survey of Papua New Guinea. Papua New Guinea Institute of Medical Research. Goroka, Papua New Guinea, 1992 (and additional analysis).| Adjusted NR to NA; 85% of total population|601,519
PAPUA NEW GUINEA|Oceania|Melanesia|Lower Middle Income|2005|924|0,8|4,4|43,9|18,1|3,4|Papua New Guinea national micronutrient survey 2005: Final report. Port Moresby, Papua New Guinea, 2009 (and additional analysis).||920,7869999999999
PAPUA NEW GUINEA|Oceania|Melanesia|Lower Middle Income|2009-11|945911|6,4|14,1|49,5|27,8|13,7|2009-2010 Papua New Guinea household income and expenditure survey: Summary tables. Port Moresby: National Statistical Office, 2013 (and additional analysis).||983,166
PARAGUAY|Latin America and the Caribbean|South America|Upper Middle Income|1990|3450|0,2|0,6|18,3|2,8|6,3|Encuesta nacional de demografia y salud 1990. Demographic and Health Surveys. Asuncion, Paraguay, 1991 (and additional analysis).||653,506
PARAGUAY|Latin America and the Caribbean|South America|Upper Middle Income|2005|483612||1,1|17,5|3,4|7,1|Informe final de consultoria: Analisis de la situacion de salud infantil y antropometria en menores de 5 años. Paraguay EPH 2005. Asuncion, Paraguay: PNUD Paraguay, 2006.||669,0369999999999
PARAGUAY|Latin America and the Caribbean|South America|Upper Middle Income|2011-12|558648|0,4|2,6|10,7|2,6|11,3|Análisis de la situación nutricional de los niños menores de cinco años en Paraguay a partir de la encuesta de ingresos y gastos y de condiciones de vida 2011-2012. Asunción, Paraguay, 2014 (and additional analysis).||683,938
PARAGUAY|Latin America and the Caribbean|South America|Upper Middle Income|2016|4428|0,4|1,0|5,6|1,3|12,4|Encuesta de Indicadores Multiples por Conglomerados MICS Paraguay 2016 (and additional analysis)||671,653
PERU|Latin America and the Caribbean|South America|Upper Middle Income|1991-92|7205|0,6|1,9|37,3|8,8|9,3|Encuesta demografica y de salud familiar 1991/1992. Demographic and Health Surveys. Lima, Peru, 1992 (and additional analysis).||3060,35
PERU|Latin America and the Caribbean|South America|Upper Middle Income|1996|13829|0,7|1,6|31,6|5,7|9,9|Peru demographic and health survey 1996. Demographic and Health Surveys. Instituto Nacional de Estadistica e Informacion. Lima, Peru, 1997 (and additional analysis).||3063,74
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2000|10710|0,4|1,1|31,3|5,2|11,8|Encuesta demografica y de salud familiar 2000. Demographic and Health Surveys. Lima, Peru and Calverton, Maryland, USA: Instituto Nacional de Estadistica e Informacion y ORC Macro, 2001 (and additional analysis).||3009,387
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2005|1912|0,1|1,0|29,2|5,4|9,1|Peru, encuesta demografica y de salud familiar. Informe principal: ENDES continua 2004-2006. Demographic and Health Surveys. Lima, Peru: INEI, USAID and ORC Macro, 2007 (and additional analysis).||2960,998
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2007-08|7911|0,2|0,8|28,0|4,3|10,0|Encuesta demografica y de salud familiar. Informe principal: ENDES continua 2007-2008. Demographic and Health Surveys. Lima, Peru: INEI, USAID y ORC Macro, 2009 (and additional analysis).||2952,039
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2009|9180|0,2|0,6|23,9|4,3|10,3|Encuesta demografica y de salud familiar - ENDES continua 2009. Demographic and Health Surveys. Lima, Peru: INEI, USAID y ORC Macro, 2010 (and additional analysis).||2946,0759999999996
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2010|8726|0,1|0,7|23,3|4,3|8,0|Encuesta demografica y de salud familiar - ENDES continua 2010. Demographic and Health Surveys. Lima, Peru: INEI, USAID y ORC Macro, 2011 (and additional analysis).||2950,506
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2011|8869|0,1|0,4|19,5|4,2|8,8|Encuesta demografica y de salud familiar - ENDES continua 2011. Demographic and Health Surveys. Lima, Peru: INEI, USAID y ORC Macro, 2012 (and additional analysis).||2957,4570000000003
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2012|9190|0,1|0,6|18,4|3,4|7,2|Encuesta demografica y de salud familiar - ENDES continua 2012. Demographic and Health Surveys. Lima, Peru: INEI, USAID y ORC Macro, 2013 (and additional analysis).||2972,6479999999997
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2013|8316|0,2|0,4|17,7|3,6|8,4|Encuesta demografica y de salud familiar ENDES continua 2013 Nacional y Departmental. Demographic and Health Surveys. Lima, Peru: INEI, 2013 (and additional analysis)||2993,0229999999997
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2014|9164|0,1|0,6|14,8|3,2|8,8|Encuesta demografica y de salud familiar - ENDES continua 2014. Demographic and Health Surveys. Lima, Peru: INEI,2015 (and additional analysis)||3010,6620000000003
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2015|11141|0,1|0,6|14,7|3,4|8,2|Encuesta Demográfica y de Salud Familiar-ENDES 2015 Nacional y Departamental (and additional analysis)||3020,032
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2016|10586|0,1|0,6|13,1|3,2|7,7|Perú Encuesta Demografica y de salud Familiar 2016: nacional y regional, 2017 (and additional analysis)||3032,5820000000003
PERU|Latin America and the Caribbean|South America|Upper Middle Income|2017|9362|0,1|0,5|12,9|3,2|8,0|Encuesta Demográfica y de Salud Familiar-ENDES 2017 Nacional y Departamental (and additional analysis)||3026,862
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|1987|2250||5,7|44,7|29,3||Third National Nutrition Survey Philippines, 1987. Food and Nutrition Research Institute. Manila, Philippines; 1991 (and additional analysis).|Converted estimates|8882,434000000001
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|1989-90|5629||6,9|43,3|29,9||Regional Updating of Nutritional Status of Filipino Children, 1989-90. Food and Nutrition Research Institute. Manila, Philippines; 1991 (and additional analysis).|Converted estimates|9450,035
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|1992|5858||8,8|40,9|29,8|1,7|The 1992 regional nutrition survey. Food and Nutrition Research Institute. Manila, Philippines; 1994 (and additional analysis).|Converted estimates|9770,793
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|1993|4229||9,1|38,9|26,3||The fourth national nutrition survey: Philippines 1993. Food and Nutrition Institute. Manila, Philippines; 1995 (and additional analysis).|Converted estimates|9868,664
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|1998|24308||8,0|38,3|28,3|1,9|The 5th national nutrition survey. Philippine nutrition: Facts & figures. Taguig, Metro Manila, Philipines: UNICEF, 2001 (and additional analysis).|Converted estimates|10441,046999999999
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|2003|3499|1,6|6,0|33,8|20,7|2,4|Sixth National Nutrition Survey: Philippines, 2003. Food and Nutrition Research Institute, 2004.||11250,61
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|2008|18403|2,0|6,9|32,3|20,7|3,3|7th national nutrition survey. Manila, Philippines: FNRI-DOST, 2010 (and additional analysis).||11155,915
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|2011|17309|2,4|7,3|33,6|20,2|4,3|Philippine Nutrition Facts and Figures 2011. DOST Complex, FNRI Bldg., Bicutan, Taguig City, Metro, Manila, Philippines, 2012 (and additional analysis).||11076,073999999999
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|2013-14|||7,9|30,3|19,9|5,0|8th National nutrition survey Philippines 2013.|(pending reanalysis)|11240,688
PHILIPPINES (THE)|Asia|South-Eastern Asia|Lower Middle Income|2015|||7,1|33,4|21,5|3,9|Philippines 2015 National Nutrition Survey - Updating Survey Results||11434,444
POLAND|Europe|Eastern Europe|High Income|2009||||2,9|||Poland European Health Interview Survey 2009||1972,211
POLAND|Europe|Eastern Europe|High Income|2014||||2,6|||Poland European Health Interview Survey 2014||1950,715
QATAR|Asia|Western Asia|High Income|1995|1180||2,1|11,6|4,8|10,4|Nutritional assessment in Qatar. Assignment report EM/NUT169/E/R/01.96/27. Alexandria: World Health Organization Regional Office, 1996 (and additional analysis).|Converted estimates|49,998000000000005
REPUBLIC OF KOREA (THE)|Asia|Eastern Asia|High Income|2003|2040|0,2|0,9|2,5|0,9|6,2|Recent growth of children in the two Koreas: a meta-analysis. Economics and Human Biology 2009;7:109-12.||2685,532
REPUBLIC OF KOREA (THE)|Asia|Eastern Asia|High Income|2008-11|1783845|0,1|1,2|2,5|0,7|7,3|Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). International Journal of Epidemiology 2014;43:69-77 (and additional analysis).| Age-adjusted;|2288,7729999999997
REPUBLIC OF MOLDOVA (THE)|Europe|Eastern Europe|Lower Middle Income|2005|1581|2,4|5,9|10,7|3,2|8,8|Moldova demographic and health survey 2005. Demographic and Health Surveys. Calverton, Maryland: NCPM of the Ministry of Health and Social Protection and ORC Macro, 2006 (and additional analysis).||205,40099999999998
REPUBLIC OF MOLDOVA (THE)|Europe|Eastern Europe|Lower Middle Income|2012|1724|0,5|1,9|6,4|2,2|4,9|2012 Republic of Moldova multiple indicator cluster survey. Final report (MICS4). Chisinau, Republic of Moldova, 2014 (and additional analysis)||225,609
ROMANIA|Europe|Eastern Europe|Upper Middle Income|1991|10957||3,3|11,2|5,0|4,0|Report of Romania national nutrition survey, 1991. Part I: child nutrition section. Atlanta: Division of Nutrition, Centers for Disease Control, 1993 (and additional analysis).|Converted estimates|1792,329
ROMANIA|Europe|Eastern Europe|Upper Middle Income|1999|21103|0,8|3,6|15,3|3,4|10,1|National nutritional surveillance programme, 1993-2002. Bukarest, Romania, 2003 (and additional analysis).|National surveillance system|1113,677
ROMANIA|Europe|Eastern Europe|Upper Middle Income|2000|22225|1,1|4,3|12,8|3,7|8,9|National nutritional surveillance programme, 1993-2002. Bukarest, Romania, 2003 (and additional analysis).||1120,087
ROMANIA|Europe|Eastern Europe|Upper Middle Income|2001|22667|1,0|3,9|14,0|3,8|9,1|National nutritional surveillance programme, 1993-2002. Bukarest, Romania, 2003 (and additional analysis).||1167,846
ROMANIA|Europe|Eastern Europe|Upper Middle Income|2002|15533|0,7|3,5|12,8|3,5|8,3|National nutritional surveillance programme, 1993-2002. Bukarest, Romania, 2003 (and additional analysis).||1165,17
RWANDA|Africa|Eastern Africa|Low Income|1992|4498|1,8|5,0|56,8|24,2|4,0|Enquête démographique et de santé, Rwanda 1992. Demographic and Health Surveys. Kigali, Rwanda, 1994 (and additional analysis).||1161,152
RWANDA|Africa|Eastern Africa|Low Income|1996|1115||11,0|45,4|22,6||National nutrition survey of women and children in Rwanda in 1996. Kigali, République Rwandaise, 1997 (and additional analysis).|Adjusted NR to NA; converted estimates|757,452
RWANDA|Africa|Eastern Africa|Low Income|2000|6793|3,8|8,7|47,9|20,3|7,1|Enquête démographique et de santé, Rwanda 2000. Demographic and Health Surveys. Kigali, Rwanda et Calverton, Maryland, USA: Ministère de la Santé, Office National de la Population et ORC Macro, 2001 (and additional analysis).||1312,971
RWANDA|Africa|Eastern Africa|Low Income|2005|3999|1,7|4,9|51,4|17,9|6,7|Rwanda demographic and health survey 2005. Demographic and Health Surveys. Calverton, Maryland, U.S.A.: INSR and ORC Macro, 2006 (and additional analysis).||1454,3029999999999
RWANDA|Africa|Eastern Africa|Low Income|2010-11|4408|0,9|2,9|44,3|11,7|6,9|Rwanda demographic and health survey 2010. Demographic and Health Surveys. Calverton, Maryland, USA: NISR, MOH, and ICF International, 2012 (and additional analysis).||1641,692
RWANDA|Africa|Eastern Africa|Low Income|2015|4051|0,4|2,0|36,9|8,9|5,6|Rwanda 2015 Comprehensive Food Security and Vulnerabilty Analysis (and additional analysis)||1734,543
RWANDA|Africa|Eastern Africa|Low Income|2014-15|3881|0,7|2,3|38,2|9,6|7,9|Rwanda Demographic and Health Survey 2014-15. Kigali, Rwanda: National Institute of Statistics of Rwanda, Ministry of Finance and Economic Planning/Rwanda, Ministry of Health/Rwanda, and ICF International (and additional analysis)||1734,543
SAINT LUCIA|Latin America and the Caribbean|Caribbean|Upper Middle Income|2012|283|0,7|3,7|2,5|2,8|6,3|Saint Lucia multiple indicator cluster survey 2012: Final report. MICS. Castries, Saint Lucia, 2014 (and additional analysis)||10,895
SAMOA|Oceania|Polynesia|Upper Middle Income|1999|1107||1,3|6,4|1,7|6,2|Samoa national nutrition survey 1999. Part 3: Child growth, diet, contact with the health system and interview with carers. Technical report. Apia, Samoa: Nutrition Centre, 2003 (and additional analysis).|Converted estimates|25,639
SAMOA|Oceania|Polynesia|Upper Middle Income|2014|2961|1,3|3,9|4,9|3,2|5,3|Samoa Demographic and Health Survey 2014 (and additional analysis)||24,718000000000004
SAO TOME AND PRINCIPE|Africa|Middle Africa|Lower Middle Income|1986|2155||6,0|32,0|14,5||Estado nutricional e cobertura vacinal des criancas menoras de 5 anos na. Seccao de Nutricao. Sao Tome, Republica Democratica de Sao Tome e Principe, 1986 (and additional analysis).|Converted estimates|17,67
SAO TOME AND PRINCIPE|Africa|Middle Africa|Lower Middle Income|2000|1737|1,2|3,9|35,5|10,2|9,2|Enquête de grappes à indicateurs multiples MICS - rapport d'analyse (projet, 14 juillet 2000). Sao Tome, République Démocratique de Sao Tome et Principe, 2000. (and additional analysis).||23,151
SAO TOME AND PRINCIPE|Africa|Middle Africa|Lower Middle Income|2006|2848||9,6|28,9|8,0|15,4|Democratic Republic of Sao Tome e Principe 2006 multiple indicator cluster survey (MICS3): Final report. Sao Tome: INE and UNICEF, 2007.|Converted estimates|27,579
SAO TOME AND PRINCIPE|Africa|Middle Africa|Lower Middle Income|2008-09|1751|5,1|11,6|30,6|14,8|11,2|Enquête démographique et de santé à Sao Tomé e Príncipe (EDS-STP) 2008-2009. Rapport préliminaire. Sao Tomé: INE et le Ministre de la Santé, 2009 ( and additional analysis).||28,419
SAO TOME AND PRINCIPE|Africa|Middle Africa|Lower Middle Income|2014|1939|0,8|4,0|17,2|8,8|2,4|Sao Tome and Principe Multiple Indicator Cluster Survey 2014, Final Report. São Tomé, Sao Tome and Principe, 2016 (and additional analysis)||30,58
SAUDI ARABIA|Asia|Western Asia|High Income|1994|23821||2,9|21,4|13,5|1,2|Comparison of the growth standards between Saudi and American children aged 0-5 years. Saudi Medical Journal 2003;24:598-602 [Erratum Saudi Medical Journal 2003;24:1032] (and additional analysis).|Converted estimates|2761,921
SAUDI ARABIA|Asia|Western Asia|High Income|2004-05|15601|4,5|11,8|9,3|5,3|6,1|Growth charts for Saudi children and adolescents. Saudi Medical Journal 2007;28:1555-68 (and additional analysis).||2745,367
SENEGAL|Africa|Western Africa|Low Income|1986|630|1,2|5,1|26,5|17,0|2,3|Enquête démographique et de santé au Sénégal, 1986. Demographic and Health Surveys. Dakar, Republique du Sénégal, 1987 (and additional analysis).|Age-adjusted;|1285,753
SENEGAL|Africa|Western Africa|Low Income|1991-92|||9,0|34,4|20,4|4,0|Social Dimensions of Adjustment Household Priority Survey 1991-92. New York: The World Bank, 1993 (and additional analysis).|Age-adjusted; converted estimates|1444,067
SENEGAL|Africa|Western Africa|Low Income|1992-93|4047|3,0|9,4|29,7|19,0|4,0|Enquête démographique et de santé au Sénégal (EDS-II) 1992/93. Demographic and Health Surveys. Dakar, Sénégal, 1994 (and additional analysis).||1476,981
SENEGAL|Africa|Western Africa|Low Income|1996|||8,2|28,8|19,6||Evaluation des objectives intermédiares (MICS). Dakar: UNICEF, September 1996 (and additional analysis).|Converted estimates|1573,0729999999999
SENEGAL|Africa|Western Africa|Low Income|2000|1098683|2,9|10,0|26,0|17,8|3,2|Rapport de l'enquête sur les objectives de la fin de decennie sur l'enfance (MICS-II-2000). Dakar, Senegal, Novembre 2000 (and additional analysis).||1672,115
SENEGAL|Africa|Western Africa|Low Income|2005|3010|2,3|8,7|19,9|14,5|2,5|Enquête démographique et de santé au Sénégal 2005. Demographic and Health Surveys. Calverton, Maryland, USA : Centre de Recherche pour le Développement Humain [Sénégal] et ORC Macro, 2006 (and additional analysis).||1870,068
SENEGAL|Africa|Western Africa|Low Income|2010-11|3925|2,3|9,8|26,6|18,4|2,7|Enquête démographique et de santé à indicateurs multiples au Sénégal (EDS-MICS) 2010-2011. Demographic and Health Surveys and MICS. Calverton, Maryland, USA: ANSD et ICF International, 2012 (and additional analysis).||2248,346
SENEGAL|Africa|Western Africa|Low Income|2012|27528|1,2|8,7|15,5|14,4|0,7|Rapport final SMART 2012. Dakar, Senegal: CLM, 2013 (and additional analysis).||2316,8579999999997
SENEGAL|Africa|Western Africa|Low Income|2012-13|5961|1,9|9,0|18,7|16,7|1,4|Enquête démographique et de santé continue (EDS-Continue 2012-2013). Demographic and Health Surveys. Calverton, Maryland, USA: ANSD et ICF International., 2013 (and additional analysis).||2380,743
SENEGAL|Africa|Western Africa|Low Income|2014|5978|0,8|5,9|18,7|12,8|1,3|Sénégal : Enquête Démographique et de Santé Continue (EDS-Continue 2014). Rockville, Maryland, USA : ANSD et ICF International, 2015 (and additional analysis)||2439,437
SENEGAL|Africa|Western Africa|Low Income|2015|6097|1,5|7,8|20,7|16,1|1,0|Sénégal : Enquête Démographique et de Santé Continue (EDS-Continue 2015). Octobre 2016 (and additional analysis)||2492,79
SENEGAL|Africa|Western Africa|Low Income|2016|5750|1,2|7,1|17,1|13,8|0,9|Sénégal : Enquête Démographique et de Santé Continue (EDS-Continue) 2016. August 2017 (and additional analysis)||2544,313
SENEGAL|Africa|Western Africa|Low Income|2017|10911|1,5|9,0|16,5|14,4|0,9|Enquête Démographique et de Santé Continue du Sénégal, Cinquième Phase 2017 : Rapport de synthèse. Rockville, Maryland, USA : ANSD et ICF (and additional analysis)||2583,824
SERBIA|Europe|Southern Europe|Upper Middle Income|2005-06|3525|1,8|4,5|8,1|1,8|19,3|Republic of Serbia multiple indicator cluster survey 2005, final report. Belgrade, Republic of Serbia: Statistical Office of the Republic of Serbia and Strategic Marketing Research Agency, 2006 (and additional analysis).||533,2130000000001
SERBIA|Europe|Southern Europe|Upper Middle Income|2010|3004|0,8|3,5|6,6|1,6|15,6|Serbia multiple indicator cluster survey 2010 (MICS). Belgrade, Republic of Serbia: Statistical Office of the Republic of Serbia, 2011 (and additional analysis).||488,31699999999995
SERBIA|Europe|Southern Europe|Upper Middle Income|2014|2353|1,1|3,9|6,0|1,8|13,9|2014 Serbia multiple indicator cluster survey and 2014 Serbia Roma Settlements multiple indicator cluster survey (MICS). Final Report. Belgrade, Serbia: Statistical Office of the Republic of Serbia and UNICEF, 2014 (and additional analysis)||469,62699999999995
SEYCHELLES|Africa|Eastern Africa|High Income|1987-88|836||2,7|7,7|5,0|5,8|Nutritional status of Seychellois children (unpublished data). Victoria, Seychelles, 1989 (and additional analysis).|Converted estimates|8,401
SEYCHELLES|Africa|Eastern Africa|High Income|2012|5283|1,2|4,3|7,9|3,6|10,2|The nutritional status and associated risk factors of 0-5 year old children in Seychelles. 7706 Med Health Project (thesis). Queensland, Australia: Griffith University, 2014.|Health centres (80% coverage)|7,697
SIERRA LEONE|Africa|Western Africa|Low Income|1989|4424||8,4|41,4|23,7||Ministry of Health. The Republic of Sierra Leone National Nutrition Survey. Freetown, Sierra Leone; 1990.|Converted estimates; rain|769,566
SIERRA LEONE|Africa|Western Africa|Low Income|1990|4595||10,2|40,9|25,4||Ministry of Health. The Republic of Sierra Leone National Nutrition Survey. Freetown, Sierra Leone; 1990.|Converted estimates; dry|772,2410000000001
SIERRA LEONE|Africa|Western Africa|Low Income|2000|1977|3,9|11,6|35,5|23,4|4,8|The status of women and children in Sierra Leone. A household survey report (MICS-2). Central Statistics Office, Ministry of Development and Economic Planning, November 2000 (and additional anaysis).||810,096
SIERRA LEONE|Africa|Western Africa|Low Income|2005|4428|4,2|10,2|45,0|27,2|5,9|Sierra Leone multiple indicator cluster survey 2005: Final Report. Freetown, Sierra Leone: Statistics Sierra Leone and UNICEF-Sierra Leone, 2007 (and additional analysis).||991,441
SIERRA LEONE|Africa|Western Africa|Low Income|2008|3052|4,6|10,5|37,2|21,5|10,1|Sierra Leone demographic and health survey 2008. Demographic and Health Surveys. Calverton, Maryland, USA: Statistics Sierra Leone (SSL) and ICF Macro, 2009 (and additional analysis).||1066,714
SIERRA LEONE|Africa|Western Africa|Low Income|2010|8104|4,8|10,0|44,4|22,9|9,4|Sierra Leone multiple indicator cluster survey 2010, Final report (MICS). Freetown, Sierra Leone: Statistics Sierra Leone and UNICEF-Sierra Leone, 2011 (and additional analysis).||1091,253
SIERRA LEONE|Africa|Western Africa|Low Income|2013|5776|4,4|9,5|37,8|18,2|8,8|Sierra Leone demographic and health survey 2013. Demographic and Health Surveys. Freetown, Sierra Leone and Rockville, Maryland, USA: SSL and ICF International, 2014 (and additional analysis).||1123,225
SINGAPORE|Asia|South-Eastern Asia|High Income|2000|16220|0,5|3,6|4,4|3,3|2,6|National healthcare group polyclinics' anthropometric growth charts for Singapore preschool children 2000. Singapore Health Booklet, revised edition April 2003 (and additional analysis).||255,543
SOLOMON ISLANDS|Oceania|Melanesia|Lower Middle Income|1989|3980|2,0|7,4|33,7|16,3|1,9|Solomon Islands national nutrition survey 1989. Honiara, Solomon Islands, 1990 (and additional analysis).||52,056000000000004
SOLOMON ISLANDS|Oceania|Melanesia|Lower Middle Income|2006-07|2029|1,4|4,3|32,8|11,5|2,5|Solomon Islands 2006-2007 demographic and health survey. DHS. Noumea, New Caledonia: SISO, SPC and Macro International Inc., 2007 (accessed 22/12/09 http://www.spc.int/prism/Country/SB/Stats/Publication/DHS07/report/SI-DHS-REPORT_TOC_Summary.pdf)||75,94800000000001
SOLOMON ISLANDS|Oceania|Melanesia|Lower Middle Income|2015|3767|3,6|8,5|31,6|16,2|4,5|Solomon Islands Ministry of Health and Medical Services and the Pacific Community. 2017. Solomon Islands Demographic and Health Survey, 2015 (and additional analysis)||82,681
SOMALIA|Africa|Eastern Africa|Low Income|2000|3582||19,3|29,2|22,8||Somalia end-decade multiple indicator cluster survey. Full technical report. Nairobi: UNICEF Somilia, 2001 (and additional analysis).|Converted estimates|1804,7820000000002
SOMALIA|Africa|Eastern Africa|Low Income|2006|5696|4,4|13,3|42,0|32,8|4,7|Monitoring the situation of women and children. Somalia multiple indicator cluster survey 2006. New York: UNICEF, 2007 (and additional analysis).||2042,3570000000002
SOMALIA|Africa|Eastern Africa|Low Income|2009|1137|5,2|15,0|25,3|23,0|3,0|National Micronutrient and Anthropometric Survey Somalia 2009 (and additional analysis).||2221,771
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|1993-94|4089|4,2|9,1|29,7|14,9|13,6|South Africans rich and poor: baseline household statistics. Project for statistics on living standards and development. Cape Town, 1994 (and additional analysis).||5147,3
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|1994-95|9807||3,3|28,7|8,0|10,3|Children aged 6 to 71 months in South Africa, 1994: their anthropometric, vitamin A, iron and immunisation coverage status. Johannesburg, South Africa, 1995 (and additional analysis).|Converted estimates|5131,4529999999995
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|1999|1556||4,5|30,1|9,8|10,4|The National Food Consumption Survey (NFCS): South Africa, 1999. Public Health Nutrition 2005;8:533-43 (and additional analysis).|Age-adjusted; converted estimates|5151,241
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|2003-04|4652|4,3|7,8|35,7|12,1|16,7|South Africa demographic and health survey 2003 (SADHS). Demographic and Health Surveys. Pretoria: Department of Health, 2007 (and additional analysis).||5241,529
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|2008|3151438|2,4|4,8|24,9|8,8|13,3|National income dynamics study (NIDS). Health: Analysis of the NIDS wave 1 dataset. Discussion paper no. 2. South Africa: The Presidency Republic of South Africa and SALDRU, 2009. (and additional analysis)|Age 0-5 months not covered; unadjusted|5333,303000000001
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|2012|4892568|3,1|5,6|27,2|8,5|17,2|South Africa 2012 National Income Dynamics Study Wave 3 (and additional analysis)|Age 0-5 months not covered; unadjusted|5513,938
SOUTH AFRICA|Africa|Southern Africa|Upper Middle Income|2016|1416|0,6|2,5|27,4|5,9|13,3|South Africa Demographic and Health Survey 2016. Pretoria, South Africa, and Rockville, Maryland, USA: NDoH, Stats SA, SAMRC, and ICF (and additional analysis)||5704,84
SOUTH SUDAN|Africa|Eastern Africa|Low Income|2006|1329786|12,9|24,6|36,2|32,5|10,9|Sudan household health survey (SHHS) - 2006. Khartoum and Juba: Government of National Unity, Government of Southern Sudan, December 2007 (additional analysis conducted by PAPFAM, June 2013).||1427,444
SOUTH SUDAN|Africa|Eastern Africa|Low Income|2010|6390|11,9|24,3|31,3|29,1|5,8|South Sudan Household Survey 2010. Final Report (MICS4). Juba, South Sudan, 2013 (and additional analysis)||1657,58
SRI LANKA|Asia|Southern Asia|Lower Middle Income|1987|1974|1,6|14,9|32,3|32,8|0,3|Sri Lanka demographic and health survey 1987. Demographic and Health Surveys. Colombo, Sri Lanka, 1987 (and additional analysis).|Age-adjusted;|1883,703
SRI LANKA|Asia|Southern Asia|Lower Middle Income|1993|3067||17,5|29,7|33,8||Sri Lanka demographic and health survey 1993. Colombo, Sri Lanka, 1995 (and additional analysis).|Converted estimates|1723,845
SRI LANKA|Asia|Southern Asia|Lower Middle Income|1995|2782||15,3|26,1|29,3||Preliminary report on the fourth national nutrition and health survey July - August, 1995. The Ceylon Journal of Medical Science 1997;40:13-24 (and additional analysis).|Converted estimates|1716,6529999999998
SRI LANKA|Asia|Southern Asia|Lower Middle Income|2000|2513|2,4|15,5|18,4|22,8|1,0|Sri Lanka demographic and health survey 2000. Colombo, Sri Lanka, 2001 (and additional analysis).|Excl. north & east provinces|1641,6070000000002
SRI LANKA|Asia|Southern Asia|Lower Middle Income|2006-07|6648|2,8|14,7|17,3|21,1|1,6|Sri Lanka demographic and health survey 2006/07: Preliminary report and selected tables from the chapters of the final report (I:\UnitData\SURVEILLANCE\GDCGM\data sets\Sri Lanka\DHS_MoH 2006_07_WHO\DHS_web_links.htm, accessed 03/07/09).||1797,145
SRI LANKA|Asia|Southern Asia|Lower Middle Income|2009|2589|1,9|11,8|19,2|21,6|0,8|Nutrition and food security survey 2009. Colombo, Sri Lanka: Medical Research Institute, 2010.||1797,296
SRI LANKA|Asia|Southern Asia|Lower Middle Income|2012|7306|3,0|21,4|14,7|26,3|0,6|National nutrition and micronutrient survey. Part I: Anaemia among children aged 6-59 months and nutritional status of children and adults. Colombo, Sri Lanka, 2013 (and additional analysis).||1743,692
SRI LANKA|Asia|Southern Asia|Lower Middle Income|2016|7908|3,0|15,1|17,3|20,5|2,0| Sri Lanka 2016 Demographic and Health Survey (SLDHS)|(pending reanalysis)|1601,546
STATE OF PALESTINE|Asia|Western Asia|Lower Middle Income|1996|4451||3,6|10,6|3,6|4,0|The health survey in the West Bank and Gaza Strip: main findings (MICS). Palestinian Central Bureau of Statistics. Ramallah, Palestine, 1996 (and additional analysis).|Converted estimates|545,313
STATE OF PALESTINE|Asia|Western Asia|Lower Middle Income|2002|936||9,4|16,1|||Rapid nutritional assessment for West Bank and Gaza Strip. Executive summary. September 2002 Accessed 05.01.10 http://anahri.alquds.edu/index_files/PNACR368.pdf.|Converted estimates|578,268
STATE OF PALESTINE|Asia|Western Asia|Lower Middle Income|2006-07|9359|0,7|1,8|13,6|2,6|11,4|Palestinian family health survey, 2006: Final report. Ramallah, Palestine, 2007 (and additional analysis)||586,105
STATE OF PALESTINE|Asia|Western Asia|Lower Middle Income|2010|9157|1,0|3,3|10,9|3,7|5,3|Final report of the Palestinian family survey 2010 (MICS). Ramallah, State of Palestine: Palestinian Central Bureau of Statistics, 2013 (and additional analysis)||627,864
STATE OF PALESTINE|Asia|Western Asia|Lower Middle Income|2014|7222|0,3|1,2|7,4|1,4|8,2|Palestinian Multiple Indicator Cluster Survey 2014, Final Report, Ramallah, Palestine (and additional analysis)||685,6239999999999
SUDAN (THE)|Africa|Northern Africa|Lower Middle Income|2006|4151294|5,7|14,5|38,3|27,0|4,2|Sudan household health survey (SHHS) - 2006. Khartoum and Juba: Government of National Unity, Government of Southern Sudan, December 2007 (additional analysis conducted by PAPFAM, June 2013).||5253,891
SUDAN (THE)|Africa|Northern Africa|Lower Middle Income|2010|12193|5,1|16,3|34,1|30,5|1,5|Sudan household health survey, second round 2010 (and additional analysis)||5529,78
SUDAN (THE)|Africa|Northern Africa|Lower Middle Income|2014|11718|5,1|16,8|38,2|33,5|3,0|Multiple Indicator Cluster Survey 2014 of Sudan, Final Report. Khartoum, Sudan: UNICEF and Central Bureau of Statistics (CBS), February 2016 (and additional analysis)||5783,861999999999
SURINAME|Latin America and the Caribbean|South America|Upper Middle Income|1999-00|1768|2,0|7,0|14,1|11,1|2,9|Full report: Suriname multiple indicator cluster survey (MICS) 2000. Paramaribo, Suriname, March 2001 (and additional analysis).||53,393
SURINAME|Latin America and the Caribbean|South America|Upper Middle Income|2006|1981|1,0|4,9|10,6|7,5|4,0|Suriname multiple indicator cluster survey 2006, Final Report (MICS3). Paramaribo, Suriname, 2009 (and additional analysis).||51,001999999999995
SURINAME|Latin America and the Caribbean|South America|Upper Middle Income|2010|2871|1,6|5,8|8,8|6,4|4,0|Suriname multiple indicator cluster survey 2010, Final Report (MICS). Paramaribo, Suriname, 2012 (and additional analysis).||50,043
SYRIAN ARAB REPUBLIC (THE)|Asia|Western Asia|Low Income|1993|4154|4,5|10,0|32,8|11,5|15,0|Syrian maternal and child health survey (SMCHS). PAPCHILD surveys. Cairo: The League of Arab States, 1994 (and additional analysis).||2157,302
SYRIAN ARAB REPUBLIC (THE)|Asia|Western Asia|Low Income|1995|2425||10,4|26,5|11,3||Multiple indicator cluster survey in the Syrian Arab Republic (MICS). Central Bureau of Statistics. Damascus, The Syrian Arab Republic, 1996.|Converted estimates|2185,908
SYRIAN ARAB REPUBLIC (THE)|Asia|Western Asia|Low Income|2000|6262||4,9|24,3|6,0||[Multiple Indicator Cluster Survey II (MICS II) concerning Child Health and Welfare. Main report.] Damascus, Syrian Arab Republic: UNICEF, 2002 (and additional analysis).|Converted estimates|2432,026
SYRIAN ARAB REPUBLIC (THE)|Asia|Western Asia|Low Income|2001|6367|5,4|10,3|31,1|11,1|19,7|The family health survey in the Syrian Arab Republic. Principal Report. Cairo: The League of Arab States, 2002 (and additional analysis).||2498,158
SYRIAN ARAB REPUBLIC (THE)|Asia|Western Asia|Low Income|2006|10595|4,8|10,3|28,7|10,0|18,7|Syrian Arab Republic multiple indicator cluster survey 2006. February 2008 (and additional analysis).||2532,363
SYRIAN ARAB REPUBLIC (THE)|Asia|Western Asia|Low Income|2009|14289|5,5|11,5|27,6|10,2|17,9|Family health survey of the Arab Republic of Syria 2009: Principal report (PAPFAM). Cairo: The League of Arab States, 2011 (and additional analysis).||2706,0490000000004
TAJIKISTAN|Asia|Central Asia|Low Income|1999|3599||11,4|41,5|||National nutrition survey, Tajikistan (September/October 1999). London, UK: Action Against Hunger UK, 2000 (and additional analysis).|Converted estimates|895,515
TAJIKISTAN|Asia|Central Asia|Low Income|2000|5657||9,4|42,1|||National nutrition survey of Tajikistan (September/October 2000). London, UK: Action Against Hunger UK, 2001 (and additional analysis).|Converted estimates|892,398
TAJIKISTAN|Asia|Central Asia|Low Income|2001|3704||19,4|43,2|||Representative national nutrition survey Tajikistan (Sughd, RRS, Kouliab and Kurgan Teppe regions), October/November 2001. London, UK: Action Against Hunger UK, 2002 (and additional analysis).|Converted estimates|890,5880000000001
TAJIKISTAN|Asia|Central Asia|Low Income|2002|4543||6,1|37,1|||National nutrition survey Tajikistan, May/June 2002. Action against Hunger and European Community Humanitarian Office, 2002 (and additional analysis).|Converted estimates|879,315
TAJIKISTAN|Asia|Central Asia|Low Income|2003|4654||5,9|42,4|||National nutrition and water & sanitation survey, Tajikistan, October 2003. Dushanbe, Tajikistan: Action Against Hunger (lead agency nutrition) and Mercy Corps (lead agency wat/san), 2004 (and additional analysis).|Converted estimates|864,0260000000001
TAJIKISTAN|Asia|Central Asia|Low Income|2005|4219|3,5|8,7|33,0|14,9|6,7|Tajikistan multiple indicator cluster survey 2005, Final Report. Dushanbe, Tajikistan: State Committee on Statistics of the Republic of Tajikistan, 2007 (and additional analysis).||858,597
TAJIKISTAN|Asia|Central Asia|Low Income|2007|5157083|3,7|7,5|39,2|15,7|11,9|Tajikistan living standards measurement survey 2007 (TLSS): Indicators at a glance. Dushanbe, Republic of Tajikistan: State Committee on Statistics and UNICEF, 2009 (and additional analysis)||884,118
TAJIKISTAN|Asia|Central Asia|Low Income|2009|2139|1,3|4,3|28,8|8,3|4,2|Micronutrient status survey in Tajikistan, 2009. Dushanbe, Republic of Tajikistan: Ministry of Health and UNICEF, 2010 (and additional analysis).||965,653
TAJIKISTAN|Asia|Central Asia|Low Income|2012|5348|4,1|9,9|26,8|13,3|6,7|Tajikistan demographic and health survey 2012. Demographic and Health Surveys. Dushanbe, Tajikistan, and Calverton, Maryland, USA: SA, MOH, and ICF International, 2013 (and additional analysis).||1099,272
TAJIKISTAN|Asia|Central Asia|Low Income|2017|6716|1,8|5,6|17,5|7,6|3,3|Tajikistan Demographic and Health Survey 2017: Key Indicators. Rockville, Maryland, USA: Statistical Agency under the President of the Republic of Tajikistan(SA), Ministry of Health and Social Protection of Population of the Republic of Tajikistan and ICF (and additional analysis)||1194,242
THAILAND|Asia|South-Eastern Asia|Upper Middle Income|1987|1843|0,9|5,7|24,6|20,2|1,3|Thailand demographic and health survey 1987. Demographic and Health Surveys. Institute of Population Studies, Chulalongkorn University. Bangkok, Thailand, 1988 (and additional analysis).|Age-adjusted;|5588,076999999999
THAILAND|Asia|South-Eastern Asia|Upper Middle Income|1993|11748||7,3|21,1|16,3||Random survey on nutritional status of children of ages under five. Thailand Journal of Health Promotion and Environmental Health 1996;19:57-66 (and additional analysis).|Converted estimates|5224,563
THAILAND|Asia|South-Eastern Asia|Upper Middle Income|1995|4178||6,7|18,1|15,4|4,7|The fourth national nutrition survey of Thailand 1995. Department of Health. Bangkok, Thailand 1998 (and additional analysis).|Converted estimates|5125,727
THAILAND|Asia|South-Eastern Asia|Upper Middle Income|2005-06|4711296|1,4|4,7|15,7|7,0|8,0|Thailand multiple indicator cluster survey December 2005 - February 2006, Final report. Bangkok, Thailand: National Statistical Office, 2006 (and additional analysis).||4187,655
THAILAND|Asia|South-Eastern Asia|Upper Middle Income|2012|9203|2,2|6,7|16,4|9,2|10,9|International Health Policy Program (IHPP). Thailand multiple indicator cluster survey 2012. MICS. Bangkok, Thailand: NSO, UNICEF, MOPH, NHSO, THPF, IHPP, 2013 (and additional analysis)||4019,889
THAILAND|Asia|South-Eastern Asia|Upper Middle Income|2015-16|11189|1,4|5,4|10,5|6,7|8,2|Thailand Multiple Indicator Cluster Survey 2015- 2016, Final Report, NSO and UNICEF, Bangkok, 2016 (and additional analysis0||3767,698
TIMOR-LESTE|Asia|South-Eastern Asia|Lower Middle Income|2002|4133|4,9|13,7|55,7|40,6|5,7|Multiple indicator cluster survey (MICS - 2002). UNICEF, Dili, Timor-Leste, 2003 (and additional analysis).||182,111
TIMOR-LESTE|Asia|South-Eastern Asia|Lower Middle Income|2003|5255||14,3|54,8|41,5||Timor Leste 2003 demographic and health survey. Newcastle, NSW, Australia: MOH and University of Newcastle, 2003 (and additional analysis).|Converted estimates|180,672
TIMOR-LESTE|Asia|South-Eastern Asia|Lower Middle Income|2007-08||7,5|24,5|53,9|48,6||Final statistical abstract: Timor-Leste survey of living standards 2007. http://dne.mof.gov.tl/TLSLS/StatisticalData/6_Health/Main%20Tables/index.htm, accessed 27 March 2012.||173,18599999999998
TIMOR-LESTE|Asia|South-Eastern Asia|Lower Middle Income|2009-10|9114|7,6|18,9|57,5|44,9|5,8|Timor-Leste demographic and health survey 2009-10. Demographic and Health Surveys. Dili, Timor-Leste: NSD [Timor-Leste] and ICF Macro, 2010 (and additional analysis).||182,28599999999997
TIMOR-LESTE|Asia|South-Eastern Asia|Lower Middle Income|2013|1451858|2,3|10,5|50,9|37,5|1,4|Timor-Leste food and nutrition survey, Final report 2015. Dili, Timor Leste: Ministry of Health, 2015 (and additional analysis)||200,72799999999998
TOGO|Africa|Western Africa|Low Income|1988|1667|1,4|5,9|40,7|21,7|2,9|Enquête démographique et de santé au Togo 1988. Demographic and Health Surveys. Direction Generale de la Santé. Lomé, Togo, 1989 (and additional analysis).|Age-adjusted;|660,02
TOGO|Africa|Western Africa|Low Income|1996|3761|||40,2|16,7||Enquête national sur la situation des enfants au Togo en 1995 (MICS -Togo -96). Lomé, République Togolaise: Ministère du Plan et de l'Amenagement du Territoire et UNICEF, September 1996.|Converted estimates|739,48
TOGO|Africa|Western Africa|Low Income|1998|3603|3,6|12,4|33,2|23,8|2,3|Enquete démographique et de santé, Togo 1998. Demographic and Health Surveys. Ministère de la Planification et du Développement Economique, Direction de la Statistique. Lomé, Togo, 1999 (and aditional analysis).|Age-adjusted;|774,056
TOGO|Africa|Western Africa|Low Income|2006|3595|6,7|16,5|29,5|23,3|4,6|Résultats de l'enquête nationale à indicateurs multiples, Togo 2006. Rapport final, aôut 2007 (and additional analysis).||983,2289999999999
TOGO|Africa|Western Africa|Low Income|2008|3204|0,7|6,0|26,9|20,5||Rapport d'enquête nationale nutrition et survie des enfants de 0 à 59 mois, pratique d'alimentation de nourrisson et du jeune enfants. SMART. Togo, décembre 2008||1033,691
TOGO|Africa|Western Africa|Low Income|2010|4626|1,3|5,1|29,7|16,8|1,6|Enquête par grappes à indicateurs multiples MICS Togo, 2010: Rapport final. Lomé, Togo: DGSCN, 2010 (and additional analysis).||1076,937
TOGO|Africa|Western Africa|Low Income|2013-14|3325|1,5|6,6|27,6|16,1|2,0|Enquête démographique et de santé au Togo 2013-2014. Demographic and Health Surveys. Rockville, Maryland, USA : MPDAT, MS et ICF International, 2015 (and additional analysis)||1147,214
TONGA|Oceania|Polynesia|Upper Middle Income|1986|1094||1,3|2,2|||The 1986 national nutrition survey of the Kingdom of Tonga. Technical report National Food and Nutrition Committee. Nuku'alofa: Government of the Kingdom of Tonga, 1987 (and additional analysis).|Converted estimates|14,519
TONGA|Oceania|Polynesia|Upper Middle Income|2012|1394|2,1|5,2|8,1|1,9|17,3|Tonga demographic and health survey 2012. Noumea, New Caledonia: Secretariat of the Pacific Community, 2013.||13,517999999999999
TRINIDAD AND TOBAGO|Latin America and the Caribbean|Caribbean|High Income|1987|826|1,2|4,8|6,3|6,2|3,5|Trinidad and Tobago demographic and health survey 1987. Demographic and Health Surveys. Family Planning Association of Trinidad and Tobago. Port-of-Spain, Trinidad, 1988 (and additional analysis).|Age-adjusted;|153,942
TRINIDAD AND TOBAGO|Latin America and the Caribbean|Caribbean|High Income|2000|761|0,9|5,2|5,3|4,3|5,0|2000 Multiple indicator cluster survey Trinidad and Tobago: Full report. UNICEF website (and additional analysis).||89,616
TRINIDAD AND TOBAGO|Latin America and the Caribbean|Caribbean|High Income|2011|1095|2,1|6,4|9,2|4,9|11,4|Trinidad and Tobago Multiple Indicator Cluster Survey 2011, Key Findings & Tables. Port of Spain, Trinidad and Tobago: Ministry of Social Development and Familyvices, Central Statistical Office and UNICEF. 2017 (and additional analysis)||97,60600000000001
TUNISIA|Africa|Northern Africa|Lower Middle Income|1988|2015|0,6|3,1|18,5|7,9|3,7|Enquête démographique et de santé en Tunisie 1988. Demographic and Health Surveys. Office National de la Famille et de la Population. Tunis, Tunisie, 1989 (and additional analysis).|Age-adjusted;|1070,323
TUNISIA|Africa|Northern Africa|Lower Middle Income|1996-97|891||7,2|11,9|3,3|1,4|Enquête nationale 1996-1997. Evaluation de l'état nutritionnel de la population Tunisienne: Rapport national. Tunis, Tunisia: Sotepa Grafic, 1998 (and additional analysis).|Converted estimates|897,635
TUNISIA|Africa|Northern Africa|Lower Middle Income|2000|10553||2,9|16,8|3,5||Tunisia multiple indicator cluster survey II 2000 (MICS II). Tunis, Tunisia: 2000 (and additional analysis).|Converted estimates|840,2610000000001
TUNISIA|Africa|Northern Africa|Lower Middle Income|2006|2842|1,2|3,4|9,0|3,3|8,8|Enquête sur la santé et le bien être de la mère et l'enfant: MICS 3. Tunis, Tunisia, 2008 (and additional analysis conducted by PAPFAM).||803,193
TUNISIA|Africa|Northern Africa|Lower Middle Income|2011-12|2677|2,2|3,3|10,1|2,8|14,2|Suivi de la situation des enfants et des femmes en Tunisie- Enquête par grappes à indicateurs multiples 2011-2012: Rapport Final. MICS. Tunis, Tunisie: MDCI, INS, UNICEF, 2013 (and additional analysis)||927,5189999999999
TURKEY|Asia|Western Asia|Upper Middle Income|1993|3255|1,1|3,9|23,6|8,7|4,9|Turkey demographic and health survey, 1993. Demographic and Health Surveys. Ankara, Turkey, 1994 (and additional analysis).||6445,356
TURKEY|Asia|Western Asia|Upper Middle Income|1995|2871||||9,0||Multiple indicator cluster survey in Turkey 1995. Ankara: National Bureau of Statistics, 1996 (and additional analysis).|Converted estimate|6438,939
TURKEY|Asia|Western Asia|Upper Middle Income|1998|2867|0,8|3,0|18,8|7,0|3,8|Turkish demographic and health survey 1998. Demographic and Health Surveys. Hacettepe University, Institute of Population Studies. Ankara, Turkey, 1999 (and additional analysis).||6565,826999999999
TURKEY|Asia|Western Asia|Upper Middle Income|2003-04|3772|0,4|1,1|15,2|3,5|8,8|Demographic and health survey, 2003. Ankara, Turkey: Hacettepe University Institute of Population Studies, MoH General Directorate of Mother and Child Health and Family Planning, State Planning Organization and the EU, 2004 (and additional analysis)||6580,174
TURKEY|Asia|Western Asia|Upper Middle Income|2008|2694|0,3|1,0|12,5|1,9|9,7|Turkey Demographic and Health Survey 2008. Ankara, Turkey: Institute of Population Studies, Hacettepe University (and additional analysis)||6382,8240000000005
TURKEY|Asia|Western Asia|Upper Middle Income|2013-14|2651|0,5|1,9|9,9|2,3|11,1|2013 Turkey demographic and health survey. Ankara, Turkey: Hacettepe University Institute of Population Studies, T.R. Ministry of Development and TÜBYTAK, 2014 (and additional analysis)||6635,619000000001
TURKMENISTAN|Asia|Central Asia|Upper Middle Income|2000|2928||7,1|28,1|10,5||Turkmenistan demographic and health survey 2000. Demographic and Health Surveys. Calverton, Maryland, USA: GECRCMCH and ORC Macro, 2001(and additional analysis).|Converted estimates|489,648
TURKMENISTAN|Asia|Central Asia|Upper Middle Income|2006|2040|2,1|7,2|18,9|9,2|4,5|Turkmenistan multiple indicator cluster survey 2006, Final Report. Ashgabat, Turkmenistan: Turkmenmillihasabat, 2006 (and additional analysis).||522,4630000000001
TURKMENISTAN|Asia|Central Asia|Upper Middle Income|2015-16|3718|1,1|4,2|11,5|3,2|5,9|2015-2016 Turkmenistan Multiple Indicator Cluster Survey, Final Report (and additional analysis)||678,7660000000001
TUVALU|Oceania|Polynesia|Upper Middle Income|2007|430|0,9|3,3|10,0|1,6|6,3|Tuvalu demographic and health survey. DHS. Noumea, New Caledonia: TCSD, SPC and Macro International Inc, 2007 (accessed 22/12/09 http://www.spc.int/sdp/index.php?option=com_docman&task=cat_view&gid=53&Itemid=42).||1,0
UGANDA|Africa|Eastern Africa|Low Income|1988-89|3819|0,9|3,1|47,7|19,7|3,6|Uganda demographic and health survey 1988/89. Demographic and Health Surveys. Ministry of Health. Entebbe, Uganda, 1989 (and additional analysis).||3203,494
UGANDA|Africa|Eastern Africa|Low Income|1995|5012|2,0|5,9|45,7|20,8|5,0|Uganda demographic and health survey 1995. Demographic and Health Surveys. Calverton, Maryland: Statistics Department and Macro International Inc., 1996 (and additional analysis).|Age-adjusted;|4142,0470000000005
UGANDA|Africa|Eastern Africa|Low Income|2000-01|6315|1,5|5,0|44,9|19,2|4,9|Uganda demographic and health survey 2000-2001. Demographic and Health Surveys. Calverton, Maryland, USA: UBOS and ORC Macro, 2001 (and additional analysis).| (41 out of 45 districts)|4842,238
UGANDA|Africa|Eastern Africa|Low Income|2006|2742|2,2|6,2|38,3|16,3|4,9|Uganda demographic and health survey 2006. Demographic and Health Surveys. Calverton, Maryland, USA: UBOS and Macro International Inc., 2007 (and additional analysis).||5935,783
UGANDA|Africa|Eastern Africa|Low Income|2011|2395|1,5|4,6|33,4|14,1|3,8|Uganda demographic and health survey 2011. Demographic and Health Surveys. Kampala, Uganda: UBOS and Calverton, Maryland: ICF International Inc., 2012 (and additional analysis).||6810,5830000000005
UGANDA|Africa|Eastern Africa|Low Income|2011-12|2966543|0,9|4,7|33,7|12,4|5,8|Uganda National Panel Survey (UNPS) - Wave III. Kampala, Uganda: UBOS, 2013 (and additional analysis).||6985,4
UGANDA|Africa|Eastern Africa|Low Income|2016|5136|1,3|3,5|28,9|10,4|3,7|Uganda Demographic and Health Survey 2016. Kampala, Uganda and Rockville, Maryland, USA: UBOS and ICF. 2018 (and additional analysis)||7698,908
UKRAINE|Europe|Eastern Europe|Lower Middle Income|2000|4247|3,8|8,2|22,9|4,1|26,5|2000 Multiple indicator cluster survey (full report). MICS. (and additional analysis).||2160,554
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|1991-92|6400|2,8|7,8|49,9|24,8|5,8|Tanzania demographic and health survey 1991/92. Demographic and Health Surveys. Dar es Salaam, United Republic of Tanzania, 1992 (and additional analysis).||4806,784000000001
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|1996|5561|3,0|8,5|49,6|26,8|4,6|Tanzania demographic and health survey 1996. Demographic and Health Surveys. Calverton, Maryland: Bureau of Statistics and Macro International Inc., 1997 (and additional analysis).||5507,29
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|1999|2648|2,0|5,6|48,3|25,3|3,3|Tanzania reproductive and child health survey 1999. Demographic and Health Surveys. Calverton, Maryland: National Bureau of Statistics [Tanzania] and Macro International Inc., 2000 (and additional analysis).||5829,325
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2004-05|8168|1,0|3,6|44,4|16,7|4,9|Tanzania demographic and health survey 2004-05. Demographic and Health Surveys. Dar es Salaam, Tanzania: National Bureau of Statistics and ORC Macro, 2005 (and additional analysis).||6855,840999999999
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2008-09|5211951|0,8|2,9|43,1|16,4|4,6|Tanzania National Panel Survey Report (NPS) Round 1, 2008 - 2009. Dar es Salaam, Tanzania: NBS, 2009 (and additional analysis)||8005,096
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2009-10|7676|1,3|4,9|42,1|16,1|5,4|Tanzania demographic and health survey 2010. Demographic and Health Surveys. Dar es Salaam, Tanzania: NBS and ICF Macro, 2011 (and additional analysis).||8225,569
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2010-11|6497375|1,7|6,3|34,9|14,1|5,2|Tanzania National Panel Survey Report (NPS) - Wave 2, 2010 - 2011. Dar es Salaam, Tanzania: NBS, 2012 (and additional analysis)||8455,923
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2012-13|6352019|1,5|4,5|37,1|13,1|5,0|Tanzania National Panel Survey Report (NPS) - Wave 3, 2012 - 2013. Dar es Salaam, Tanzania: NBS, 2014 (and additional analysis).||8943,136
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2014|16867|0,9|3,8|34,7|13,4||Tanzania national nutrition survey 2014: Final report. United Republic of Tanzania, December 2014.|(pending reanalysis)|9186,715
UNITED REPUBLIC OF TANZANIA (THE)|Africa|Eastern Africa|Low Income|2015-16|9886|1,2|4,5|34,5|13,7|3,7|Tanzania demographic and health survey 2015-16. Demographic and Health Surveys. Dar es Salaam, Tanzania: NBS and ICF International, 2016 (and additional analysis)||9419,084
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|1988-94|6662|0,1|0,7|3,2|0,9|5,4|Plan and operation of the third national health and nutrition examination survey, 1988-94 (NHANES III). Vital Health Statistics 1994;32:1-2 (and additional analysis).|(2-60 months)|19555,672
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|1999-02|2666|0,0|0,4|3,3|1,1|7,0|Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002. JAMA 2004;291:2847-50 (and additional analysis).||19382,292
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|2003-06|3092|0,1|0,8|3,2|1,1|8,1|National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, CDC, [2003-06 combined][wwwn.cdc.gov/nchs/nhanes/search/nhanes03_04.aspx and wwwn.cdc.gov/nchs/nhanes/search/nhanes05_06.aspx].||20273,45
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|2007-10|2898|0,0|0,5|2,7|0,8|7,8|National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, CDC, [2007-10 combined][wwwn.cdc.gov/nchs/nhanes/search/nhanes07_08.aspx and wwwn.cdc.gov/nchs/nhanes/search/nhanes09_10.aspx].||20913,782
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|2011-12|600|0,0|0,5|2,1|0,5|6,0|National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, CDC, [2011-12] [wwwn.cdc.gov/nchs/nhanes/search/nhanes11_12.aspx].||20508,408
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|2013-14|||0,3|2,4||8,2|National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, CDC, [2013-14] ||19969,078999999998
UNITED STATES OF AMERICA (THE)|Northern America|Northern America|High Income|2015-16|||0,4|3,5||9,4|National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, CDC, [2015-16]||19606,548
URUGUAY|Latin America and the Caribbean|South America|High Income|1987|3471|||21,0|6,5||Uruguay: Situacion alimentario-nutricional, algunos factores condicionantes 1970-87. Document prepared for the ACC/SCN. Montevideo, Uruguay, 1987 (and additional analysis).|Converted estimates|258,579
URUGUAY|Latin America and the Caribbean|South America|High Income|1999|11413|0,8|2,3|12,8|4,7|9,0|Trends in early growth indices (stunting and overweight) in the first 24 months of life in Uruguay over the past decade. Public Health Nutrition 2013 (in press). Encuesta nacional sobre estado nutricional, prácticas de alimentación y anemia. Montevideo, Uruguay: MSP, MIDES, RUANDI, UNICEF, 2011 (and additional analysis).|Age-adjusted;|274,48400000000004
URUGUAY|Latin America and the Caribbean|South America|High Income|2002|7091|0,5|2,4|14,7|5,4|10,0|Sistema de vigilancia del estado nutricional (SISVEN), 2002. Programa Nacional de Nutrición. Montevideo, Uruguay, 2007.| National monitoring system|262,51099999999997
URUGUAY|Latin America and the Caribbean|South America|High Income|2003|2787|0,9|2,8|15,8|5,1|11,5|Trends in early growth indices (stunting and overweight) in the first 24 months of life in Uruguay over the past decade. Public Health Nutrition 2013 (in press). Encuesta nacional sobre estado nutricional, prácticas de alimentación y anemia. Montevideo, Uruguay: MSP, MIDES, RUANDI, UNICEF, 2011 (and additional analysis).|Age-adjusted;|259,86400000000003
URUGUAY|Latin America and the Caribbean|South America|High Income|2004|7012|0,7|3,0|13,9|6,0|9,4|Sistema de vigilancia del estado nutricional (SISVEN), 2004. Programa Nacional de Nutrición. Montevideo, Uruguay, 2007.|National monitoring system|257,60900000000004
URUGUAY|Latin America and the Caribbean|South America|High Income|2007|3004|1,0|2,5|10,8|4,2|7,9|Trends in early growth indices (stunting and overweight) in the first 24 months of life in Uruguay over the past decade. Public Health Nutrition 2013 (in press) (and additional analysis)|Age-adjusted;|251,8
URUGUAY|Latin America and the Caribbean|South America|High Income|2011|2979|0,0|1,3|10,7|4,0|7,2|Trends in early growth indices (stunting and overweight) in the first 24 months of life in Uruguay over the past decade. Public Health Nutrition 2013 (in press) (and additional analysis)|Age-adjusted;|246,171
UZBEKISTAN|Asia|Central Asia|Lower Middle Income|1996|1148|6,1|10,7|39,5|13,3|15,9|Uzbekistan demographic and health survey 1996. Demographic and Health Surveys. Calverton, Maryland: Institute of Obstetrics and Gynecology and Macro International Inc., 1997 (and additional analysis).|Age-adjusted;|3237,5490000000004
UZBEKISTAN|Asia|Central Asia|Lower Middle Income|2002|2524|3,9|9,0|24,9|7,4|10,9|Uzbekistan health examination survey 2002. Demographic and Health Surveys. Calverton, Maryland, USA: Analytical and Information Center, State Department of Statistics, and ORC Macro, 2004 (and additional analysis)||2650,155
UZBEKISTAN|Asia|Central Asia|Lower Middle Income|2006|4883|1,6|4,4|19,6|4,4|12,2|Uzbekistan multiple indicator cluster survey 2006, Final report. Tashkent, Uzbekistan: UNICEF, 2007 (and additional analysis).||2606,1679999999997
VANUATU|Oceania|Melanesia|Lower Middle Income|1996|1297||6,8|25,7|10,6||Report of the second national nutrition survey 1996. Government of the Republic of Vanuatu, Department of Health and AusAID, 1998 (and additional analysis).|Converted estimates|26,796999999999997
VANUATU|Oceania|Melanesia|Lower Middle Income|2007|1342|1,9|5,9|25,7|11,5|4,7|Vanuatu multiple indicator cluster survey 2007 (MICS). Final Report. Port Vila, Vanuatu: Ministry of Health, Government of Vanuatu, 2008 (and additional analysis).||30,912
VANUATU|Oceania|Melanesia|Lower Middle Income|2013|1241|1,1|4,4|28,5|10,7|4,6|Vanuatu demographic and health survey 2013. Port Vila, Vanuatu, 2014.|(pending reanalysis)|35,244
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1987|18023||2,2|7,0|3,9|9,0|Proyecto Venezuela 1987. Caracas: Centro de estudios sobre crecimiento y desarrollo de la poblacion venezolana, 1995 (and additional analysis).|Converted estimates|2605,928
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1990|180709||5,7|18,6|6,7|4,0|Resultados de la evalucion antropométrica del componente menores de 5 anos del Sistema de Vigilancia Alimentaria y Nutricional (SISVAN): Venezuela 1990-1993. Caracas: Instituto Nacional de Nutricion, 1996 (and additional analysis).|Converted estimates|2764,28
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1991|261095||4,5|18,2|5,4|4,3|Resultados de la evalucion antropométrica del componente menores de 5 anos del Sistema de Vigilancia Alimentaria y Nutricional (SISVAN): Venezuela 1990-1993. Caracas: Instituto Nacional de Nutricion, 1996 (and additional analysis).|Converted estimates|2807,3779999999997
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1992|257491||4,3|18,3|4,5|4,9|Resultados de la evalucion antropométrica del componente menores de 5 anos del Sistema de Vigilancia Alimentaria y Nutricional (SISVAN): Venezuela 1990-1993. Caracas: Instituto Nacional de Nutricion, 1996 (and additional analysis).|Converted estimates|2822,53
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1993|256344||4,0|17,4|4,0|4,9|Resultados de la evalucion antropométrica del componente menores de 5 anos del Sistema de Vigilancia Alimentaria y Nutricional (SISVAN): Venezuela 1990-1993. Caracas: Instituto Nacional de Nutricion, 1996 (and additional analysis).|Converted estimates|2817,672
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1994|235552||3,8|17,9|3,9|5,0|Clasificacion antropometrica nutricional, Venezuela 1994. INN-SISVAN componente menores de 5 anos. Caracas: Instituto Nacional de Nutricion, 1996 (and additional analysis).|Converted estimates|2807,8340000000003
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1995|341155||3,8|18,9|4,1|4,7|Evaluacion antropometrica nutricional de los menores de cinco anos, para comparacion internacional: Venezuela 1995-1997. Caracas: Instituto Nacional de Nutricion, 1998 (and additional analysis).|Converted estimates|2803,4840000000004
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1996|344701||3,8|19,3|4,4|4,7|Evaluacion antropometrica nutricional de los menores de cinco anos, para comparacion internacional: Venezuela 1995-1997. Caracas: Instituto Nacional de Nutricion, 1998 (and additional analysis).|Converted estimates|2786,423
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1997|291749||3,8|19,9|4,5|5,0|Evaluacion antropometrica nutricional de los menores de cinco anos, para comparacion internacional: Venezuela 1995-1997. Caracas: Instituto Nacional de Nutricion, 1998 (and additional analysis).|Converted estimates|2785,99
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1998|299531||4,4|19,2|4,6|4,9|Evaluacion antropometrica nutricional de los menores de cinco años, para comparacion internacional. Venezuela 1990-1998. Caracas: Instituto Nacional de Nutricion, 1999 (and additional analysis).|Converted estimates|2797,808
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|1999|377496||4,0|18,3|4,1|5,2|Evaluacion antropometrica nutricional de los menores de cinco anos, para comparacion internacional. Venezuela 1990-1999. Caracas: Instituto Nacional de Nutricion, 2000 (and additional analysis).|Converted estimates|2812,4629999999997
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2000|321257||3,9|17,4|3,9|5,3|Evaluacion antropometrica nutricional de los menores de cinco años, para comparacion internacional. Venezuela 2000. Caracas: Instituto Nacional de Nutrition, 2001(and additional analysis).|Converted estimates|2823,4120000000003
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2001|||4,4|17,3|4,0|5,4|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2840,423
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2002|||4,8|17,6|4,2|5,4|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2854,1440000000002
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2003|||5,2|17,7|4,6|5,3|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2864,68
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2004|||5,2|17,1|4,5|5,2|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2874,7529999999997
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2005|||4,8|16,2|4,1|5,5|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2886,49
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2006|||4,8|16,2|3,9|6,1|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2906,309
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2007|242775||5,0|15,6|3,7|6,1|Sistema de vigilancia alimentaria y nutricional Venezuela 2007. Caracas, Venezuela: Instituto Nacional de Nutrición, 2009 (y análisis adicional).|Converted estimates|2921,0209999999997
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2008|||4,5|14,6|3,2|6,3|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2932,204
VENEZUELA (BOLIVARIAN REPUBLIC OF)|Latin America and the Caribbean|South America|Upper Middle Income|2009|||4,1|13,4|2,9|6,4|Ficha técnica: Evaluación antropométrica nutricional en menores de 5 años según criterios internacionales. Caracas, Venezuela: Gobierno Bolivariano de Venezuela, Ministerio del Poder Popular para la Salud, INN, 2012 (and additional analysis).|Converted estimates|2941,185
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|1987-89|7044||11,1|61,3|40,7||Report on re-analyzed data collected by the General Nutrition Survey 1987-89. Department of Planning. Hanoi, Viet Nam, 1991 (and additional analysis).|Converted estimates|9040,48
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|1992-93|2833|1,3|6,7|61,4|36,9|2,8|Viet Nam living standards survey 1992-93 (VNLSS). Washington, D.C.: The World Bank, 1998 (and additional analysis).||9409,280999999999
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|1994|37764||13,5|52,5|40,6||Viet Nam: Xerophthalmia free; 1994 national Vitamin A deficiency and protein-energy malnutrition prevalence survey. Consultancy report 5-17 March 1995. National Institute of Nutrition. Hanoi, Viet Nam, 1995 (and additional analysis).|Converted estimates|9363,981
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|1998|12919||11,9|42,1|35,8|1,4|National protein energy malnutrition survey, Viet Nam 1998. National Institute of Nutrition, Hanoi, Viet Nam and Centre for Clinical Epidemiology & Biostatistics, Newcastle, Australia, 1999 (and additional analysis).|Converted estimates|8106,876
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|1999|1540|2,8|11,0|43,7|31,1|1,8|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|7619,840999999999
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2000|3041|1,0|6,1|43,2|26,7|2,6|Multiple indicator cluster survey Viet Nam, 2000. New York: UNICEF, 2004. Standard tables (and additional analysis).||7244,526999999999
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2002|1529|2,4|8,9|37,5|23,4|2,6|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|6553,569
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2003|1457|2,8|10,9|35,4|24,6|2,2|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|6587,677
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2004|1500|2,8|11,3|33,7|23,8|2,7|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|6691,533
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2005|1493|2,8|10,7|33,2|22,7|2,6|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|6760,019
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2006|1531|2,5|9,9|31,8|22,1|3,1|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|6988,751
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2007|1507|2,4|10,1|32,2|22,6|2,9|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|7108,596
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2008|1484|2,5|9,7|30,5|20,2|3,0|Annual national nutrition monitoring. Nutrition Surveillance Department. Hanoi, Vietnam: National Institute of Nutrition, 2009 (and additional analysis).|Surveillance data - weighted|7149,052
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2009-10|94256|3,8|7,1|29,3|17,5||General nutrition survey 2009-2010. Hanoi, Viet Nam: Medical Publishing House, 2010.||7277,420999999999
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2010-11|3607|1,5|4,4|22,7|12,0|4,4|Viet Nam multiple indicator cluster survey 2011 (MICS), final report. Ha Noi, Viet Nam, 2011 (and additional analysis).||7418,376
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2013|99421|1,6|6,6|25,9|15,3|4,6|Nutrition surveillance profiles 2013. Hanoi, Viet Nam, 2014.|Surveillance data (updated report 13/5/2014)|7629,968000000001
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2014|98424|4,8|6,8|24,9|14,5|3,5|Nutrition surveillance profiles 2014. Hanoi, Viet Nam, 2016.|Surveillance data (updated report 11/1/2014)|7705,15
VIET NAM|Asia|South-Eastern Asia|Lower Middle Income|2015|98447|1,4|6,4|24,6|14,1|5,3|Nutrition surveillance profiles 2015. Hanoi, Viet Nam, 2017.||7752,861
YEMEN|Asia|Western Asia|Low Income|1991-92|3885|5,5|14,3|52,4|29,6|8,1|Yemen maternal and child health survey (YDMCHS). PAPCHILD Surveys. Sana, Republic of Yemen, 1992 (and additional analysis).||2715,5240000000003
YEMEN|Asia|Western Asia|Low Income|1996|3833||17,4|50,4|34,2|6,9|Yemen multiple indicator cluster survey (March 1996): Final results. Ministry of Planning and Development. Sanaa, Republic of Yemen, 1996 (and additional analysis).|Converted estimates|3152,9590000000003
YEMEN|Asia|Western Asia|Low Income|1997|8222|6,8|16,5|55,2|43,0|3,7|Yemen demographic and maternal and child health survey 1997. Demographic and Health Surveys. Central Statistical Organization. Sana'a, Yemen, 1998 (and additional analysis).||3174,3059999999996
YEMEN|Asia|Western Asia|Low Income|2003|12364|6,3|15,2|57,7|43,1|5,0|The Yemen family health survey: Principal report. Pan Arab Project for Family Health. Cairo, Egypt: The Republic of Yemen Ministry of Health & Population, Central Statistical Organization an League of Arab States, 2004 (and additional analysis).||3227,6040000000003
YEMEN|Asia|Western Asia|Low Income|2011|3769453|3,4|13,3|46,6|35,5|1,5|The state of food security and nutrition in Yemen. Comprehensive food security survey 2011. Sana'a, Republic of Yemen, 2013 (and additional analysis).||3751,3759999999997
YEMEN|Asia|Western Asia|Low Income|2013|14624|5,4|16,4|46,4|39,9|2,5|Yemen National Health and Demographic Survey 2013. Rockville, Maryland, USA: MOPHP, CSO, PAPFAM, and ICF International, 2014 (and additional analysis)||3895,949
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|1992|5057|2,2|6,3|46,3|21,2|4,7|Zambia demographic and health survey 1992. Demographic and Health Surveys. Central Statistical Office. Lusaka, Zambia, 1993 (and additional analysis).||1557,0720000000001
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|1995||||58,1|||Zambia's children in 1995: Key results of a survey to monitor progress towards goals for children (MICS2). Lusaka, Zambia: Government of the Republic of the Zambia, 1997 (and additional analysis).|Converted estimate|1670,747
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|1996-97|5612|1,7|5,4|48,6|19,6|6,2|Zambia demographic and health survey 1996. Demographic and Health Surveys. Calverton, Maryland: Central Statistical Office and Macro International Inc., 1997 (and additional analysis).||1722,2179999999998
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|1999|1105300|1,8|5,0|59,2|19,6|14,0|Zambia 1999 multiple indicator cluster survey report: Report on the monitoring of the end of decade goals. Lusaka, Zambia, 2000 (and additional analysis).||1888,128
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|2001-02|6023|2,3|6,2|52,5|23,2|5,9|Zambia demographic and health survey 2001-2002. Demographic and Health Surveys. Calverton, Maryland, USA: Central Statistical Office, Central Board of Health, and ORC Macro, 2003 (and additional analysis).||2079,324
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|2007|5933|2,3|5,6|45,8|14,9|8,4|Zambia demographic and health survey 2007. Demographic and Health Surveys. Calverton, Maryland, USA: CSO and Macro International Inc., 2009 (and additional analysis).||2342,367
ZAMBIA|Africa|Eastern Africa|Lower Middle Income|2013-14|12877|2,5|6,2|40,0|14,9|6,2|Zambia demographic and health Survey 2013-14. Demographic and Health Surveys. Rockville, Maryland, USA: Central Statistical Office, Ministry of Health, and ICF International, 2014 (and additional analysis)||2626,277
ZIMBABWE|Africa|Eastern Africa|Low Income|1987|419964||||10,5||Report of the nutrition component of the national health information system. Harare, Zimbabwe, 1987 (and additional analysis).|Converted estimate|1702,055
ZIMBABWE|Africa|Eastern Africa|Low Income|1988|2470|0,4|1,7|31,0|8,0|5,4|Zimbabwe demographic and health survey, 1988. Demographic and Health Surveys. Harare, Zimbabwe, 1989 (and additional analysis).||1718,519
ZIMBABWE|Africa|Eastern Africa|Low Income|1994|2070|1,7|5,3|28,5|11,8|6,4|Zimbabwe demographic and health survey 1994. Demographic and Health Surveys. Calverton, Maryland: Central Statistical Office and Macro International Inc., 1995 (and additional analysis).|Age-adjusted;|1776,085
ZIMBABWE|Africa|Eastern Africa|Low Income|1999|3181|4,1|8,3|33,8|11,5|10,5|Zimbabwe demographic and health survey 1999. Demographic and Health Surveys. Calverton, Maryland: Central Statistical Office and Macro International Inc., 2000 (and additional analysis).||1817,125
ZIMBABWE|Africa|Eastern Africa|Low Income|2005-06|5273|2,9|7,3|35,3|14,0|8,8|Zimbabwe demographic and health survey 2005-06. Demographic and Health Surveys. Calverton, Maryland: CSO and Macro International Inc., 2007 (and additional analysis).||1950,476
ZIMBABWE|Africa|Eastern Africa|Low Income|2009|6196|1,9|3,8|35,1|12,6|3,5|Zimbabwe multiple indicator monitoring survey (MIMS), 2009. Report August 2010. Harare, Zimbabwe: ZIMSTAT, 2010 (and additional analysis).||2160,621
ZIMBABWE|Africa|Eastern Africa|Low Income|2010-11|5414|0,8|3,2|32,2|10,2|5,8|Zimbabwe demographic and health survey 2010-11. Demographic and Health Surveys. Calverton, Maryland: ZIMSTAT and ICF International Inc., 2012 (and additional analysis).||2225,702
ZIMBABWE|Africa|Eastern Africa|Low Income|2014|9591|0,9|3,4|27,6|11,3|3,6|Zimbabwe Multiple Indicator Cluster Survey 2014, Final Report. Harare, Zimbabwe (and additional analysis)||2466,295
ZIMBABWE|Africa|Eastern Africa|Low Income|2015|6380|1,1|3,3|27,1|8,5|5,6|Zimbabwe Demographic and Health Survey 2015, November 2016 (and additional analysis)||2505,484