I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) Microsoft Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,21 @@
# Privacy
## Data Collection
The software may collect information about you and your use of the software and send it to Microsoft. Microsoft may use this information to provide services and improve our products and services. You may turn off the telemetry as described in the repository. There are also some features in the software that may enable you and Microsoft to collect data from users of your applications. If you use these features, you must comply with applicable law, including providing appropriate notices to users of your applications together with a copy of Microsoft's privacy statement. Our privacy statement is located at https://go.microsoft.com/fwlink/?LinkID=824704. You can learn more about data collection and use in the help documentation and our privacy statement. Your use of the software operates as your consent to these practices.
***
### Private Builds
No data collection is performed when using your private builds built from source code.
### Official Builds
ONNX Runtime does not maintain any independent telemetry collection mechanisms outside of what is provided by the platforms it supports. However, where applicable, ONNX Runtime will take advantage of platform-supported telemetry systems to collect trace events with the goal of improving product quality.
Currently telemetry is only implemented for Windows builds and is turned **ON** by default in the official builds distributed in their respective package management repositories ([see here](../README.md#binaries)). This may be expanded to cover other platforms in the future. Data collection is implemented via 'Platform Telemetry' per vendor platform providers (see [telemetry.h](../onnxruntime/core/platform/telemetry.h)).
#### Technical Details
The Windows provider uses the [TraceLogging](https://docs.microsoft.com/en-us/windows/win32/tracelogging/trace-logging-about) API for its implementation. This enables ONNX Runtime trace events to be collected by the operating system, and based on user consent, this data may be periodically sent to Microsoft servers following GDPR and privacy regulations for anonymity and data access controls.
Windows ML and onnxruntime C APIs allow Trace Logging to be turned on/off (see [API pages](../README.md#api-documentation) for details).
For information on how to enable and disable telemetry, see [C API: Telemetry](./C_API.md#telemetry).
There are equivalent APIs in the C#, Python, and Java language bindings as well.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,76 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
ONNX Runtime is a performance-focused scoring engine for Open Neural Network Exchange (ONNX) models.
For more information on ONNX Runtime, please see `aka.ms/onnxruntime <https://aka.ms/onnxruntime/>`_
or the `Github project <https://github.com/microsoft/onnxruntime/>`_.
"""
__version__ = "1.19.2"
__author__ = "Microsoft"
# we need to do device version validation (for example to check Cuda version for an onnxruntime-training package).
# in order to know whether the onnxruntime package is for training it needs
# to do import onnxruntime.training.ortmodule first.
# onnxruntime.capi._pybind_state is required before import onnxruntime.training.ortmodule.
# however, import onnxruntime.capi._pybind_state will already raise an exception if a required Cuda version
# is not found.
# here we need to save the exception and continue with Cuda version validation in order to post
# meaningful messages to the user.
# the saved exception is raised after device version validation.
try:
from onnxruntime.capi._pybind_state import ExecutionMode # noqa: F401
from onnxruntime.capi._pybind_state import ExecutionOrder # noqa: F401
from onnxruntime.capi._pybind_state import GraphOptimizationLevel # noqa: F401
from onnxruntime.capi._pybind_state import ModelMetadata # noqa: F401
from onnxruntime.capi._pybind_state import NodeArg # noqa: F401
from onnxruntime.capi._pybind_state import OrtAllocatorType # noqa: F401
from onnxruntime.capi._pybind_state import OrtArenaCfg # noqa: F401
from onnxruntime.capi._pybind_state import OrtMemoryInfo # noqa: F401
from onnxruntime.capi._pybind_state import OrtMemType # noqa: F401
from onnxruntime.capi._pybind_state import OrtSparseFormat # noqa: F401
from onnxruntime.capi._pybind_state import RunOptions # noqa: F401
from onnxruntime.capi._pybind_state import SessionIOBinding # noqa: F401
from onnxruntime.capi._pybind_state import SessionOptions # noqa: F401
from onnxruntime.capi._pybind_state import create_and_register_allocator # noqa: F401
from onnxruntime.capi._pybind_state import create_and_register_allocator_v2 # noqa: F401
from onnxruntime.capi._pybind_state import disable_telemetry_events # noqa: F401
from onnxruntime.capi._pybind_state import enable_telemetry_events # noqa: F401
from onnxruntime.capi._pybind_state import get_all_providers # noqa: F401
from onnxruntime.capi._pybind_state import get_available_providers # noqa: F401
from onnxruntime.capi._pybind_state import get_build_info # noqa: F401
from onnxruntime.capi._pybind_state import get_device # noqa: F401
from onnxruntime.capi._pybind_state import get_version_string # noqa: F401
from onnxruntime.capi._pybind_state import has_collective_ops # noqa: F401
from onnxruntime.capi._pybind_state import set_default_logger_severity # noqa: F401
from onnxruntime.capi._pybind_state import set_default_logger_verbosity # noqa: F401
from onnxruntime.capi._pybind_state import set_seed # noqa: F401
import_capi_exception = None
except Exception as e:
import_capi_exception = e
from onnxruntime.capi import onnxruntime_validation
if import_capi_exception:
raise import_capi_exception
from onnxruntime.capi.onnxruntime_inference_collection import InferenceSession # noqa: F401
from onnxruntime.capi.onnxruntime_inference_collection import IOBinding # noqa: F401
from onnxruntime.capi.onnxruntime_inference_collection import OrtDevice # noqa: F401
from onnxruntime.capi.onnxruntime_inference_collection import OrtValue # noqa: F401
from onnxruntime.capi.onnxruntime_inference_collection import SparseTensor # noqa: F401
# TODO: thiagofc: Temporary experimental namespace for new PyTorch front-end
try: # noqa: SIM105
from . import experimental # noqa: F401
except ImportError:
pass
from onnxruntime.capi.onnxruntime_validation import cuda_version, package_name, version # noqa: F401
if version:
__version__ = version
onnxruntime_validation.check_distro_info()

View File

@ -0,0 +1,6 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from .backend import is_compatible, prepare, run, supports_device # noqa: F401

View File

@ -0,0 +1,174 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
Implements ONNX's backend API.
"""
import os
import unittest
import packaging.version
from onnx import ModelProto, helper, version # noqa: F401
from onnx.backend.base import Backend
from onnx.checker import check_model
from onnxruntime import InferenceSession, SessionOptions, get_available_providers, get_device
from onnxruntime.backend.backend_rep import OnnxRuntimeBackendRep
class OnnxRuntimeBackend(Backend):
"""
Implements
`ONNX's backend API <https://github.com/onnx/onnx/blob/main/docs/ImplementingAnOnnxBackend.md>`_
with *ONNX Runtime*.
The backend is mostly used when you need to switch between
multiple runtimes with the same API.
`Importing models from ONNX to Caffe2 <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxCaffe2Import.ipynb>`_
shows how to use *caffe2* as a backend for a converted model.
Note: This is not the official Python API.
"""
allowReleasedOpsetsOnly = bool(os.getenv("ALLOW_RELEASED_ONNX_OPSET_ONLY", "1") == "1") # noqa: N815
@classmethod
def is_compatible(cls, model, device=None, **kwargs):
"""
Return whether the model is compatible with the backend.
:param model: unused
:param device: None to use the default device or a string (ex: `'CPU'`)
:return: boolean
"""
if device is None:
device = get_device()
return cls.supports_device(device)
@classmethod
def is_opset_supported(cls, model):
"""
Return whether the opset for the model is supported by the backend.
When By default only released onnx opsets are allowed by the backend
To test new opsets env variable ALLOW_RELEASED_ONNX_OPSET_ONLY should be set to 0
:param model: Model whose opsets needed to be verified.
:return: boolean and error message if opset is not supported.
"""
if cls.allowReleasedOpsetsOnly:
for opset in model.opset_import:
domain = opset.domain if opset.domain else "ai.onnx"
try:
key = (domain, opset.version)
if key not in helper.OP_SET_ID_VERSION_MAP:
error_message = (
"Skipping this test as only released onnx opsets are supported."
"To run this test set env variable ALLOW_RELEASED_ONNX_OPSET_ONLY to 0."
f" Got Domain '{domain}' version '{opset.version}'."
)
return False, error_message
except AttributeError:
# for some CI pipelines accessing helper.OP_SET_ID_VERSION_MAP
# is generating attribute error. TODO investigate the pipelines to
# fix this error. Falling back to a simple version check when this error is encountered
if (domain == "ai.onnx" and opset.version > 12) or (domain == "ai.ommx.ml" and opset.version > 2):
error_message = (
"Skipping this test as only released onnx opsets are supported."
"To run this test set env variable ALLOW_RELEASED_ONNX_OPSET_ONLY to 0."
f" Got Domain '{domain}' version '{opset.version}'."
)
return False, error_message
return True, ""
@classmethod
def supports_device(cls, device):
"""
Check whether the backend is compiled with particular device support.
In particular it's used in the testing suite.
"""
if device == "CUDA":
device = "GPU"
return device in get_device()
@classmethod
def prepare(cls, model, device=None, **kwargs):
"""
Load the model and creates a :class:`onnxruntime.InferenceSession`
ready to be used as a backend.
:param model: ModelProto (returned by `onnx.load`),
string for a filename or bytes for a serialized model
:param device: requested device for the computation,
None means the default one which depends on
the compilation settings
:param kwargs: see :class:`onnxruntime.SessionOptions`
:return: :class:`onnxruntime.InferenceSession`
"""
if isinstance(model, OnnxRuntimeBackendRep):
return model
elif isinstance(model, InferenceSession):
return OnnxRuntimeBackendRep(model)
elif isinstance(model, (str, bytes)):
options = SessionOptions()
for k, v in kwargs.items():
if hasattr(options, k):
setattr(options, k, v)
excluded_providers = os.getenv("ORT_ONNX_BACKEND_EXCLUDE_PROVIDERS", default="").split(",")
providers = [x for x in get_available_providers() if (x not in excluded_providers)]
inf = InferenceSession(model, sess_options=options, providers=providers)
# backend API is primarily used for ONNX test/validation. As such, we should disable session.run() fallback
# which may hide test failures.
inf.disable_fallback()
if device is not None and not cls.supports_device(device):
raise RuntimeError(f"Incompatible device expected '{device}', got '{get_device()}'")
return cls.prepare(inf, device, **kwargs)
else:
# type: ModelProto
# check_model serializes the model anyways, so serialize the model once here
# and reuse it below in the cls.prepare call to avoid an additional serialization
# only works with onnx >= 1.10.0 hence the version check
onnx_version = packaging.version.parse(version.version) or packaging.version.Version("0")
onnx_supports_serialized_model_check = onnx_version.release >= (1, 10, 0)
bin_or_model = model.SerializeToString() if onnx_supports_serialized_model_check else model
check_model(bin_or_model)
opset_supported, error_message = cls.is_opset_supported(model)
if not opset_supported:
raise unittest.SkipTest(error_message)
# Now bin might be serialized, if it's not we need to serialize it otherwise we'll have
# an infinite recursive call
bin = bin_or_model
if not isinstance(bin, (str, bytes)):
bin = bin.SerializeToString()
return cls.prepare(bin, device, **kwargs)
@classmethod
def run_model(cls, model, inputs, device=None, **kwargs):
"""
Compute the prediction.
:param model: :class:`onnxruntime.InferenceSession` returned
by function *prepare*
:param inputs: inputs
:param device: requested device for the computation,
None means the default one which depends on
the compilation settings
:param kwargs: see :class:`onnxruntime.RunOptions`
:return: predictions
"""
rep = cls.prepare(model, device, **kwargs)
return rep.run(inputs, **kwargs)
@classmethod
def run_node(cls, node, inputs, device=None, outputs_info=None, **kwargs):
"""
This method is not implemented as it is much more efficient
to run a whole model than every node independently.
"""
raise NotImplementedError("It is much more efficient to run a whole model than every node independently.")
is_compatible = OnnxRuntimeBackend.is_compatible
prepare = OnnxRuntimeBackend.prepare
run = OnnxRuntimeBackend.run_model
supports_device = OnnxRuntimeBackend.supports_device

View File

@ -0,0 +1,53 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
Implements ONNX's backend API.
"""
from typing import Any, Tuple # noqa: F401
from onnx.backend.base import BackendRep
from onnxruntime import RunOptions
class OnnxRuntimeBackendRep(BackendRep):
"""
Computes the prediction for a pipeline converted into
an :class:`onnxruntime.InferenceSession` node.
"""
def __init__(self, session):
"""
:param session: :class:`onnxruntime.InferenceSession`
"""
self._session = session
def run(self, inputs, **kwargs): # type: (Any, **Any) -> Tuple[Any, ...]
"""
Computes the prediction.
See :meth:`onnxruntime.InferenceSession.run`.
"""
options = RunOptions()
for k, v in kwargs.items():
if hasattr(options, k):
setattr(options, k, v)
if isinstance(inputs, list):
inps = {}
for i, inp in enumerate(self._session.get_inputs()):
inps[inp.name] = inputs[i]
outs = self._session.run(None, inps, options)
if isinstance(outs, list):
return outs
else:
output_names = [o.name for o in self._session.get_outputs()]
return [outs[name] for name in output_names]
else:
inp = self._session.get_inputs()
if len(inp) != 1:
raise RuntimeError(f"Model expect {len(inp)} inputs")
inps = {inp[0].name: inputs}
return self._session.run(None, inps, options)

View File

@ -0,0 +1,4 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------

View File

@ -0,0 +1,7 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
# This file can be modified by setup.py when building a manylinux2010 wheel
# When modified, it will preload some libraries needed for the python C extension

View File

@ -0,0 +1,33 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
Ensure that dependencies are available and then load the extension module.
"""
import os
import platform
import warnings
from . import _ld_preload # noqa: F401
if platform.system() == "Windows":
from . import version_info
# If on Windows, check if this import error is caused by the user not installing the 2019 VC Runtime
# The VC Redist installer usually puts the VC Runtime dlls in the System32 folder, but it may also be found
# in some other locations.
# TODO, we may want to try to load the VC Runtime dlls instead of checking if the hardcoded file path
# is valid, and raise ImportError if the load fails
if version_info.vs2019 and platform.architecture()[0] == "64bit":
system_root = os.getenv("SystemRoot") or "C:\\Windows"
if not os.path.isfile(os.path.join(system_root, "System32", "vcruntime140_1.dll")):
warnings.warn("Please install the 2019 Visual C++ runtime and then try again. "
"If you've installed the runtime in a non-standard location "
"(other than %SystemRoot%\\System32), "
"make sure it can be found by setting the correct path.")
from .onnxruntime_pybind11_state import * # noqa

Binary file not shown.

View File

@ -0,0 +1,103 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import ctypes
import sys
import warnings
def find_cudart_versions(build_env=False, build_cuda_version=None):
# ctypes.CDLL and ctypes.util.find_library load the latest installed library.
# it may not the the library that would be loaded by onnxruntime.
# for example, in an environment with Cuda 11.1 and subsequently
# conda cudatoolkit 10.2.89 installed. ctypes will find cudart 10.2. however,
# onnxruntime built with Cuda 11.1 will find and load cudart for Cuda 11.1.
# for the above reason, we need find all versions in the environment and
# only give warnings if the expected cuda version is not found.
# in onnxruntime build environment, we expected only one Cuda version.
if not sys.platform.startswith("linux"):
warnings.warn("find_cudart_versions only works on Linux")
return None
cudart_possible_versions = {None, build_cuda_version}
def get_cudart_version(find_cudart_version=None):
cudart_lib_filename = "libcudart.so"
if find_cudart_version:
cudart_lib_filename = cudart_lib_filename + "." + find_cudart_version
try:
cudart = ctypes.CDLL(cudart_lib_filename)
cudart.cudaRuntimeGetVersion.restype = int
cudart.cudaRuntimeGetVersion.argtypes = [ctypes.POINTER(ctypes.c_int)]
version = ctypes.c_int()
status = cudart.cudaRuntimeGetVersion(ctypes.byref(version))
if status != 0:
return None
except Exception:
return None
return version.value
# use set to avoid duplications
cudart_found_versions = {get_cudart_version(cudart_version) for cudart_version in cudart_possible_versions}
# convert to list and remove None
return [ver for ver in cudart_found_versions if ver]
def find_cudnn_supported_cuda_versions(build_env=False):
# comments in get_cudart_version apply here
if not sys.platform.startswith("linux"):
warnings.warn("find_cudnn_versions only works on Linux")
cudnn_possible_versions = {None}
if not build_env:
# if not in a build environment, there may be more than one installed cudnn.
# https://developer.nvidia.com/rdp/cudnn-archive to include all that may support Cuda 10+.
cudnn_possible_versions.update(
{
"8.2",
"8.1.1",
"8.1.0",
"8.0.5",
"8.0.4",
"8.0.3",
"8.0.2",
"8.0.1",
"7.6.5",
"7.6.4",
"7.6.3",
"7.6.2",
"7.6.1",
"7.6.0",
"7.5.1",
"7.5.0",
"7.4.2",
"7.4.1",
"7.3.1",
"7.3.0",
}
)
def get_cudnn_supported_cuda_version(find_cudnn_version=None):
cudnn_lib_filename = "libcudnn.so"
if find_cudnn_version:
cudnn_lib_filename = cudnn_lib_filename + "." + find_cudnn_version
# in cudnn.h cudnn version are calculated as:
# #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
try:
cudnn = ctypes.CDLL(cudnn_lib_filename)
# cudnn_ver = cudnn.cudnnGetVersion()
cuda_ver = cudnn.cudnnGetCudartVersion()
return cuda_ver
except Exception:
return None
# use set to avoid duplications
cuda_found_versions = {get_cudnn_supported_cuda_version(cudnn_version) for cudnn_version in cudnn_possible_versions}
# convert to list and remove None
return [ver for ver in cuda_found_versions if ver]

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,144 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
Check OS requirements for ONNX Runtime Python Bindings.
"""
import linecache
import platform
import warnings
def check_distro_info():
__my_distro__ = ""
__my_distro_ver__ = ""
__my_system__ = platform.system().lower()
__OS_RELEASE_FILE__ = "/etc/os-release" # noqa: N806
__LSB_RELEASE_FILE__ = "/etc/lsb-release" # noqa: N806
if __my_system__ == "windows":
__my_distro__ = __my_system__
__my_distro_ver__ = platform.release().lower()
if __my_distro_ver__ not in ["10", "11"]:
warnings.warn(
f"Unsupported Windows version ({__my_distro_ver__}). ONNX Runtime supports Windows 10 and above, only."
)
elif __my_system__ == "linux":
"""Although the 'platform' python module for getting Distro information works well on standard OS images
running on real hardware, it is not accurate when running on Azure VMs, Git Bash, Cygwin, etc.
The returned values for release and version are unpredictable for virtualized or emulated environments.
/etc/os-release and /etc/lsb_release files, on the other hand, are guaranteed to exist and have standard values
in all OSes supported by onnxruntime. The former is the current standard file to check OS info and the latter
is its predecessor.
"""
# Newer systems have /etc/os-release with relevant distro info
__my_distro__ = linecache.getline(__OS_RELEASE_FILE__, 3)[3:-1]
__my_distro_ver__ = linecache.getline(__OS_RELEASE_FILE__, 6)[12:-2]
# Older systems may have /etc/os-release instead
if not __my_distro__:
__my_distro__ = linecache.getline(__LSB_RELEASE_FILE__, 1)[11:-1]
__my_distro_ver__ = linecache.getline(__LSB_RELEASE_FILE__, 2)[16:-1]
# Instead of trying to parse distro specific files,
# warn the user ONNX Runtime may not work out of the box
__my_distro__ = __my_distro__.lower()
__my_distro_ver__ = __my_distro_ver__.lower()
elif __my_system__ == "darwin":
__my_distro__ = __my_system__
__my_distro_ver__ = platform.release().lower()
if int(__my_distro_ver__.split(".")[0]) < 11:
warnings.warn(
f"Unsupported macOS version ({__my_distro_ver__}). ONNX Runtime supports macOS 11.0 or later."
)
else:
warnings.warn(
f"Unsupported platform ({__my_system__}). ONNX Runtime supports Linux, macOS and Windows platforms, only."
)
def validate_build_package_info():
import_ortmodule_exception = None
has_ortmodule = False
try:
from onnxruntime.training.ortmodule import ORTModule # noqa: F401
has_ortmodule = True
except ImportError:
# ORTModule not present
has_ortmodule = False
except Exception as e:
# this may happen if Cuda is not installed, we want to raise it after
# for any exception other than not having ortmodule, we want to continue
# device version validation and raise the exception after.
try:
from onnxruntime.training.ortmodule._fallback import ORTModuleInitException
if isinstance(e, ORTModuleInitException):
# ORTModule is present but not ready to run yet
has_ortmodule = True
except Exception:
# ORTModule not present
has_ortmodule = False
if not has_ortmodule:
import_ortmodule_exception = e
package_name = ""
version = ""
cuda_version = ""
if has_ortmodule:
try:
# collect onnxruntime package name, version, and cuda version
from .build_and_package_info import __version__ as version
from .build_and_package_info import package_name
try: # noqa: SIM105
from .build_and_package_info import cuda_version
except Exception:
pass
if cuda_version:
# collect cuda library build info. the library info may not be available
# when the build environment has none or multiple libraries installed
try:
from .build_and_package_info import cudart_version
except Exception:
warnings.warn("WARNING: failed to get cudart_version from onnxruntime build info.")
cudart_version = None
def print_build_package_info():
warnings.warn(f"onnxruntime training package info: package_name: {package_name}")
warnings.warn(f"onnxruntime training package info: __version__: {version}")
warnings.warn(f"onnxruntime training package info: cuda_version: {cuda_version}")
warnings.warn(f"onnxruntime build info: cudart_version: {cudart_version}")
# collection cuda library info from current environment.
from onnxruntime.capi.onnxruntime_collect_build_info import find_cudart_versions
local_cudart_versions = find_cudart_versions(build_env=False, build_cuda_version=cuda_version)
if cudart_version and local_cudart_versions and cudart_version not in local_cudart_versions:
print_build_package_info()
warnings.warn("WARNING: failed to find cudart version that matches onnxruntime build info")
warnings.warn(f"WARNING: found cudart versions: {local_cudart_versions}")
else:
# TODO: rcom
pass
except Exception as e:
warnings.warn("WARNING: failed to collect onnxruntime version and build info")
print(e)
if import_ortmodule_exception:
raise import_ortmodule_exception
return has_ortmodule, package_name, version, cuda_version
has_ortmodule, package_name, version, cuda_version = validate_build_package_info()

View File

@ -0,0 +1,2 @@
use_cuda = False
vs2019 = False

View File

@ -0,0 +1,17 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
Short examples used in the documentation.
"""
import os
def get_example(name):
"""
Retrieves the absolute file name of an example.
"""
this = os.path.abspath(os.path.dirname(__file__))
full = os.path.join(this, name)
if not os.path.exists(full):
raise FileNotFoundError(f"Unable to find example '{name}'")
return full

Binary file not shown.

View File

@ -0,0 +1,13 @@
 backend-test:Q

xy"Sigmoid test_sigmoidZ
x



b
y



B

View File

@ -0,0 +1,78 @@
# automatically generated by the FlatBuffers compiler, do not modify
# namespace: CalTableFlatBuffers
import flatbuffers
from flatbuffers.compat import import_numpy
np = import_numpy()
class KeyValue:
__slots__ = ["_tab"]
@classmethod
def GetRootAs(cls, buf, offset=0): # noqa: N802
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
x = KeyValue()
x.Init(buf, n + offset)
return x
@classmethod
def GetRootAsKeyValue(cls, buf, offset=0): # noqa: N802
"""This method is deprecated. Please switch to GetRootAs."""
return cls.GetRootAs(buf, offset)
# KeyValue
def Init(self, buf, pos): # noqa: N802
self._tab = flatbuffers.table.Table(buf, pos)
# KeyValue
def Key(self): # noqa: N802
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
if o != 0:
return self._tab.String(o + self._tab.Pos)
return None
# KeyValue
def Value(self): # noqa: N802
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
if o != 0:
return self._tab.String(o + self._tab.Pos)
return None
def Start(builder): # noqa: N802
builder.StartObject(2)
def KeyValueStart(builder): # noqa: N802
"""This method is deprecated. Please switch to Start."""
return Start(builder)
def AddKey(builder, key): # noqa: N802
builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(key), 0)
def KeyValueAddKey(builder, key): # noqa: N802
"""This method is deprecated. Please switch to AddKey."""
return AddKey(builder, key)
def AddValue(builder, value): # noqa: N802
builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(value), 0)
def KeyValueAddValue(builder, value): # noqa: N802
"""This method is deprecated. Please switch to AddValue."""
return AddValue(builder, value)
def End(builder): # noqa: N802
return builder.EndObject()
def KeyValueEnd(builder): # noqa: N802
"""This method is deprecated. Please switch to End."""
return End(builder)

View File

@ -0,0 +1,90 @@
# automatically generated by the FlatBuffers compiler, do not modify
# namespace: CalTableFlatBuffers
import flatbuffers
from flatbuffers.compat import import_numpy
np = import_numpy()
class TrtTable:
__slots__ = ["_tab"]
@classmethod
def GetRootAs(cls, buf, offset=0): # noqa: N802
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
x = TrtTable()
x.Init(buf, n + offset)
return x
@classmethod
def GetRootAsTrtTable(cls, buf, offset=0): # noqa: N802
"""This method is deprecated. Please switch to GetRootAs."""
return cls.GetRootAs(buf, offset)
# TrtTable
def Init(self, buf, pos): # noqa: N802
self._tab = flatbuffers.table.Table(buf, pos)
# TrtTable
def Dict(self, j): # noqa: N802
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
if o != 0:
x = self._tab.Vector(o)
x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4
x = self._tab.Indirect(x)
from onnxruntime.quantization.CalTableFlatBuffers.KeyValue import KeyValue
obj = KeyValue()
obj.Init(self._tab.Bytes, x)
return obj
return None
# TrtTable
def DictLength(self): # noqa: N802
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
if o != 0:
return self._tab.VectorLen(o)
return 0
# TrtTable
def DictIsNone(self): # noqa: N802
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
return o == 0
def Start(builder): # noqa: N802
builder.StartObject(1)
def TrtTableStart(builder): # noqa: N802
"""This method is deprecated. Please switch to Start."""
return Start(builder)
def AddDict(builder, dict): # noqa: N802
builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(dict), 0)
def TrtTableAddDict(builder, dict): # noqa: N802
"""This method is deprecated. Please switch to AddDict."""
return AddDict(builder, dict)
def StartDictVector(builder, numElems): # noqa: N802
return builder.StartVector(4, numElems, 4)
def TrtTableStartDictVector(builder, numElems): # noqa: N802
"""This method is deprecated. Please switch to Start."""
return StartDictVector(builder, numElems)
def End(builder): # noqa: N802
return builder.EndObject()
def TrtTableEnd(builder): # noqa: N802
"""This method is deprecated. Please switch to End."""
return End(builder)

View File

@ -0,0 +1,16 @@
from .calibrate import ( # noqa: F401
CalibraterBase,
CalibrationDataReader,
CalibrationMethod,
MinMaxCalibrater,
create_calibrator,
)
from .qdq_quantizer import QDQQuantizer # noqa: F401
from .quant_utils import QuantFormat, QuantType, write_calibration_table # noqa: F401
from .quantize import DynamicQuantConfig # noqa: F401
from .quantize import QuantizationMode # noqa: F401
from .quantize import StaticQuantConfig # noqa: F401
from .quantize import quantize # noqa: F401
from .quantize import quantize_dynamic # noqa: F401
from .quantize import quantize_static # noqa: F401
from .shape_inference import quant_pre_process # noqa: F401

View File

@ -0,0 +1,536 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import logging
from typing import Any, Dict
import numpy as np
import onnx
import onnx.numpy_helper
try:
from onnx.reference.op_run import to_array_extended
except ImportError:
# old version of onnx.
to_array_extended = None
from .calibrate import TensorData
from .onnx_model import ONNXModel
from .quant_utils import (
ONNX_TYPE_TO_NP_TYPE,
TENSOR_NAME_QUANT_SUFFIX,
QuantType,
find_by_name,
model_has_infer_metadata,
normalize_axis,
pack_bytes_to_4bit,
quantize_data,
quantize_nparray,
save_and_reload_model_with_shape_infer,
tensor_proto_to_array,
)
from .tensor_quant_overrides import TensorQuantOverridesHelper
class QuantizationParams:
def __init__(self, **data: Dict[str, Any]):
self.data = {}
for k, v in data.items():
if not isinstance(k, str):
raise TypeError(f"Keys must be strings not {type(k)} for k={k!r}.")
if not isinstance(v, (int, str, np.ndarray)):
raise TypeError(f"Values must be numpy arrays, int, float, str not {type(v)} for k={k!r}.")
if k == "scale" and v.dtype not in (np.float32, np.float16):
raise ValueError(f"scale must a float32 or float16 numpy element but is {v.dtype} for k={k!r}")
self.data[k] = v
def __iter__(self):
yield from self.data
def __getitem__(self, key):
return self.data[key]
def __len__(self):
return len(self.data)
class BaseQuantizer:
def __init__(
self,
model,
per_channel,
reduce_range,
weight_qType,
activation_qType,
tensors_range,
nodes_to_quantize,
nodes_to_exclude,
op_types_to_quantize,
extra_options=None,
):
if not model_has_infer_metadata(model):
model = save_and_reload_model_with_shape_infer(model)
self.value_infos = {vi.name: vi for vi in model.graph.value_info}
self.value_infos.update({ot.name: ot for ot in model.graph.output})
self.value_infos.update({it.name: it for it in model.graph.input})
self.model = ONNXModel(model)
self.per_channel = per_channel # weight-pack per channel
self.reduce_range = reduce_range
self.extra_options = extra_options if extra_options else {}
self.enable_subgraph_quantization = (
"EnableSubgraph" in self.extra_options and self.extra_options["EnableSubgraph"]
)
self.parent = None
self.force_quantize_no_input_check = (
"ForceQuantizeNoInputCheck" in self.extra_options and self.extra_options["ForceQuantizeNoInputCheck"]
)
self.is_weight_symmetric = self.extra_options.get(
"WeightSymmetric", weight_qType in (QuantType.QInt8, QuantType.QInt16, QuantType.QFLOAT8E4M3FN)
)
self.is_activation_symmetric = self.extra_options.get("ActivationSymmetric", False)
self.min_real_range = self.extra_options.get("MinimumRealRange")
self.activation_qType = getattr(activation_qType, "tensor_type", activation_qType)
self.weight_qType = getattr(weight_qType, "tensor_type", weight_qType)
"""
Dictionary specifying the min and max values for tensors. It has following format:
{
"param_name": [min, max]
}
example:
{
'Conv_3:0': [np.float32(0), np.float32(0.5)],
'Conv_4:0': [np.float32(1), np.float32(3.5)]
}
"""
if tensors_range is not None and any(map(lambda t: not isinstance(t, TensorData), tensors_range.values())):
raise TypeError(
f"tensors_range contains unexpected types {set(type(v) for v in tensors_range.values())}, not TensorData."
)
self.tensors_range = tensors_range
self.nodes_to_quantize = nodes_to_quantize # specific nodes to quantize
self.nodes_to_exclude = nodes_to_exclude # specific nodes to exclude
self.op_types_to_quantize = op_types_to_quantize
self.opset_version = self.check_opset_version()
# Get tensor-level quantization overrides and ensure they are valid.
self.tensor_quant_overrides = TensorQuantOverridesHelper(self.extra_options.get("TensorQuantOverrides", {}))
self.initializers = {initzer.name: initzer for initzer in self.model.initializer()}
overrides_valid, overrides_err = self.tensor_quant_overrides.is_valid(
self.initializers, self.value_infos.keys(), activation_qType
)
if not overrides_valid:
raise ValueError(overrides_err)
self.tensor_quant_override_qtypes = self.tensor_quant_overrides.get_quant_types()
def quantize_model(self):
raise NotImplementedError
def is_input_a_initializer(self, input_name):
initializer = find_by_name(input_name, self.model.initializer())
return initializer is not None
def is_per_channel(self):
return self.per_channel
def is_valid_quantize_weight(self, weight_name):
weight = find_by_name(weight_name, self.model.initializer())
if weight is not None:
return weight.data_type in (onnx.TensorProto.FLOAT, onnx.TensorProto.FLOAT16)
if (not self.enable_subgraph_quantization) or (self.parent is None):
return False
return self.parent.is_valid_quantize_weight(weight_name)
def should_quantize_node(self, node):
if (
self.nodes_to_quantize is not None
and len(self.nodes_to_quantize) != 0
and node.name not in self.nodes_to_quantize
):
return False
if node.op_type not in self.op_types_to_quantize:
return False
if self.nodes_to_exclude is not None and node.name in self.nodes_to_exclude:
return False
return True
def check_opset_version(self):
ai_onnx_domain = [
opset for opset in self.model.model.opset_import if not opset.domain or opset.domain == "ai.onnx"
]
if len(ai_onnx_domain) != 1:
raise ValueError("Failed to find proper ai.onnx domain")
opset_version = ai_onnx_domain[0].version
if opset_version == 10:
logging.warning(
f"The original model opset version is {opset_version}, which does not support node fusions. Please update the model to opset >= 11 for better performance."
)
return 10
if opset_version < 10:
logging.warning(
f"The original model opset version is {opset_version}, which does not support quantization. Please update the model to opset >= 11. Updating the model automatically to opset 11. Please verify the quantized model."
)
self.model.model.opset_import.remove(ai_onnx_domain[0])
self.model.model.opset_import.extend([onnx.helper.make_opsetid("", 11)])
opset_version = 11
if opset_version < 19 and self.weight_qType == onnx.TensorProto.FLOAT8E4M3FN:
logging.warning(
f"The original model opset version is {opset_version}, which does not support quantization to float 8. "
"Please update the model to opset >= 19. Updating the model automatically to opset 19. "
"Please verify the quantized model."
)
self.model.model.opset_import.remove(ai_onnx_domain[0])
self.model.model.opset_import.extend([onnx.helper.make_opsetid("", 19)])
self.model.model.ir_version = 9
opset_version = 19
return opset_version
def quantize_bias_static_impl(self, bias_name, input_scale, weight_scale, beta=1.0):
"""
Quantized the bias. Zero Point == 0 and Scale == Input_Scale * Weight_Scale
"""
# get bias
bias_initializer = find_by_name(bias_name, self.model.initializer())
bias_data = tensor_proto_to_array(bias_initializer)
quantized_bias_name = bias_name + TENSOR_NAME_QUANT_SUFFIX
# quantize bias
if self.weight_qType == onnx.TensorProto.FLOAT8E4M3FN:
data = np.asarray(bias_data)
if data.dtype == np.float16:
node_qtype = onnx.TensorProto.FLOAT16
elif data.dtype == np.float32:
node_qtype = onnx.TensorProto.FLOAT
else:
raise TypeError(f"Only float16 or float32 are supported with float 8 but bias dtype is {data.dtype}.")
quantized_data = data.astype(np.float32)
bias_scale = np.array([1], dtype=quantized_data.dtype)
bias_scale_data = bias_scale.reshape(-1)
packed_bias_initializer = onnx.numpy_helper.from_array(quantized_data, quantized_bias_name)
self.model.initializer_extend([packed_bias_initializer])
node_type = "Cast"
else:
# calculate scale for bias
# TODO: This formula should be explained including why the scale is not estimated for the bias as well.
bias_scale = input_scale * weight_scale * beta
quantized_data = (np.asarray(bias_data) / bias_scale).round().astype(np.int32)
# update bias initializer
bias_np_data = np.asarray(quantized_data, dtype=np.int32).reshape(bias_initializer.dims)
packed_bias_initializer = onnx.numpy_helper.from_array(bias_np_data, quantized_bias_name)
self.model.initializer_extend([packed_bias_initializer])
# Bias's scale dtype should match the original bias data's unquantized type (float32 or float16).
bias_scale_data = np.asarray(bias_scale, dtype=bias_data.dtype).reshape(-1)
node_type = "DequantizeLinear"
node_qtype = self.weight_qType
# update scale initializer
quantized_bias_scale_name = quantized_bias_name + "_scale"
packed_bias_scale_initializer = onnx.numpy_helper.from_array(bias_scale_data, quantized_bias_scale_name)
self.model.initializer_extend([packed_bias_scale_initializer])
# update zero initializer
if self.weight_qType == onnx.TensorProto.FLOAT8E4M3FN:
tensor_type = self.weight_qType
else:
tensor_type = onnx.TensorProto.INT32
quantized_bias_zp_name = quantized_bias_name + "_zero_point"
if self.weight_qType == onnx.TensorProto.FLOAT8E4M3FN:
packed_bias_zp_initializer = onnx.helper.make_tensor(quantized_bias_zp_name, self.weight_qType, [1], [0.0])
elif bias_scale.size > 1:
bias_zp_data = np.zeros(bias_scale.shape, dtype=np.int32).reshape(-1)
packed_bias_zp_initializer = onnx.numpy_helper.from_array(bias_zp_data, quantized_bias_zp_name)
else:
packed_bias_zp_initializer = onnx.helper.make_tensor(quantized_bias_zp_name, tensor_type, [], [0])
self.model.initializer_extend([packed_bias_zp_initializer])
return (
quantized_bias_name,
quantized_bias_scale_name,
quantized_bias_zp_name,
bias_scale_data,
node_type,
node_qtype,
)
def quantize_initializer_impl(self, weight, qType, reduce_range=False, keep_float_weight=False):
"""
:param weight: TensorProto initializer
:param qType: type to quantize to
:param keep_float_weight: Whether to quantize the weight. In some cases, we only want to qunatize scale and zero point.
If keep_float_weight is False, quantize the weight, or don't quantize the weight.
:return: quantized weight name, zero point name, scale name
"""
q_weight_name = weight.name + TENSOR_NAME_QUANT_SUFFIX
zp_name = weight.name + "_zero_point"
scale_name = weight.name + "_scale"
# Quantize weight data. Use quantization overrides if provided by the user.
weight_data = tensor_proto_to_array(weight)
quant_overrides = self.tensor_quant_overrides.get_per_tensor_overrides(weight.name, default_val={})
if "quant_type" in quant_overrides:
qType = quant_overrides["quant_type"].tensor_type # noqa: N806
if "scale" in quant_overrides and "zero_point" in quant_overrides:
zero_point = np.array(quant_overrides["zero_point"], dtype=ONNX_TYPE_TO_NP_TYPE[qType])
scale = np.array(quant_overrides["scale"])
q_weight_data = quantize_nparray(qType, weight_data.flatten(), scale, zero_point)
assert isinstance(zero_point, np.ndarray), f"Unexpected type {type(zero_point)}"
assert (
zero_point.dtype != np.float32 and zero_point.dtype != np.float16
), f"Unexpected dtype {zero_point.dtype}"
assert isinstance(scale, np.ndarray), f"Unexpected type {type(scale)}"
else:
_, _, zero_point, scale, q_weight_data = quantize_data(
weight_data.flatten(),
qType,
quant_overrides.get("symmetric", self.is_weight_symmetric),
reduce_range=quant_overrides.get("reduce_range", self.reduce_range and reduce_range),
min_real_range=self.min_real_range,
rmin_override=quant_overrides.get("rmin"),
rmax_override=quant_overrides.get("rmax"),
)
assert isinstance(zero_point, np.ndarray), f"Unexpected type {type(zero_point)}"
assert (
zero_point.dtype != np.float32 and zero_point.dtype != np.float16
), f"Unexpected dtype {zero_point.dtype}"
assert isinstance(scale, np.ndarray), f"Unexpected type {type(scale)}"
scale_dtype = weight.data_type
scale_initializer = onnx.helper.make_tensor(scale_name, scale_dtype, [], scale.reshape((-1,)).tolist())
zero_initializer = onnx.helper.make_tensor(zp_name, qType, [], zero_point.reshape((-1,)).tolist())
self.model.initializer_extend([scale_initializer, zero_initializer])
if not keep_float_weight:
if self.weight_qType == onnx.TensorProto.FLOAT8E4M3FN:
q_weight_initializer = onnx.TensorProto()
q_weight_initializer.data_type = self.weight_qType
q_weight_initializer.dims.extend(weight.dims)
q_weight_initializer.name = q_weight_name
# Do not remove .flatten().copy() numpy is not clear about data persistence.
q_weight_initializer.raw_data = q_weight_data.flatten().copy().tobytes()
if to_array_extended is not None:
# This test should not be needed but it helped catch some issues
# with data persistence and tobytes.
check = to_array_extended(q_weight_initializer)
if check.shape != weight_data.shape or check.tobytes() != q_weight_data.tobytes():
raise RuntimeError(
f"The initializer of shape {weight_data.shape} could not be created, expecting "
f"{q_weight_data.tobytes()[:10]}, got {check.tobytes()[:10]} and shape={weight.shape}"
f"\nraw={str(q_weight_initializer)[:200]}."
)
elif qType in (onnx.TensorProto.INT4, onnx.TensorProto.UINT4):
if q_weight_data.dtype not in (np.int8, np.uint8):
raise RuntimeError(
f"Quantized weights for {q_weight_name} must be 8-bit before packing as 4-bit values."
)
# We do not use onnx.helper.pack_float32_to_4bit() due to performance.
# This can be the difference between a large model taking 30 minutes to quantize vs 5 minutes.
packed_data = bytes(pack_bytes_to_4bit(q_weight_data.tobytes()))
# We only use onnx.helper.make_tensor with raw data due to bug: https://github.com/onnx/onnx/pull/6161
q_weight_initializer = onnx.helper.make_tensor(q_weight_name, qType, weight.dims, packed_data, raw=True)
else:
q_weight_data = np.asarray(q_weight_data, dtype=onnx.helper.tensor_dtype_to_np_dtype(qType)).reshape(
weight.dims
)
q_weight_initializer = onnx.numpy_helper.from_array(q_weight_data, q_weight_name)
self.model.initializer_extend([q_weight_initializer])
return q_weight_name, zp_name, scale_name
def quantize_weight_per_channel_impl(
self,
weight_name,
weight_qType,
channel_axis,
reduce_range=True,
keep_float_weight=False,
):
initializer = find_by_name(weight_name, self.model.initializer())
if initializer is None:
raise ValueError("{} is not an initializer", weight_name)
weights = tensor_proto_to_array(initializer)
weights_rank = len(weights.shape)
is_axis_valid, axis_norm = normalize_axis(channel_axis, weights_rank)
if not is_axis_valid:
raise ValueError(
f"Weight {weight_name} has a per-channel axis with value {channel_axis} that is "
f"out-of-bounds for rank {weights_rank}"
)
channel_axis = axis_norm
channel_count = weights.shape[channel_axis]
quant_overrides_for_channels = self.tensor_quant_overrides.get_per_channel_overrides(
weight_name, default_val=[{"axis": channel_axis}]
)
num_channel_overrides = len(quant_overrides_for_channels)
if num_channel_overrides != 1 and num_channel_overrides != channel_count:
raise ValueError(
f"Per-channel tensor quantization overrides for {weight_name} must have "
f"either 1 or {channel_count} elements in the list of dictionaries."
)
is_axis_override_valid, axis_override = normalize_axis(quant_overrides_for_channels[0]["axis"], weights_rank)
if not is_axis_override_valid or axis_override != channel_axis:
raise ValueError(
f"Tensor quantization overrides for {weight_name} specify an unexpected axis. "
f"Expected {channel_axis}, but got {quant_overrides_for_channels[0]['axis']}."
)
# If user provides per-channel quantization overrides, all channels must use the same quant_type,
# axis, symmetric, and reduce_range values. So, just use the first channel's values.
if "quant_type" in quant_overrides_for_channels[0]:
weight_qType = quant_overrides_for_channels[0]["quant_type"].tensor_type # noqa: N806
symmetric = quant_overrides_for_channels[0].get(
"symmetric",
(
self.is_weight_symmetric
or weight_qType in (onnx.TensorProto.INT8, onnx.TensorProto.FLOAT8E4M3FN, onnx.TensorProto.INT4)
),
)
reduce_range = quant_overrides_for_channels[0].get("reduce_range", self.reduce_range and reduce_range)
zero_point_list = []
scale_list = []
quantized_per_channel_data_list = []
for i in range(channel_count):
per_channel_data = weights.take(i, channel_axis)
channel_override_index = i if i < num_channel_overrides else 0
channel_quant_overrides = quant_overrides_for_channels[channel_override_index]
if "scale" in channel_quant_overrides and "zero_point" in channel_quant_overrides:
zero_point = np.array(channel_quant_overrides["zero_point"], dtype=ONNX_TYPE_TO_NP_TYPE[weight_qType])
scale = np.array(channel_quant_overrides["scale"])
quantized_per_channel_data = quantize_nparray(
weight_qType, per_channel_data.flatten(), scale, zero_point
)
assert isinstance(zero_point, np.ndarray), f"Unexpected type {type(zero_point)}"
assert (
zero_point.dtype != np.float32 and zero_point.dtype != np.float16
), f"Unexpected dtype {zero_point.dtype}"
assert isinstance(scale, np.ndarray), f"Unexpected type {type(scale)}"
assert isinstance(
quantized_per_channel_data, np.ndarray
), f"Unexpected type {type(quantized_per_channel_data)}"
else:
_, _, zero_point, scale, quantized_per_channel_data = quantize_data(
per_channel_data.flatten(),
weight_qType,
symmetric,
reduce_range=reduce_range,
min_real_range=self.min_real_range,
rmin_override=channel_quant_overrides.get("rmin"),
rmax_override=channel_quant_overrides.get("rmax"),
)
assert isinstance(zero_point, np.ndarray), f"Unexpected type {type(zero_point)}"
assert (
zero_point.dtype != np.float32 and zero_point.dtype != np.float16
), f"Unexpected dtype {zero_point.dtype}"
assert isinstance(scale, np.ndarray), f"Unexpected type {type(scale)}"
assert isinstance(
quantized_per_channel_data, np.ndarray
), f"Unexpected type {type(quantized_per_channel_data)}"
zero_point_list.append(zero_point)
scale_list.append(scale)
quantized_per_channel_data_list.append(quantized_per_channel_data)
# combine per_channel_data into one
weights_shape = list(weights.shape)
reshape_dims = list(weights_shape) # deep copy
reshape_dims[channel_axis] = 1 # only one per channel for reshape
quantized_weights = np.asarray(quantized_per_channel_data_list[0]).reshape(reshape_dims)
for i in range(1, len(quantized_per_channel_data_list)):
channel_weights = np.asarray(quantized_per_channel_data_list[i]).reshape(reshape_dims)
quantized_weights = np.concatenate((quantized_weights, channel_weights), channel_axis)
q_weight_name = weight_name + TENSOR_NAME_QUANT_SUFFIX
zp_name = weight_name + "_zero_point"
scale_name = weight_name + "_scale"
# Update packed weight, zero point, and scale initializers
zero_scale_shape = [initializer.dims[channel_axis]]
scale_initializer = onnx.helper.make_tensor(
scale_name, initializer.data_type, zero_scale_shape, np.hstack(scale_list).tolist()
)
zero_initializer = onnx.helper.make_tensor(
zp_name, weight_qType, zero_scale_shape, np.hstack(zero_point_list).tolist()
)
self.model.initializer_extend([scale_initializer, zero_initializer])
if not keep_float_weight:
if weight_qType in (onnx.TensorProto.INT4, onnx.TensorProto.UINT4):
if quantized_weights.dtype not in (np.int8, np.uint8):
raise RuntimeError(
f"Quantized weights for {q_weight_name} must be 8-bit before packing as 4-bit values."
)
# We do not use onnx.helper.pack_float32_to_4bit() due to performance.
# This can be the difference between a large model taking 30 minutes to quantize vs 5 minutes.
packed_data = bytes(pack_bytes_to_4bit(quantized_weights.tobytes()))
# We only use onnx.helper.make_tensor with raw data due to bug: https://github.com/onnx/onnx/pull/6161
q_weight_initializer = onnx.helper.make_tensor(
q_weight_name, weight_qType, weights_shape, packed_data, raw=True
)
self.model.initializer_extend([q_weight_initializer])
else:
quantized_weights = np.asarray(
quantized_weights,
dtype=onnx.helper.tensor_dtype_to_np_dtype(weight_qType),
).reshape(initializer.dims)
q_weight_initializer = onnx.numpy_helper.from_array(quantized_weights, q_weight_name)
self.model.initializer_extend([q_weight_initializer])
return q_weight_name, zp_name, scale_name
def adjust_tensor_ranges(self):
if self.tensors_range is None:
return
for node in self.model.nodes():
# adjust tensor_ranges for input of Clip and Relu node
if node.op_type in ["Clip", "Relu"]:
if self.is_activation_symmetric:
continue
if not self.should_quantize_node(node):
continue
if len(self.model.input_name_to_nodes()[node.input[0]]) != 1:
continue
if node.input[0] not in self.tensors_range or node.output[0] not in self.tensors_range:
continue
td = self.tensors_range[node.output[0]]
if not isinstance(td, TensorData):
raise TypeError(f"Unexpected type {type(td)} for {node.output[0]!r}.")
self.tensors_range[node.input[0]] = td
# Adjust Softmax to range from 0.0 to 1.0
elif node.op_type == "Softmax":
self.tensors_range[node.output[0]] = TensorData(lowest=np.float32(0.0), highest=np.float32(1.0))

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,2 @@
from .preprocess import qnn_preprocess_model # noqa: F401
from .quant_config import get_qnn_qdq_config # noqa: F401

View File

@ -0,0 +1,132 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import onnx
from ...fusions import Fusion
from ...onnx_model import ONNXModel
class FusionLpNormalization(Fusion):
def __init__(self, model: ONNXModel, epsilon: float = 1e-12):
super().__init__(model, "LpNormalization", "ReduceL2")
self.epsilon = epsilon
def fuse(
self,
reduce_node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
):
"""
Interface function that tries to fuse a node sequence containing a ReduceL2 node into a single
LpNormalization node.
Pattern 1:
[root] --> ReduceL2 -----> Clip --> Expand ----> Div -->
| (axis=-1) (min=epsilon) (shape=root) ^
| (keepdims=True) |
| |
+-----------------------------------------------+
Notes:
- ReduceL2 must use the last axis, and keepdims == True
- Clip must only have a min attribute that is ~1e-12
- Expand must restore the shape to root.shape
- The output of Expand must be the second input to Div.
"""
if reduce_node.output[0] not in input_name_to_nodes:
return
# ReduceL2 must have one Clip child
children = input_name_to_nodes[reduce_node.output[0]]
if len(children) != 1 or children[0].op_type != "Clip":
return
# ReduceL2 must have keepdims == True
keepdims = self.get_node_attribute(reduce_node, "keepdims")
if not keepdims:
return
# ReduceL2 axes must refer only to the last dimension.
# Axes became an input in opset 18. Before then, axes was an attribute
reduce_input_ttype = self.model.get_tensor_type(reduce_node.input[0])
if not reduce_input_ttype:
return
reduce_input_shape = self.tensor_shape_to_list(reduce_input_ttype)
if not reduce_input_shape:
return
axes = self.get_node_attribute(reduce_node, "axes")
if not axes and len(reduce_node.input) > 1:
axes = self.model.get_constant_value(reduce_node.input[1])
if not axes or len(axes) != 1:
return
last_dim = len(reduce_input_shape) - 1
if axes[0] != -1 and axes[0] != last_dim:
return
# Clip node must have a min attribute approximately equal to 1e-12
clip_node = children[0]
clip_min = self.get_node_attribute(clip_node, "min")
if clip_min is None and len(clip_node.input) > 1:
clip_min = self.model.get_constant_value(clip_node.input[1])
clip_max = self.get_node_attribute(clip_node, "max") # TODO: clip_max could be FLOAT_MAX
if clip_max is None and len(clip_node.input) > 2:
clip_max = self.model.get_constant_value(clip_node.input[2])
if not (clip_max is None and clip_min is not None and clip_min > 0 and abs(clip_min - self.epsilon) < 1e-13):
return
if clip_node.output[0] not in input_name_to_nodes:
return
# Clip must have a single Expand child.
children = input_name_to_nodes[clip_node.output[0]]
if len(children) != 1 or children[0].op_type != "Expand":
return
expand_node = children[0]
if expand_node.output[0] not in input_name_to_nodes:
return
# Expand must have a single Div child
children = input_name_to_nodes[expand_node.output[0]]
if len(children) != 1 or children[0].op_type != "Div":
return
div_node = children[0]
# The first input to Div must be the root of the subgraph (i.e., reduce_node.input[0])
# The second input to Div must be the output of the Expand.
# As long as these two inputs go to the same Div node, then ONNX validation will ensure that
# their shapes match.
if div_node.input[0] != reduce_node.input[0]:
return
if div_node.input[1] != expand_node.output[0]:
return
subgraph_input = reduce_node.input[0]
subgraph_output = div_node.output[0]
subgraph_nodes = [reduce_node, clip_node, expand_node, div_node]
if not self.is_safe_to_fuse_nodes(subgraph_nodes, [subgraph_output], input_name_to_nodes, output_name_to_node):
return
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = onnx.helper.make_node(
self.fused_op_type,
name=self.create_unique_node_name(),
inputs=[subgraph_input],
outputs=[subgraph_output],
p=2,
axis=-1,
)
self.nodes_to_add.append(fused_node)

View File

@ -0,0 +1,413 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import logging
from dataclasses import dataclass
import onnx
from ...quant_utils import QuantType
from ...tensor_quant_overrides import QuantTypeInfo, TensorQuantOverridesHelper
@dataclass
class TensorTypeRequest:
"""
Bundles desired quantization type requests for a tensor. A distinction is made between the
produced type and the consumed type.
"""
# The tensor's quant type at the producer end. If None, assumed to be the default activation quant type.
producer: QuantTypeInfo | None
# The tensor's quant type received by a set of consumer nodes.
# If None, assumed to be the default activation quant type for all consumers.
# consumers[1] is a set of consumer node names.
consumers: tuple[QuantTypeInfo, set[str]] | None
class MixedPrecisionTensorQuantOverridesFixer:
"""
Helper that generates tensor quantization overrides for mixed-precision QDQ models.
Specifically, this helper fixes an initial set of quantization overrides that assign a non-default
activation quantization type to one or more tensors by doing the following:
- Inferring which other tensors need to be overridden to the non-default activation quantization type.
- Inserting quantization data type conversions.
Example:
--------
Float model:
input_0 --> Op1 --> Op3 --> Op5 --> Op6 --> output_0
^
|
input_1 --> Op2 -+-> Op4 ----+
|
+-> Op7 --> output_1
|
+-> Op8 --> output_2
If we'd like to quantize this model to uint8 precision, but would like to make sure tensor "Op4_out"
is quantized to 16-bit, then we would specify the following initial tensor quantization overrides:
```
init_overrides = {"Op4_out": [{"quant_type": QuantType.QUInt16}]}
```
These initial overrides may not create a valid model because Op4 and Op5 may require both the input and output
to be the same type (e.g., uint16). This helper fixes the overrides so that input/output data types
are valid:
```
overrides = TensorQuantOverridesHelper(init_overrides)
fixer = MixedPrecisionTensorQuantOverridesFixer.create_from_model(overrides, model, QuantType.QUInt8)
fixer.apply(
default_activation_qtype=QuantType.QUInt8,
default_activation_symmetric=False,
)
```
The above snippet generates the following "fixed" overrides (get via overrides.get_dict()):
{
"Op2_out": [{"quant_type": QUInt8, "convert": {"quant_type": QUInt16, "recv_nodes": {"Op4"}}}],
"Op3_out": [{"quant_type": QUInt8, "convert": {"quant_type": QUInt16, "recv_nodes": {"Op5"}}}],
"Op4_out": [{"quant_type": QUInt16}],
"Op5_out": [{"quant_type": QUInt16, "convert": {"quant_type": QUInt8, "recv_nodes": {"Op6"}}}]
}
How to interpret the fixed overrides:
- Op2's output is consumed by Op4, Op7, and Op8. Op4 consumes the converted u16 type,
but Op7 and Op8 consume the original u8 type.
- Op3's output is converted from u8 to u16. Op5 consumes the converted u16 type.
- Op4's output is just u16 (not converted). All consumers of Op4_out get the u16 type.
- Op5's output is converted from u16 to u8. Op6 consumes the u8 type.
"""
def __init__(
self,
overrides: TensorQuantOverridesHelper,
producers: dict[str, onnx.NodeProto],
consumers: dict[str, list[onnx.NodeProto]],
value_infos: dict[str, onnx.ValueInfoProto],
initializers: dict[str, onnx.TensorProto],
):
"""
Params:
overrides: The initial tensor quantization overrides to fix.
producers: Dictionary that maps a tensor name to the producer node that generates the tensor.
consumers: Dictionary that maps a tensor name to the consumer nodes that take the tensor as input.
value_infos: Dictionary that maps a tensor name to its onnx.ValueInfoProto.
initializers: Dictionary that maps an initializer name to its onnx.TensorProto.
"""
self.overrides = overrides
self.consumers = consumers
self.producers = producers
self.value_infos = value_infos
self.initializers = initializers
@staticmethod
def create_from_model(
overrides: TensorQuantOverridesHelper, model: onnx.ModelProto, default_activation_qtype: QuantType
) -> MixedPrecisionTensorQuantOverridesFixer:
"""
Helper function that creates an instance of this class from a loaded ONNX model.
Params:
overrides: The initial tensor quantization overrides to fix.
model: Loaded ONNX model
default_activation_qtype: The intended default activation quantization type.
Used to validate the initial overrides.
Returns:
Initialized MixedPrecisionTensorQuantOverridesFixer object
"""
model = onnx.shape_inference.infer_shapes(model) # Need to infer shapes to get value_infos
# Build dictionaries that enable convenient lookups of initializers and value_infos by name.
initializers = {initializer.name: initializer for initializer in model.graph.initializer}
value_infos = {vi.name: vi for vi in model.graph.value_info}
value_infos.update({ot.name: ot for ot in model.graph.output})
value_infos.update({it.name: it for it in model.graph.input})
# Ensure that the user-provided initial overrides are actually valid.
valid, err = overrides.is_valid(initializers, set(value_infos), default_activation_qtype)
if not valid:
pprint_overrides = overrides.pprint_str(indent=4)
logging.error(f"Provided invalid tensor quantization overrides:\n{pprint_overrides}")
raise ValueError(err)
consumers = {}
producers = {}
# Build dictionaries that map a tensor name to the consumer or producer nodes.
for node in model.graph.node:
for input_name in node.input:
if input_name:
if input_name not in consumers:
consumers[input_name] = []
consumers[input_name].append(node)
for output_name in node.output:
producers[output_name] = node
return MixedPrecisionTensorQuantOverridesFixer(overrides, producers, consumers, value_infos, initializers)
def apply(
self,
default_activation_qtype: QuantType,
default_activation_symmetric: bool,
):
"""
Fixes the initial tensor quantization overrides (in-place) for use in mixed-precision QDQ models.
Params:
default_activation_qtype: The intended default activation quantization type.
default_activation_symmetric: The intended default symmetry used to quantize activations.
"""
type_requests = self.get_desired_tensor_types(default_activation_qtype, default_activation_symmetric)
# Use type requests to "fix" tensor quantization overrides by adding
# quantization type conversions where necessary.
for tensor_name, type_req in type_requests.items():
all_consumers = set([node.name for node in self.consumers.get(tensor_name, [])])
has_producer_req = type_req.producer is not None
has_consumer_req = bool(type_req.consumers)
# Only producer type: Add conversion back to default activation type
if has_producer_req and not has_consumer_req:
self._update_converted_tensor(
tensor_name, type_req.producer, QuantTypeInfo(default_activation_qtype), all_consumers
)
# Only consumers
elif not has_producer_req and has_consumer_req:
prod_type_info = self.overrides.get_node_output_qtype_info(tensor_name, default_activation_qtype)
consumer_type_info = type_req.consumers[0]
if prod_type_info != consumer_type_info:
self._update_converted_tensor(
tensor_name, prod_type_info, consumer_type_info, type_req.consumers[1]
)
else:
if not self._check_nodes_are_not_convert_consumers(tensor_name, type_req.consumers[1]):
raise ValueError(
f"Tensor override for '{tensor_name}' converts the type for consumers that need the original type."
)
# Both producer and consumers
elif has_producer_req and has_consumer_req:
prod_type_info = type_req.producer
consumer_type_info = type_req.consumers[0]
if prod_type_info != consumer_type_info:
self._update_converted_tensor(
tensor_name, prod_type_info, consumer_type_info, type_req.consumers[1]
)
else:
consumers_for_original_type = all_consumers.difference(type_req.consumers[1])
if len(consumers_for_original_type) == 0:
# All consumers want the overridden type, so no need for convert nodes!
# Just add the override to the new new if not already present.
if tensor_name not in self.overrides:
self.overrides[tensor_name] = [{}]
prod_type_info.save_to_dict(self.overrides[tensor_name][0])
assert "convert" not in self.overrides[tensor_name][0]
else:
# Some consumers don't want the overridden type.
self._update_converted_tensor(
tensor_name,
prod_type_info,
QuantTypeInfo(default_activation_qtype),
consumers_for_original_type,
)
else:
raise ValueError(f"TypeRequest for tensor {tensor_name} has no producer or consumers.")
# Done. Check if the overrides are valid.
valid, err = self.overrides.is_valid(self.initializers, set(self.value_infos), default_activation_qtype)
if not valid:
pprint_overrides = self.overrides.pprint_str(indent=4)
logging.error(
f"Generated invalid tensor quantization overrides for mixed-precision QDQ model:\n{pprint_overrides}"
)
raise ValueError(err)
def get_desired_tensor_types(
self,
default_activation_qtype: QuantType,
default_activation_symmetric: bool,
) -> dict[str, TensorTypeRequest]:
"""
Iterates through the initial tensor quantization overrides and builds a set of TensorTypeRequests objects
that describe the quantization types required at each tensor. These TensorTypeRequests objects are ultimately
used to generated the "fixed" overrides.
Params:
default_activation_qtype: The intended default activation quantization type.
default_activation_symmetric: The intended default symmetry used to quantize activations.
Returns:
TensorTypeRequest objects as a dict that maps a tensor name to its requested types.
"""
type_requests = {}
default_activation_type_info = QuantTypeInfo(default_activation_qtype, default_activation_symmetric)
# Scan tensor overrides for type conversion requests.
for tensor_name, override_list in self.overrides.items():
if not self.__is_tensor_quantizable(tensor_name):
continue # Skip non-quantizable tensors (e.g., not a float)
if tensor_name in self.initializers:
continue # Skip initializers
if not override_list or len(override_list) > 1:
continue # Skip per-channel stuff
override_dict = override_list[0]
quant_type_info = QuantTypeInfo.load_from_dict(override_dict, default_activation_type_info.quant_type)
producer_node = self.producers.get(tensor_name) # None if this is a model input
if quant_type_info != default_activation_type_info and "convert" not in override_dict:
if producer_node is not None:
self._add_type_requests_for_node(type_requests, quant_type_info, producer_node)
# Find all consumer nodes of `tensor_name` and update their inputs/outputs to the new type.
for consumer_node in self.consumers.get(tensor_name, []):
self._add_type_requests_for_node(type_requests, quant_type_info, consumer_node)
return type_requests
def _add_type_requests_for_node(
self,
type_requests: dict[str, TensorTypeRequest],
quant_type_info: QuantTypeInfo,
node: onnx.NodeProto,
):
"""
Adds TensorTypeRequest objects for a given node, assuming that we want all its inputs and outputs
to have the same quantization type (as specified by the `quant_type_info` parameter).
Params:
type_requests: Dictionary of type requests to append to for this node.
quant_type_info: The quantization type to use for inputs and outputs.
node: The node for which the TensorTypeRequest objects are created and added to type_requests.
"""
# Add output side
for output_name in node.output:
if not self.__is_tensor_quantizable(output_name):
continue
if output_name not in type_requests:
type_requests[output_name] = TensorTypeRequest(quant_type_info, None)
else:
if (
type_requests[output_name].producer is not None
and type_requests[output_name].producer != quant_type_info
):
raise ValueError(f"Tensor {output_name} has multiple types.")
type_requests[output_name].producer = quant_type_info
# Add the consumer side
for input_name in node.input:
if input_name and input_name not in self.initializers and self.__is_tensor_quantizable(input_name):
if input_name not in type_requests:
type_requests[input_name] = TensorTypeRequest(None, None)
if type_requests[input_name].consumers is None:
type_requests[input_name].consumers = (quant_type_info, set())
if type_requests[input_name].consumers[0] != quant_type_info:
raise ValueError(f"Tensor {input_name} has consumers requesting different types.")
if not node.name:
raise ValueError(
f"Node of type {node.op_type} with output 0 {node.output[0]} does not have a name!"
)
type_requests[input_name].consumers[1].add(node.name)
def _update_converted_tensor(
self,
tensor_name: str,
producer_type_info: QuantTypeInfo,
consumer_type_info: QuantTypeInfo,
consumer_names: set[str],
):
"""
Updates the tensor quantization overrides for a tensor that is converted from one type to another.
Params:
tensor_name: The name of the tensor for which to update overrides.
producer_type_info: Info for the tensor's produced type.
consumer_type_info: Info for the tensor's consumed (i.e., converted) type.
consumer_names: Nodes names of consumers that consume the converted type.
"""
if tensor_name not in self.overrides or not self.overrides[tensor_name]:
self.overrides[tensor_name] = [{}]
producer_type_info.save_to_dict(self.overrides[tensor_name][0])
overrides = self.overrides[tensor_name][0]
if producer_type_info != QuantTypeInfo.load_from_dict(overrides):
raise ValueError(f"Desired producer quant_type for {tensor_name} doesn't match existing type.")
if consumer_names:
if "convert" not in overrides:
overrides["convert"] = {}
consumer_type_info.save_to_dict(overrides["convert"])
convert_dict = overrides["convert"]
if consumer_type_info != QuantTypeInfo.load_from_dict(convert_dict):
raise ValueError(f"Desired consumer quant_type for {tensor_name} doesn't match existing type.")
if "recv_nodes" not in convert_dict:
convert_dict["recv_nodes"] = set()
convert_dict["recv_nodes"].update(consumer_names)
def _check_nodes_are_not_convert_consumers(self, tensor_name: str, node_names: set[str]):
"""
Returns true if the given nodes do not consume/receive a converted quantization type.
Params:
tensor_name: The name of the tensor to check.
node_names: Set of node names that should not be consumers of the converted type.
"""
if tensor_name not in self.overrides or not self.overrides[tensor_name]:
return True
overrides = self.overrides[tensor_name][0]
if "convert" not in overrides:
return True
convert_dict = overrides["convert"]
if "recv_nodes" not in convert_dict:
return False
return not convert_dict["recv_nodes"].intersection(node_names)
def __is_tensor_quantizable(self, tensor_name):
weight = self.initializers.get(tensor_name)
if weight is not None:
if weight.data_type in (onnx.TensorProto.FLOAT, onnx.TensorProto.FLOAT16):
return True
elif tensor_name in self.value_infos:
vi = self.value_infos[tensor_name]
if vi.type.HasField("tensor_type") and vi.type.tensor_type.elem_type in (
onnx.TensorProto.FLOAT,
onnx.TensorProto.FLOAT16,
):
return True
return False

View File

@ -0,0 +1,307 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import logging
from pathlib import Path
import onnx
from ...fusions import FusionGelu, FusionLayerNormalization
from ...onnx_model import ONNXModel
from .fusion_lpnorm import FusionLpNormalization
def qnn_preprocess_model(
model_input: str | Path | onnx.ModelProto,
model_output: str | Path,
fuse_layernorm: bool = False,
save_as_external_data: bool = False,
all_tensors_to_one_file: bool = False,
external_data_location: str | None = None,
external_data_size_threshold: int = 1024,
external_data_convert_attribute: bool = False,
inputs_to_make_channel_last: list[str] | None = None,
outputs_to_make_channel_last: list[str] | None = None,
) -> bool:
"""
If necessary, this method creates a new "pre-processed" model in preparation for
quantization of a model to be used in QNN EP. Returns true if a new model was created.
This method perfoms the following operations:
- Fuse Erf sequence into a single Gelu node.
- Fuse ReduceL2 sequence into a single LpNormalization node (p == 2).
- (Optional) Fuse ReduceMean sequence into a single LayerNormalization node.
Args:
model_input: Path to the input model file or ModelProto.
model_output: Path the output model file, which is only created if this method returns True.
fuse_layernorm: True if ReduceMean sequences should be fused into LayerNormalization nodes.
Defaults to False.
save_as_external_data: True if output model should be saved with external data. Defaults to false.
all_tensors_to_one_file: Effective only if save_as_external_data is true. Defaults to false.
If true, save all tensors to one external file specified by external_data_location.
If false, save each tensor to a file named with the tensor name.
external_data_location: Effective only if save_as_external_data is true. Defaults to None.
Specify the external file to which all tensors are saved. Path is relative
to the model path. If not specified, the model's name is used.
external_data_size_threshold: Effective only if save_as_external_data is true. Defaults to 1024.
Tensors with a data size >= external_data_size_threshold are converted to external data.
To convert every tensor with raw data to external data, set to 0.
external_data_convert_attribute: Effective only if save_as_external_data is true. Defaults to false.
If true, convert all tensors to external data.
If false, convert only non-attribute tensors to external data.
inputs_to_make_channel_last: List of graph input names to transpose to be "channel-last". For example,
if "input0" originally has the shape (N, C, D1, D2, ..., Dn), the resulting model will change input0's
shape to (N, D1, D2, ..., Dn, C) and add a transpose node after it.
Original:
input0 (N, C, D1, D2, ..., Dn) --> <Nodes>
Updated:
input0 (N, D1, D2, ..., Dn, C) --> Transpose --> input0_chanfirst (N, C, D1, D2, ..., Dn) --> <Nodes>
This can potentially improve inference latency for QDQ models running on QNN EP because the
additional transpose node may allow other transpose nodes inserted during ORT layout transformation
to cancel out.
outputs_to_make_channel_last: List of graph output names to transpose to be "channel-last". For example,
if "output0" originally has the shape (N, C, D1, D2, ..., Dn), the resulting model will change output0's
shape to (N, D1, D2, ..., Dn, C) and add a transpose node before it.
Original:
<Nodes> --> output0 (N, C, D1, D2, ..., Dn)
Updated:
<Nodes> --> output0_chanfirst (N, C, D1, D2, ..., Dn) --> Transpose --> output0 (N, D1, D2, ..., Dn, C)
This can potentially improve inference latency for QDQ models running on QNN EP because the
additional transpose node may allow other transpose nodes inserted during ORT layout transformation
to cancel out.
"""
modified = False
model = model_input if isinstance(model_input, onnx.ModelProto) else onnx.load_model(model_input)
onnx_model = ONNXModel(model)
# Fuse Erf sequence into a single Gelu
fusion_gelu = FusionGelu(onnx_model)
if fusion_gelu.apply():
modified = True
# Fuse ReduceL2 sequence into a single LpNormalization node with p == 2.
fusion_lpnorm = FusionLpNormalization(onnx_model)
if fusion_lpnorm.apply():
modified = True
# Optionally, fuse ReduceMean sequence into a single LayerNormalization node.
if fuse_layernorm:
onnx_opset = next(x for x in model.opset_import if x.domain == "" or x.domain == "ai.onnx")
# Need opset >= 17 to use LayerNormalization.
if onnx_opset.version < 17:
logging.warning(
"Unable to fuse ReduceMean sequence into a LayerNormalization node. "
"ONNX model must use an opset >= 17 in order to use LayerNormalization, "
f"but found version {onnx_opset.version}. Please use onnx.version_converter to update your model."
)
else:
fusion_layernorm = FusionLayerNormalization(onnx_model)
if fusion_layernorm.apply():
modified = True
# Optionally, transpose inputs and/or outputs to make them "channel-last".
if inputs_to_make_channel_last or outputs_to_make_channel_last:
transpose_node_prefix = "Transpose_channel_"
transpose_node_suffix: int = onnx_model.get_largest_node_name_suffix(transpose_node_prefix) + 1
update_io_to_channel_last(
onnx_model.model,
inputs_to_make_channel_last,
outputs_to_make_channel_last,
transpose_node_name_prefix=transpose_node_prefix,
transpose_node_name_start_suffix=transpose_node_suffix,
)
modified = True
# Make sure all nodes have a name.
unnamed_node_prefix = "qnn_preproc_node_"
available_suffix = onnx_model.get_largest_node_name_suffix(unnamed_node_prefix) + 1
for node in onnx_model.model.graph.node:
if node.op_type != "Constant" and not node.name:
new_node_name = f"{unnamed_node_prefix}{available_suffix!s}"
available_suffix += 1
node.name = new_node_name
modified = True
logging.warning(f"Node of type {node.op_type} does not have a name. Renamed to {new_node_name}.")
if modified:
onnx_model.topological_sort()
onnx.save_model(
model,
model_output,
save_as_external_data=save_as_external_data,
all_tensors_to_one_file=all_tensors_to_one_file,
location=external_data_location,
size_threshold=external_data_size_threshold,
convert_attribute=external_data_convert_attribute,
)
return modified
class InputOutputNameMap:
def __init__(
self,
orig_tensor_names: set[str],
orig_graph_inputs: dict[str, onnx.ValueInfoProto],
orig_graph_outputs: dict[str, onnx.ValueInfoProto],
):
self.orig_tensor_names = orig_tensor_names
self.orig_graph_inputs = orig_graph_inputs
self.orig_graph_outputs = orig_graph_outputs
self.updated_io_names = {}
self.new_value_infos = []
def get_new_name(self, orig_name: str):
if orig_name in self.updated_io_names:
return self.updated_io_names[orig_name]
# Make a new tensor name that is unique among all tensors in the graph.
prefix: str = f"{orig_name}_channel_first_"
suffix: int = -1
for tensor_name in self.orig_tensor_names:
if tensor_name.startswith(prefix) and tensor_name[len(prefix) :].isdigit():
index = int(tensor_name[len(prefix) :])
suffix = max(suffix, index)
suffix += 1 # This is the first available suffix.
new_name = f"{prefix}{suffix!s}"
# Add new value_info objects for these new tensors.
orig_value_info = self.orig_graph_inputs.get(orig_name) or self.orig_graph_outputs[orig_name]
value_info_proto = onnx.ValueInfoProto()
value_info_proto.CopyFrom(orig_value_info)
value_info_proto.name = new_name
self.new_value_infos.append(value_info_proto)
self.updated_io_names[orig_name] = new_name
return self.updated_io_names[orig_name]
def update_io_to_channel_last(
model: onnx.ModelProto,
inputs_to_update: list[str] | None,
outputs_to_update: list[str] | None,
transpose_node_name_prefix: str = "Transpose_channel_",
transpose_node_name_start_suffix: int = 0,
):
inputs_to_update = set(inputs_to_update or [])
outputs_to_update = set(outputs_to_update or [])
if not inputs_to_update and not outputs_to_update:
return
graph = model.graph
orig_graph_inputs = {ginput.name: ginput for ginput in graph.input}
orig_graph_outputs = {goutput.name: goutput for goutput in graph.output}
# Check that the user passed in actual input and output names.
for input_name in inputs_to_update:
if input_name not in orig_graph_inputs:
raise ValueError(f"{input_name} is not a graph input")
for output_name in outputs_to_update:
if output_name not in orig_graph_outputs:
raise ValueError(f"{output_name} is not a graph output")
orig_tensor_names = set()
orig_tensor_names.update(set(orig_graph_inputs))
orig_tensor_names.update(set(orig_graph_outputs))
orig_tensor_names.update(input_name for node in graph.node for input_name in node.input if input_name)
# Maps original input (or output) name to its updated name used within the graph.
io_map = InputOutputNameMap(orig_tensor_names, orig_graph_inputs, orig_graph_outputs)
# Update each node's inputs/outputs to use the transposed versions.
for node in graph.node:
for i in range(len(node.input)):
if node.input[i] and node.input[i] in inputs_to_update:
node.input[i] = io_map.get_new_name(node.input[i])
elif node.input[i] and node.input[i] in outputs_to_update:
node.input[i] = io_map.get_new_name(node.input[i])
for i in range(len(node.output)):
if node.output[i] in outputs_to_update:
node.output[i] = io_map.get_new_name(node.output[i])
# Update graph inputs to channel-last and a Transpose (to channel-first) after each.
for g_input_name in inputs_to_update:
g_input = orig_graph_inputs[g_input_name]
if not g_input.type.HasField("tensor_type") or not g_input.type.tensor_type.HasField("shape"):
raise ValueError(f"Expected input {g_input.name} to have a tensor_type with a shape")
input_shape = g_input.type.tensor_type.shape
input_rank = len(input_shape.dim)
if input_rank < 3:
raise ValueError(f"Expected input {g_input.name} to be of rank >= 3")
channel_dim = onnx.TensorShapeProto.Dimension()
channel_dim.CopyFrom(input_shape.dim[1])
for i in range(1, input_rank - 1):
input_shape.dim[i].CopyFrom(input_shape.dim[i + 1])
input_shape.dim[input_rank - 1].CopyFrom(channel_dim)
transpose_perm = list(range(input_rank))
for i in range(input_rank):
transpose_perm[i] = i if i < 1 else i - 1
transpose_perm[1] = input_rank - 1
transpose_node = onnx.helper.make_node(
"Transpose",
name=f"{transpose_node_name_prefix}{transpose_node_name_start_suffix!s}",
inputs=[g_input.name],
outputs=[io_map.get_new_name(g_input.name)],
perm=transpose_perm,
)
transpose_node_name_start_suffix += 1
graph.node.extend([transpose_node])
# Update graph outputs to channel-last and a Transpose (from channel-first) before each.
for g_output_name in outputs_to_update:
g_output = orig_graph_outputs[g_output_name]
if not g_output.type.HasField("tensor_type") or not g_output.type.tensor_type.HasField("shape"):
raise ValueError(f"Expected output {g_output.name} to have a tensor_type with a shape")
output_shape = g_output.type.tensor_type.shape
output_rank = len(output_shape.dim)
if output_rank < 3:
raise ValueError(f"Expected output {g_output.name} to be of rank >= 3")
channel_dim = onnx.TensorShapeProto.Dimension()
channel_dim.CopyFrom(output_shape.dim[1])
for i in range(1, output_rank - 1):
output_shape.dim[i].CopyFrom(output_shape.dim[i + 1])
output_shape.dim[output_rank - 1].CopyFrom(channel_dim)
transpose_perm = list(range(output_rank))
for i in range(output_rank):
transpose_perm[i] = i if i == 0 else i + 1
transpose_perm[output_rank - 1] = 1
transpose_node = onnx.helper.make_node(
"Transpose",
name=f"{transpose_node_name_prefix}{transpose_node_name_start_suffix!s}",
inputs=[io_map.get_new_name(g_output.name)],
outputs=[g_output.name],
perm=transpose_perm,
)
transpose_node_name_start_suffix += 1
graph.node.extend([transpose_node])
graph.value_info.extend(io_map.new_value_infos)

View File

@ -0,0 +1,387 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import copy
import logging
from pathlib import Path
from typing import Any
import numpy as np
import onnx
from ...calibrate import CalibrationDataReader, CalibrationMethod
from ...quant_utils import QuantType
from ...quantize import StaticQuantConfig
from ...tensor_quant_overrides import TensorQuantOverridesHelper
from .mixed_precision_overrides_utils import MixedPrecisionTensorQuantOverridesFixer
Q16_TYPES = {QuantType.QInt16, QuantType.QUInt16}
Q8_TYPES = {QuantType.QInt8, QuantType.QUInt8}
Q4_TYPES = {QuantType.QInt4, QuantType.QUInt4}
OP_TYPES_TO_EXCLUDE = {"Cast"}
MODEL_SIZE_THRESHOLD = 2147483648 # Quant model should use external data if >= 2GB
def warn_unable_to_override(
node: onnx.NodeProto,
what_str: str,
tensor_name: str,
io_kind: str,
):
logging.warning(
f"Unable to override {what_str} for {node.op_type} node's {io_kind} "
"because it has already been overridden! Check the initial quantization overrides provided "
"to get_qnn_qdq_config() if the generated QDQ model does not run on QNN EP. "
f"Node name: {node.name}, {io_kind} name: {tensor_name}"
)
def get_qnn_qdq_config(
model_input: str | Path | onnx.ModelProto,
calibration_data_reader: CalibrationDataReader,
calibrate_method: CalibrationMethod = CalibrationMethod.MinMax,
activation_type: QuantType = QuantType.QUInt8,
weight_type: QuantType = QuantType.QUInt8,
per_channel: bool = False,
init_overrides: dict[str, list[dict[str, Any]]] | None = None,
add_qtype_converts: bool = True,
activation_symmetric: bool = False,
weight_symmetric: bool | None = None,
keep_removable_activations: bool = False,
stride: int | None = None,
) -> StaticQuantConfig:
"""
Returns a static quantization configuration suitable for running QDQ models on QNN EP.
This is done primarily by setting tensor-level quantization overrides.
Params:
model_input: Path to the input model file or ModelProto.
calibration_data_reader: Calibration data reader.
calibrate_methode: The calibration method. Defaults to MinMax.
activation_type: The default activation quantization type. Defaults to QUInt8.
weight_type: The default weight quantization type. Defaults to QUInt8.
per_channel: Global option that determines if a fixed set of operator types should be quantized per-channel.
Defaults to false. Alternatively, use the tensor-level `init_overrides` to select individual operators
and their quantization axes.
If set, the quantization tool uses per-channel quantization for the following operator types and inputs:
- Conv:
- input[1] on axis 0
- input[2] (bias) on axis 0
- ConvTranspose:
- input[1] on axis 1
- input[2] (bias) on axis 0
init_overrides: Initial tensor-level quantization overrides. Defaults to None. This function updates of a copy
of these overrides with any necessary adjustments and includes them in the returned
configuration object (i.e., config.extra_options['TensorQuantOverrides']).
The key is a tensor name and the value is a list of dictionaries. For per-tensor quantization, the list
contains a single dictionary. For per-channel quantization, the list contains either a dictionary for
each channel in the tensor or a single dictionary that is assumed to apply to all channels. An 'axis'
key must be present in the first dictionary for per-channel quantization.
Each dictionary contains optional overrides with the following keys and values.
'quant_type' = QuantType : The tensor's quantization data type.
'axis' = Int : The per-channel axis. Must be present for per-channel weights.
'scale' = Float : The scale value to use. Must also specify `zero_point` if set.
'zero_point' = Int : The zero-point value to use. Must also specify `scale` is set.
'symmetric' = Bool : If the tensor should use symmetric quantization. Invalid if also
set `scale` or `zero_point`.
'reduce_range' = Bool : If the quantization range should be reduced. Invalid if also
set `scale` or `zero_point`. Only valid for initializers.
'rmax' = Float : Override the maximum real tensor value in calibration data.
Invalid if also set `scale` or `zero_point`.
'rmin' = Float : Override the minimum real tensor value in calibration data.
Invalid if also set `scale` or `zero_point`.
'convert' = Dict : A nested dictionary with the same keys for an activation
tensor that should be converted to another quantization type.
'convert["recv_nodes"] = Set : Set of node names that consume the converted activation,
other nodes get the original type. If not specified,
assume all consumer nodes get the converted type.
add_qtype_converts: True if this function should automatically add "convert" entries to the provided
`init_overrides` to ensure that operators use valid input/output types (activations only).
Ex: if you override the output of an Add to 16-bit, this option ensures that the activation inputs
of the Add are also up-converted to 16-bit and that data types for surrounding ops are converted
appropriately. Refer to the documentation in mixed_precision_overrides_utils.py for additional details.
activation_symmetric: True if activations should be quantized symmetrically (i.e, rmax == -rmin) by default.
Defaults to false. For int8 and int16, this results in zero-point values of 0. For uint8 and uin16,
the zero-point values are 128 and 32,768, respectively.
weight_symmetric: True if weights should be quantized symmetrically (i.e., rmax == -rmin) by default.
Defaults to None. If set to None, weight_symmetric is assumed true if the weight_type is a signed int.
keep_removable_activations: Defaults to false. If true, "removable" activations (e.g., Clip or Relu) will not
be removed, and will be explicitly represented in the QDQ model. If false, these activations
are automatically removed if activations are asymmetrically quantized. Keeping these activations
is necessary if optimizations or EP transformations will later remove
QuantizeLinear/DequantizeLinear operators from the model.
Returns:
A StaticQuantConfig object
"""
if weight_symmetric is None:
weight_symmetric = weight_type in {QuantType.QInt8, QuantType.QInt16}
model = (
model_input
if isinstance(model_input, onnx.ModelProto)
else onnx.load_model(model_input, load_external_data=False)
)
op_types = set()
model_has_external_data = False
name_to_initializer = {}
# Build map of initializers (name -> initializer) and
# check if the model has external data.
for initializer in model.graph.initializer:
name_to_initializer[initializer.name] = initializer
if onnx.external_data_helper.uses_external_data(initializer):
model_has_external_data = True
overrides_helper = TensorQuantOverridesHelper(copy.deepcopy(init_overrides) if init_overrides else {})
if not overrides_helper.empty() and add_qtype_converts:
# Fix mixed-precision overrides.
overrides_fixer = MixedPrecisionTensorQuantOverridesFixer.create_from_model(
overrides_helper, model, activation_type
)
overrides_fixer.apply(activation_type, activation_symmetric)
# Setup quantization overrides for specific operator types to ensure compatibility with QNN EP.
qnn_compat = QnnCompatibilityOverrides(
activation_type,
weight_type,
activation_symmetric,
weight_symmetric,
per_channel,
overrides_helper,
name_to_initializer,
)
for node in model.graph.node:
op_types.add(node.op_type)
qnn_compat.process_node(node)
extra_options = {
"MinimumRealRange": 0.0001,
"DedicatedQDQPair": False, # Let ORT optimizer duplicate DQ nodes
"QDQKeepRemovableActivations": keep_removable_activations,
"TensorQuantOverrides": overrides_helper.get_dict(),
"ActivationSymmetric": activation_symmetric,
"WeightSymmetric": weight_symmetric,
"CalibStridedMinMax": stride,
}
# ONNX opset < 21 does not support 16-bit quantization, so must use 'com.microsoft' domain
# on Q/DQ operators if using 16-bit or 4-bit quantization.
onnx_opset = next(x for x in model.opset_import if x.domain == "" or x.domain == "ai.onnx")
if onnx_opset.version < 21:
opset21_types = Q16_TYPES.union(Q4_TYPES)
overrides_have_opset21_types = any(t in opset21_types for t in overrides_helper.get_quant_types())
if activation_type in opset21_types or weight_type in opset21_types or overrides_have_opset21_types:
extra_options["UseQDQContribOps"] = True
return StaticQuantConfig(
calibration_data_reader,
calibrate_method=calibrate_method,
activation_type=activation_type,
weight_type=weight_type,
op_types_to_quantize=list(op_types.difference(OP_TYPES_TO_EXCLUDE)),
per_channel=per_channel,
use_external_data_format=(model_has_external_data or model.ByteSize() >= MODEL_SIZE_THRESHOLD),
extra_options=extra_options,
)
class QnnCompatibilityOverrides:
"""
Helper that processes nodes to generate quantization overrides that make the resulting QDQ model
compatible with QNN EP.
"""
def __init__(
self,
default_activation_qtype: QuantType,
default_weight_qtype: QuantType,
activation_symmetric: bool,
weight_symmetric: bool,
per_channel: bool,
overrides: TensorQuantOverridesHelper,
initializers: dict[str, onnx.TensorProto],
):
self.default_activation_qtype = default_activation_qtype
self.default_weight_qtype = default_weight_qtype
self.activation_symmetric = activation_symmetric
self.weight_symmetric = weight_symmetric
self.per_channel = per_channel
self.overrides = overrides
self.initializers = initializers
self.process_fns = {
"MatMul": self._process_matmul,
"LayerNormalization": self._process_layernorm,
"Sigmoid": self._process_sigmoid,
"Tanh": self._process_tanh,
}
def process_node(self, node: onnx.NodeProto):
process_fn = self.process_fns.get(node.op_type)
if process_fn is not None:
process_fn(node)
def _make_static_inputs_use_default_weight_type(self, node: onnx.NodeProto):
"""
Overrides initializer input(s) to use the default weight type if:
- The default weight type is 8-bit
- One of the inputs is a 16-bit activation
- The other input is an initializer (per-tensor quantized)
This is necessary because the quantization tool does not assign MatMul or LayerNorm initializer
inputs the default weight type. Instead, it assigns the default activation type.
"""
if self.default_weight_qtype not in Q8_TYPES:
return
input_16bit_act_name = None
input_weight_name = None
# Loop through first 2 inputs to find a 16-bit activation and a (per-tensor) weight.
for i in range(2):
input_name = node.input[i]
if not input_name:
continue
is_weight = input_name in self.initializers
qtype_info = self.overrides.get_node_input_qtype_info(
input_name,
node.name,
default_qtype=None if is_weight else self.default_activation_qtype,
)
if qtype_info.axis is not None:
return # Don't process MatMul with a per-channel quantized input.
if (
is_weight
and qtype_info.quant_type == self.default_weight_qtype
and qtype_info.symmetric == self.weight_symmetric
):
return # Return. Weight is already overridden to use the desired weight type.
if is_weight:
input_weight_name = input_name
elif qtype_info.quant_type in Q16_TYPES:
input_16bit_act_name = input_name
# Override initializer input to use the default weight type.
if input_16bit_act_name and input_weight_name:
did_update = self.overrides.update_tensor_overrides(
input_weight_name,
{"quant_type": self.default_weight_qtype, "symmetric": self.weight_symmetric},
overwrite=False,
)
if not did_update:
warn_unable_to_override(node, "quant_type/symmetric", input_weight_name, "input weight")
def _process_matmul(self, node: onnx.NodeProto):
assert node.op_type == "MatMul", f"Expected MatMul, but got {node.op_type}"
if not self.per_channel:
self._make_static_inputs_use_default_weight_type(node)
return
# QNN does not support per-channel MatMul. However, the ORT quantization tool attempts to use per-channel
# quantization for MatMul by default *if* the global per_channel setting is enabled. So, we need to
# provide explicit per-tensor quantization overrides for MatMul if per_channel is enabled and
# the user did not provide any other overrides.
for input_name in node.input:
is_weight_no_overrides = input_name in self.initializers and input_name not in self.overrides
if is_weight_no_overrides:
self.overrides.update_tensor_overrides(
input_name,
{"quant_type": self.default_weight_qtype, "symmetric": self.weight_symmetric},
)
def _process_layernorm(self, node: onnx.NodeProto):
assert node.op_type == "LayerNormalization", f"Expected LayerNormalization, but got {node.op_type}"
if not self.per_channel:
self._make_static_inputs_use_default_weight_type(node)
return
has_weight_no_overrides = node.input[1] in self.initializers and node.input[1] not in self.overrides
has_bias_no_overrides = (
len(node.input) > 2
and node.input[2]
and node.input[2] in self.initializers
and node.input[2] not in self.overrides
)
if has_weight_no_overrides or has_bias_no_overrides:
# TODO: Make bias input not per-channel. QNN needs it to be per-tensor, but quantizer
# tries to makes it per-channel if the weight is also per-channel.
raise ValueError(
"get_qnn_qdq_config() does not currently support the global per_channel option with LayerNormalization."
" Please try using custom overrides that make bias per-tensor quantized."
)
def _process_sigmoid(self, node: onnx.NodeProto):
"""
Overrides 16-bit Sigmoid's output scale and zero-point as per QNN requirements.
"""
assert node.op_type == "Sigmoid", f"Expected Sigmoid, but got {node.op_type}"
output_type = self.overrides.get_node_output_qtype_info(
node.output[0], self.default_activation_qtype
).quant_type
if output_type == QuantType.QUInt16:
self.overrides.update_tensor_overrides(
node.output[0],
{
"quant_type": output_type,
"scale": np.array(1.0 / 65536.0, dtype=np.float32),
"zero_point": np.array(0, dtype=np.uint16),
},
)
elif output_type == QuantType.QInt16:
self.overrides.update_tensor_overrides(
node.output[0],
{
"quant_type": output_type,
"scale": np.array(1.0 / 32768.0, dtype=np.float32),
"zero_point": np.array(0, dtype=np.int16),
},
)
def _process_tanh(self, node: onnx.NodeProto):
"""
Overrides 16-bit Tanh's output scale and zero-point as per QNN requirements.
"""
assert node.op_type == "Tanh", f"Expected Tanh, but got {node.op_type}"
output_type = self.overrides.get_node_output_qtype_info(
node.output[0], self.default_activation_qtype
).quant_type
if output_type == QuantType.QUInt16:
self.overrides.update_tensor_overrides(
node.output[0],
{
"quant_type": output_type,
"scale": np.array(1.0 / 32768.0, dtype=np.float32),
"zero_point": np.array(32768, dtype=np.uint16),
},
)
elif output_type == QuantType.QInt16:
self.overrides.update_tensor_overrides(
node.output[0],
{
"quant_type": output_type,
"scale": np.array(1.0 / 32768.0, dtype=np.float32),
"zero_point": np.array(0, dtype=np.int16),
},
)

View File

@ -0,0 +1,3 @@
from .fusion import Fusion # noqa: F401
from .fusion_gelu import FusionGelu # noqa: F401
from .fusion_layernorm import FusionLayerNormalization # noqa: F401

View File

@ -0,0 +1,311 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
from collections import deque
import onnx
from ..onnx_model import ONNXModel
class Fusion:
"""
Base class for fusions.
"""
def __init__(self, model: ONNXModel, fused_op_type: str, search_op_type: str):
self.search_op_type: str = search_op_type
self.fused_op_type: str = fused_op_type
self.model: ONNXModel = model
self.nodes_to_remove: list = []
self.nodes_to_add: list = []
self._new_node_name_prefix = self.fused_op_type + "_fused_" + self.search_op_type + "_"
self._new_node_name_suffix = None # int|None used to create unique node names for the fused ops.
def fuse(
self,
node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
):
"""
Interface function for derived fusion classes. Tries to fuse a node sequence containing
the specified node.
"""
raise NotImplementedError
def apply(self) -> bool:
"""
Apply graph fusion on the entire model graph.
"""
input_name_to_nodes = self.model.input_name_to_nodes()
output_name_to_node = self.model.output_name_to_node()
for node in self.model.nodes():
if node.op_type == self.search_op_type:
self.fuse(node, input_name_to_nodes, output_name_to_node)
self.model.remove_nodes(self.nodes_to_remove)
self.model.add_nodes(self.nodes_to_add)
graph_updated = bool(self.nodes_to_remove or self.nodes_to_add)
if graph_updated:
self.model.remove_unused_constant()
return graph_updated
def create_unique_node_name(self):
prefix = self._new_node_name_prefix
if self._new_node_name_suffix is None:
largest_suffix: int = self.model.get_largest_node_name_suffix(prefix)
self._new_node_name_suffix = largest_suffix + 1
new_name = f"{prefix}{self._new_node_name_suffix!s}"
self._new_node_name_suffix += 1
return new_name
@staticmethod
def is_safe_to_fuse_nodes(
nodes_to_remove: list[onnx.NodeProto],
keep_outputs: list[str],
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> bool:
for node_to_remove in nodes_to_remove:
for output_to_remove in node_to_remove.output:
if output_to_remove in keep_outputs:
continue
if output_to_remove in input_name_to_nodes:
for impacted_node in input_name_to_nodes[output_to_remove]:
if impacted_node not in nodes_to_remove:
# Not safe to remove nodes since output is used by impacted_node
return False
return True
@staticmethod
def get_node_attribute(node: onnx.NodeProto, attribute_name: str):
for attr in node.attribute:
if attr.name == attribute_name:
value = onnx.helper.get_attribute_value(attr)
return value
return None
@staticmethod
def input_index(node_output: str, child_node: onnx.NodeProto) -> int:
for index, input_name in enumerate(child_node.input):
if input_name == node_output:
return index
return -1
@staticmethod
def tensor_shape_to_list(tensor_type) -> list[int]:
shape_list = []
for d in tensor_type.shape.dim:
if d.HasField("dim_value"):
shape_list.append(d.dim_value) # known dimension
elif d.HasField("dim_param"):
shape_list.append(d.dim_param) # unknown dimension with symbolic name
else:
shape_list.append("?") # shall not happen
return shape_list
def get_constant_input(self, node: onnx.NodeProto):
for i, inp in enumerate(node.input):
value = self.model.get_constant_value(inp)
if value is not None:
return i, value
return None, None
def find_constant_input(self, node: onnx.NodeProto, expected_value: float, delta: float = 0.000001) -> int:
i, value = self.get_constant_input(node)
if value is not None and value.size == 1 and abs(value - expected_value) < delta:
return i
return -1
def has_constant_input(self, node: onnx.NodeProto, expected_value: float, delta: float = 0.000001) -> bool:
return self.find_constant_input(node, expected_value, delta) >= 0
def is_constant_with_specified_rank(self, output_name: str, rank: int) -> bool:
value = self.model.get_constant_value(output_name)
if value is None:
return False # Not an initializer
if len(value.shape) != rank:
return False # Wrong dimensions
return True
def match_first_parent(
self,
node: onnx.NodeProto,
parent_op_type: str,
output_name_to_node: dict[str, onnx.NodeProto] | None = None,
exclude: list[onnx.NodeProto] = [], # noqa: B006
) -> tuple[onnx.NodeProto | None, int | None]:
"""
Find parent node based on constraints on op_type.
Args:
node: current node.
parent_op_type (str): constraint of parent node op_type.
output_name_to_node (dict): dictionary with output name as key, and node as value.
exclude (list): list of nodes that are excluded (not allowed to match as parent).
Returns:
parent: The matched parent node. None if not found.
index: The input index of matched parent node. None if not found.
"""
if output_name_to_node is None:
output_name_to_node = self.model.output_name_to_node()
for i, inp in enumerate(node.input):
if inp in output_name_to_node:
parent = output_name_to_node[inp]
if parent.op_type == parent_op_type and parent not in exclude:
return parent, i
return None, None
def match_parent(
self,
node: onnx.NodeProto,
parent_op_type: str,
input_index: int | None = None,
output_name_to_node: dict[str, onnx.NodeProto] | None = None,
exclude: list[onnx.NodeProto] = [], # noqa: B006
return_indice: list[int] | None = None,
) -> onnx.NodeProto | None:
"""
Find parent node based on constraints on op_type and index.
When input_index is None, we will find the first parent node based on constraints,
and return_indice will be appended the corresponding input index.
Args:
node (str): current node name.
parent_op_type (str): constraint of parent node op_type.
input_index (int or None): only check the parent given input index of current node.
output_name_to_node (dict): dictionary with output name as key, and node as value.
exclude (list): list of nodes that are excluded (not allowed to match as parent).
return_indice (list): a list to append the input index when input_index is None.
Returns:
parent: The matched parent node.
"""
assert node is not None
assert input_index is None or input_index >= 0
if output_name_to_node is None:
output_name_to_node = self.model.output_name_to_node()
if input_index is None:
parent, index = self.match_first_parent(node, parent_op_type, output_name_to_node, exclude)
if return_indice is not None:
return_indice.append(index)
return parent
if input_index >= len(node.input):
# Input index out of bounds.
return None
parent = self.model.get_parent(node, input_index, output_name_to_node)
if parent is not None and parent.op_type == parent_op_type and parent not in exclude:
return parent
return None
def match_parent_path(
self,
node: onnx.NodeProto,
parent_op_types: list[str],
parent_input_index: list[int] | None = None,
output_name_to_node: dict[str, onnx.NodeProto] | None = None,
return_indice: list[int] | None = None,
) -> list[onnx.NodeProto] | None:
"""
Find a sequence of input edges based on constraints on parent op_type and index.
When input_index is None, we will find the first parent node based on constraints,
and return_indice will be appended the corresponding input index.
Args:
node (str): current node name.
parent_op_types (str): constraint of parent node op_type of each input edge.
parent_input_index (list): constraint of input index of each input edge. None means no constraint.
output_name_to_node (dict): dictionary with output name as key, and node as value.
return_indice (list): a list to append the input index
When there is no constraint on input index of an edge.
Returns:
parents: a list of matched parent node.
"""
if parent_input_index is not None:
assert len(parent_input_index) == len(parent_op_types)
if output_name_to_node is None:
output_name_to_node = self.model.output_name_to_node()
current_node = node
matched_parents = []
for i, op_type in enumerate(parent_op_types):
matched_parent = self.match_parent(
current_node,
op_type,
parent_input_index[i] if parent_input_index is not None else None,
output_name_to_node,
exclude=[],
return_indice=return_indice,
)
if matched_parent is None:
return None
matched_parents.append(matched_parent)
current_node = matched_parent
return matched_parents
def match_parent_paths(
self,
node: onnx.NodeProto,
paths: list[tuple[list[str], list[int]]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> tuple[int, list[onnx.NodeProto] | None, list[int] | None]:
"""
Find a matching parent path to the given node.
"""
for i, path in enumerate(paths):
return_indice = []
matched = self.match_parent_path(node, path[0], path[1], output_name_to_node, return_indice)
if matched:
return i, matched, return_indice
return -1, None, None
def find_first_child_by_type(
self,
node: onnx.NodeProto,
child_type: str,
input_name_to_nodes: dict[str, list[onnx.NodeProto]] | None = None,
recursive: bool = True,
) -> onnx.NodeProto | None:
children = self.model.get_children(node, input_name_to_nodes)
dq = deque(children)
while len(dq) > 0:
current_node = dq.pop()
if current_node.op_type == child_type:
return current_node
if recursive:
children = self.model.get_children(current_node, input_name_to_nodes)
for child in children:
dq.appendleft(child)
return None

View File

@ -0,0 +1,272 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import onnx
from ..onnx_model import ONNXModel
from .fusion import Fusion
class FusionGelu(Fusion):
def __init__(self, model: ONNXModel):
super().__init__(model, "Gelu", "Erf")
def fuse(
self,
erf_node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
):
"""
Interface function that tries to fuse a node sequence containing an Erf node into a single
Gelu node.
"""
if (
self.fuse_1(erf_node, input_name_to_nodes, output_name_to_node)
or self.fuse_2(erf_node, input_name_to_nodes, output_name_to_node)
or self.fuse_3(erf_node, input_name_to_nodes, output_name_to_node)
):
self.model.set_opset_import("com.microsoft", 1)
def fuse_1(
self,
erf_node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> bool:
"""
This pattern is from PyTorch model
Fuse Gelu with Erf into one node:
Pattern 1:
+-------Mul(0.5)---------------------+
| |
| v
[root] --> Div -----> Erf --> Add --> Mul -->
(B=1.4142...) (1)
Pattern 2:
+------------------------------------+
| |
| v
[root] --> Div -----> Erf --> Add --> Mul -->Mul -->
(B=1.4142...) (1) (0.5)
Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
"""
if erf_node.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[erf_node.output[0]]
if len(children) != 1 or children[0].op_type != "Add":
return False
add_after_erf = children[0]
if not self.has_constant_input(add_after_erf, 1):
return False
if add_after_erf.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[add_after_erf.output[0]]
if len(children) != 1 or children[0].op_type != "Mul":
return False
mul_after_erf = children[0]
div = self.match_parent(erf_node, "Div", 0, output_name_to_node)
if div is None:
return False
if self.find_constant_input(div, 1.4142, delta=0.001) != 1:
return False
subgraph_input = div.input[0]
another = 1 if mul_after_erf.input[0] == add_after_erf.output[0] else 0
if subgraph_input == mul_after_erf.input[another]: # pattern 2
children = input_name_to_nodes[mul_after_erf.output[0]]
if len(children) != 1 or children[0].op_type != "Mul":
return False
mul_half = children[0]
if not self.has_constant_input(mul_half, 0.5):
return False
subgraph_output = mul_half.output[0]
else: # pattern 1
mul_half = self.match_parent(mul_after_erf, "Mul", another, output_name_to_node)
if mul_half is None:
return False
if not self.has_constant_input(mul_half, 0.5):
return False
if subgraph_input not in mul_half.input:
return False
subgraph_output = mul_after_erf.output[0]
subgraph_nodes = [div, erf_node, add_after_erf, mul_after_erf, mul_half]
if not self.is_safe_to_fuse_nodes(subgraph_nodes, [subgraph_output], input_name_to_nodes, output_name_to_node):
return False
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = onnx.helper.make_node(
"Gelu", name=self.create_unique_node_name(), inputs=[subgraph_input], outputs=[subgraph_output]
)
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
return True
def fuse_2(
self,
erf_node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> bool:
"""
This pattern is from Keras model
Fuse Gelu with Erf into one node:
+------------------------------------------+
| |
| v
[root] --> Div -----> Erf --> Add --> Mul -->Mul
(B=1.4142...) (A=1) (A=0.5)
Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
"""
if erf_node.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[erf_node.output[0]]
if len(children) != 1 or children[0].op_type != "Add":
return False
add_after_erf = children[0]
if not self.has_constant_input(add_after_erf, 1):
return False
if add_after_erf.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[add_after_erf.output[0]]
if len(children) != 1 or children[0].op_type != "Mul":
return False
mul_after_erf = children[0]
if not self.has_constant_input(mul_after_erf, 0.5):
return False
if mul_after_erf.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[mul_after_erf.output[0]]
if len(children) != 1 or children[0].op_type != "Mul":
return False
mul = children[0]
div = self.match_parent(erf_node, "Div", 0, output_name_to_node)
if div is None:
return False
sqrt_node = None
if self.find_constant_input(div, 1.4142, delta=0.001) != 1:
sqrt_node = self.match_parent(div, "Sqrt", 1, output_name_to_node)
if sqrt_node is None:
return False
if not self.has_constant_input(sqrt_node, 2.0):
return False
subgraph_input = div.input[0]
if subgraph_input not in mul.input:
return False
subgraph_nodes = [div, erf_node, add_after_erf, mul_after_erf, mul]
if sqrt_node:
subgraph_nodes.append(sqrt_node)
if not self.is_safe_to_fuse_nodes(subgraph_nodes, [mul.output[0]], input_name_to_nodes, output_name_to_node):
return False
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = onnx.helper.make_node(
"Gelu", name=self.create_unique_node_name(), inputs=[subgraph_input], outputs=[mul.output[0]]
)
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
return True
def fuse_3(
self,
erf_node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> bool:
"""
This pattern is from TensorFlow model
Fuse Gelu with Erf into one node:
+----------------------------------------------+
| |
| v
[root] --> Mul -----> Erf --> Add --> Mul -->Mul
(A=0.7071067690849304) (B=1) (B=0.5)
Note that constant input for Add and Mul could be first or second input: like either A=0.5 or B=0.5 is fine.
"""
if erf_node.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[erf_node.output[0]]
if len(children) != 1 or children[0].op_type != "Add":
return False
add_after_erf = children[0]
if not self.has_constant_input(add_after_erf, 1):
return False
if add_after_erf.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[add_after_erf.output[0]]
if len(children) != 1 or children[0].op_type != "Mul":
return False
mul_half = children[0]
if not self.has_constant_input(mul_half, 0.5):
return False
first_mul = self.match_parent(erf_node, "Mul", 0, output_name_to_node)
if first_mul is None:
return False
i = self.find_constant_input(first_mul, 0.7071067690849304, delta=0.001)
if i < 0:
return False
root_input_index = 1 - i
subgraph_input = first_mul.input[root_input_index]
if mul_half.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[mul_half.output[0]]
if len(children) != 1 or children[0].op_type != "Mul":
return False
last_mul = children[0]
if not (last_mul.input[0] == subgraph_input or last_mul.input[1] == subgraph_input):
return False
subgraph_nodes = [first_mul, erf_node, add_after_erf, mul_half, last_mul]
if not self.is_safe_to_fuse_nodes(
subgraph_nodes,
[last_mul.output[0]],
input_name_to_nodes,
output_name_to_node,
):
return False
self.nodes_to_remove.extend(subgraph_nodes)
fused_node = onnx.helper.make_node(
"Gelu", name=self.create_unique_node_name(), inputs=[subgraph_input], outputs=[last_mul.output[0]]
)
fused_node.domain = "com.microsoft"
self.nodes_to_add.append(fused_node)
return True

View File

@ -0,0 +1,135 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import onnx
from ..onnx_model import ONNXModel
from .fusion import Fusion
class FusionLayerNormalization(Fusion):
def __init__(self, model: ONNXModel):
super().__init__(model, "LayerNormalization", "ReduceMean")
def fuse(
self,
reduce_mean_node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
):
"""
Interface function that tries to fuse a node sequence containing a ReduceMean node into a single
LayerNormalization node.
+----------------------+
| |
| v
[Root] --> ReduceMean --> Sub --> Pow --> ReduceMean --> Add --> Sqrt --> Div --> Mul --> Add
(axis=2 or -1) | (Y=2) (axis=2 or -1) (E-6 or E-12 or 0) ^
| |
+-------------------------------------------------+
It also handles cases of duplicated sub nodes exported from older version of PyTorch:
+----------------------+
| v
| +-------> Sub-----------------------------------------------+
| | |
| | v
[Root] --> ReduceMean --> Sub --> Pow --> ReduceMean --> Add --> Sqrt --> Div --> Mul --> Add
| ^
| |
+----------------------+
"""
children = self.model.get_children(reduce_mean_node, input_name_to_nodes)
if len(children) == 0 or len(children) > 2:
return
root_input = reduce_mean_node.input[0]
if children[0].op_type != "Sub" or children[0].input[0] != root_input:
return
if len(children) == 2:
if children[1].op_type != "Sub" or children[1].input[0] != root_input:
return
div_node = None
for child in children:
div_node = self.find_first_child_by_type(child, "Div", input_name_to_nodes, recursive=False)
if div_node is not None:
break
if div_node is None:
return
path_id, parent_nodes, _ = self.match_parent_paths(
div_node,
[
(["Sqrt", "Add", "ReduceMean", "Pow", "Sub"], [1, 0, 0, 0, 0]),
(
["Sqrt", "Add", "ReduceMean", "Pow", "Cast", "Sub"],
[1, 0, 0, 0, 0, 0],
),
],
output_name_to_node,
)
if path_id < 0:
return
sub_node = parent_nodes[-1]
if sub_node not in children:
return
second_add_node = parent_nodes[1]
i, add_weight = self.get_constant_input(second_add_node)
if add_weight is None or add_weight <= 0 or add_weight > 1.0e-4:
# Skip fusion since epsilon value is not expected.
return
pow_node = parent_nodes[3]
if self.find_constant_input(pow_node, 2.0) != 1:
return
mul_node = input_name_to_nodes[div_node.output[0]][0]
if mul_node.op_type != "Mul":
return
last_add_node = input_name_to_nodes[mul_node.output[0]][0]
if last_add_node.op_type != "Add":
return
subgraph_nodes = [reduce_mean_node]
subgraph_nodes.extend(children)
subgraph_nodes.extend(parent_nodes[:-1])
subgraph_nodes.extend([last_add_node, mul_node, div_node])
if not self.is_safe_to_fuse_nodes(
subgraph_nodes,
last_add_node.output,
input_name_to_nodes,
output_name_to_node,
):
return
weight_input = mul_node.input[1 - self.input_index(div_node.output[0], mul_node)]
if not self.is_constant_with_specified_rank(weight_input, 1):
return
bias_input = last_add_node.input[1 - self.input_index(mul_node.output[0], last_add_node)]
if not self.is_constant_with_specified_rank(bias_input, 1):
return
self.nodes_to_remove.extend(subgraph_nodes)
normalize_node = onnx.helper.make_node(
"LayerNormalization",
name=self.create_unique_node_name(),
inputs=[reduce_mean_node.input[0], weight_input, bias_input],
outputs=[last_add_node.output[0]],
)
normalize_node.attribute.extend([onnx.helper.make_attribute("epsilon", float(add_weight))])
self.nodes_to_add.append(normalize_node)

View File

@ -0,0 +1,857 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import argparse
import copy
import importlib
import logging
import os
import numpy as np
import numpy.typing as npt
import onnx
from onnx.onnx_pb import GraphProto, ModelProto, NodeProto, TensorProto
from packaging import version
from onnxruntime.capi._pybind_state import quantize_matmul_4bits, quantize_qdq_matmul_4bits
from .calibrate import CalibrationDataReader
from .onnx_model import ONNXModel
from .quant_utils import QuantFormat, attribute_to_kwarg
logging.basicConfig(format="%(asctime)s %(name)s [%(levelname)s] - %(message)s", level=logging.INFO)
logger = logging.getLogger(__name__)
class WeightOnlyQuantConfig:
def __init__(self, algorithm, quant_format):
"""This is the Base class for Weight Only Quant Configuration.
Args:
algorithm:
weight only quantize algorithm name.
quant_format: QuantFormat{QOperator, QDQ}.
QOperator format quantizes the model with quantized operators directly.
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
"""
self.algorithm = algorithm
self.quant_format = quant_format
class RTNWeightOnlyQuantConfig(WeightOnlyQuantConfig):
def __init__(
self,
ratios=None,
quant_format=QuantFormat.QOperator,
):
"""
This is a class for round-to-nearest (RTN) algorithm Weight Only Quant Configuration.
RTN is the most straightforward way to quantize weight using scale maps.
Args:
ratios:
percentile of clip. Defaults to {}.
quant_format (QuantFormat{QOperator, QDQ}, optional):
QOperator format quantizes the model with quantized operators directly.
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
Defaults to QuantFormat.QOperator.
"""
assert quant_format == QuantFormat.QOperator, "RTN only supports QOperator format"
if ratios is None:
ratios = {}
super().__init__(
algorithm="RTN",
quant_format=quant_format,
)
self.ratios = ratios
class GPTQWeightOnlyQuantConfig(WeightOnlyQuantConfig):
def __init__(
self,
calibration_data_reader: CalibrationDataReader,
percdamp=0.01,
block_size=128,
actorder=False,
mse=False,
perchannel=True,
quant_format=QuantFormat.QOperator,
):
"""
This is a class for GPTQ algorithm Weight Only Quant Configuration.
GPTQ algorithm provides more accurate quantization but requires more computational resources.
Args:
calibration_data_reader:
a calibration data reader. It enumerates calibration data and generates inputs for the original model.
percdamp:
percent of the average Hessian diagonal to use for dampening.
block_size (int, optional):
channel number in one block to execute a GPTQ quantization iteration.
actorder (bool, optional):
whether rearrange Hessian matrix considering the diag's value.
mse (bool, optional):
whether get scale and zero point with mse error.
perchannel (bool, optional):
whether quantize weight per-channel.
quant_format (QuantFormat{QOperator, QDQ}, optional):
QOperator format quantizes the model with quantized operators directly.
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
Defaults to QuantFormat.QOperator.
"""
assert quant_format == QuantFormat.QOperator, "GPTQ only supports QOperator format"
super().__init__(
algorithm="GPTQ",
quant_format=quant_format,
)
self.calibration_data_reader = calibration_data_reader
self.percdamp = percdamp
self.block_size = block_size
self.actorder = actorder
self.mse = mse
self.perchannel = perchannel
class HQQWeightOnlyQuantConfig(WeightOnlyQuantConfig):
def __init__(
self,
block_size=128,
bits=4,
axis=1,
quant_format=QuantFormat.QOperator,
):
"""
This is a class for HQQ algorithm Weight Only Quant Configuration.
HQQ algorithm quant weight without needing calibrate data.
Args:
block_size (int, optional):
channel number in one block to execute a HQQ quantization iteration.
bits (int, optional):
how many bits to represent weight.
axis (int, optional):
0 or 1. which axis to quantize. https://arxiv.org/pdf/2309.15531.pdf
quant_format (QuantFormat{QOperator, QDQ}, optional):
QOperator format quantizes the model with quantized operators directly.
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
Defaults to QuantFormat.QOperator.
"""
assert quant_format == QuantFormat.QOperator, "HQQ only supports QOperator format"
super().__init__(
algorithm="HQQ",
quant_format=quant_format,
)
self.block_size = block_size
self.bits = bits
self.axis = axis
class DefaultWeightOnlyQuantConfig(WeightOnlyQuantConfig):
def __init__(
self,
block_size: int = 128,
is_symmetric: bool = False,
accuracy_level: int | None = None,
quant_format=QuantFormat.QOperator,
):
"""
This is a class for weight only affine quantization configuration.
Args:
block_size (int, optional):
channel number in one block to execute an affine quantization iteration.
is_symmetric (bool, optional):
whether quantize weight symmetrically.
accuracy_level (int, optional):
Accuracy level of the 4-bit quantized MatMul computation.
Refer to the MatMulNBits contrib op's 'accuracy_level' attribute for details.
(https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#commicrosoftmatmulnbits)
quant_format (QuantFormat{QOperator, QDQ}, optional):
QOperator format quantizes the model with quantized operators directly.
QDQ format quantize the model by inserting QuantizeLinear/DeQuantizeLinear on the tensor.
Defaults to QuantFormat.QOperator.
"""
super().__init__(algorithm="DEFAULT", quant_format=quant_format)
self.block_size = block_size
self.is_symmetric = is_symmetric
self.bits = 4
self.accuracy_level = accuracy_level
def is_divisible(val1, val2):
return int(val2 * np.ceil(val1 / val2)) == val1
class HQQWeightOnlyQuantizer:
def __init__(
self,
config: HQQWeightOnlyQuantConfig,
):
self.config = config
# Proximal solver || weight - dequantize(quantize(weight))||_p^p
@staticmethod
def optimize_weights(
tensor,
scale,
zero,
min_max: list[int],
axis: int = 0,
opt_params: dict = None, # noqa: RUF013
verbose=False,
):
import torch
opt_params = {"lp_norm": 0.7, "beta": 1e1, "kappa": 1.01, "iters": 20} if opt_params is None else opt_params
lp_norm, beta, kappa, iters = (
opt_params["lp_norm"],
opt_params["beta"],
opt_params["kappa"],
opt_params["iters"],
)
dtype = torch.float16 if tensor.is_cuda else torch.float32
w_f = tensor.to(dtype)
scale = scale.to(dtype)
zero = zero.to(dtype)
if lp_norm == 1:
def shrink_op(x, beta):
return torch.sign(x) * torch.nn.functional.relu(torch.abs(x) - 1.0 / beta)
else:
def shrink_op(x, beta, p=lp_norm):
return torch.sign(x) * torch.nn.functional.relu(
torch.abs(x) - (1.0 / beta) * torch.pow(torch.abs(x) + 1e-8, p - 1)
)
best_error = 1e4
for i in range(iters):
w_q = torch.round(w_f * scale + zero).clamp(min_max[0], min_max[1])
w_r = (w_q - zero) / scale
w_e = shrink_op(w_f - w_r, beta)
zero = torch.mean(w_q - (w_f - w_e) * scale, axis=axis, keepdim=True)
beta *= kappa
current_error = float(torch.abs(w_f - w_r).mean())
if verbose:
print(i, np.round(current_error, 6))
if current_error < best_error:
best_error = current_error
else:
break
del w_f, w_q, w_r, w_e
return scale, zero
@staticmethod
def pack_on_row_fast_248bit(pack_tensor, ori_int_tensor, bits):
if pack_tensor.shape[0] == ori_int_tensor.shape[0]:
ori_int_tensor = ori_int_tensor.T
pack_tensor = pack_tensor.T
if bits in [2, 4, 8]:
compress_ratio = pack_tensor.element_size() * 8 // bits
for j in range(compress_ratio):
pack_tensor[0:] |= ori_int_tensor[j::compress_ratio] << (bits * (j))
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
# from Official implementation of Half-Quadratic Quantization (HQQ)
def quantize_internal(
self, tensor, bits=4, channel_wise=True, group_size=64, optimize=True, round_zero=True, axis=1
):
import torch
weight = tensor.float()
ori_shape = weight.shape
pad_len = (group_size - ori_shape[axis] % group_size) % group_size
if axis == 1:
weight = torch.nn.functional.pad(weight, (0, pad_len), "constant", 0)
else:
weight = torch.nn.functional.pad(weight, (0, 0, 0, pad_len), "constant", 0)
shape = weight.shape
# Reshape for grouping
if (group_size is not None) and channel_wise:
weight = weight.reshape([-1, group_size]) if (axis == 1) else weight.reshape([group_size, -1])
# Get min/max values
if channel_wise is False:
_min, _max = weight.min(), weight.max()
optimize = False
else:
_min = weight.min(axis=axis, keepdim=True)[0]
_max = weight.max(axis=axis, keepdim=True)[0]
max_v = 2**bits - 1
min_v = 0
min_max = [min_v, max_v]
# Note: here we work with the inverse of the scale to avoid division and quantize instead via weight*scale + zero, the scale is inverted later on.
# clamp to avoid half-precision problems
scale = (max_v / (_max - _min)).clamp(max=2e4)
#!!!!!!!!!!!!!!!
min_max_axis = _max - _min
if (min_max_axis == 0).sum().item() > 0:
min_max_axis[min_max_axis == 0] = max_v
scale = (max_v / min_max_axis).clamp(max=2e4)
zero = -_min * scale
if round_zero:
zero = torch.round(zero)
# Fine-tune weights
if optimize:
scale, zero = self.optimize_weights(tensor=weight, scale=scale, zero=zero, min_max=min_max, axis=axis)
# Quantize
# Necessary for fake quantization backprop
w_q = torch.round(weight * scale + zero).clamp(min_max[0], min_max[1])
w_q = w_q.reshape(shape).int()
scale = 1.0 / scale
if axis == 1:
scale = scale.reshape(shape[0], -1)
zero = zero.reshape(shape[0], -1)
else:
scale = scale.reshape(-1, shape[-1])
zero = zero.reshape(-1, shape[-1])
# cleanup
del weight, _min, _max
return w_q, scale.to(tensor.dtype), zero.to(tensor.dtype)
def quantize(self, node: NodeProto, graph_stack: list[GraphProto]) -> list[NodeProto]:
"""
If the node is MatMul with fp32 const weight, quantize the weight with int4, and return the new node.
If QOperator format, return MatMulNbits. If QDQ format, return DeQuantizeLinear + MatMul.
"""
if node.op_type != "MatMul":
return [node] # only care about MatMul for now
import torch
logger.info(f"start to quantize {node.name} ...")
input_b = node.input[1]
b_pb, bs_graph = get_initializer(input_b, graph_stack)
if b_pb is None:
logger.info("MatMul doesn't have const weight. Skip to quantize")
return [node] # only care about constant weight
b_array = onnx.numpy_helper.to_array(b_pb)
if len(b_array.shape) != 2:
logger.info("MatMul weight is not 2D. Skip to quantize")
return [node] # can only process 2-D matrix
b_array_torch = torch.from_numpy(b_array)
if torch.cuda.is_available():
b_array_torch = b_array_torch.cuda()
quant_weight_torch, scales_torch, zero_points_torch = self.quantize_internal(
b_array_torch.T, bits=self.config.bits, group_size=self.config.block_size
)
quant_weight_torch = quant_weight_torch.contiguous()
scales_torch = scales_torch.contiguous()
zero_points_torch = zero_points_torch.contiguous()
packed_torch = torch.zeros(
(quant_weight_torch.shape[0], quant_weight_torch.shape[1] // 2),
dtype=torch.uint8,
device=quant_weight_torch.device,
)
self.pack_on_row_fast_248bit(packed_torch, quant_weight_torch, self.config.bits)
scales = scales_torch.cpu().numpy()
zero_points = zero_points_torch.cpu().numpy()
# reshape to the predefined shape in MatmulNbits
scales = scales.reshape(-1)
zero_points = zero_points.reshape(-1)
rows, cols = b_array_torch.shape
block_size = self.config.block_size
blob_size = block_size // 2
k_blocks = (rows + block_size - 1) // block_size
packed_torch = packed_torch.reshape(cols, k_blocks, blob_size)
b_quant = onnx.numpy_helper.from_array(packed_torch.cpu().numpy())
b_quant.name = b_pb.name + "_Q4"
for input in bs_graph.input:
if input.name == input_b:
bs_graph.input.remove(input)
break
scales_tensor = onnx.numpy_helper.from_array(scales)
scales_tensor.name = b_pb.name + "_scales"
bs_graph.initializer.extend([b_quant, scales_tensor])
input_names = [node.input[0], b_quant.name, scales_tensor.name]
zp_tensor = onnx.numpy_helper.from_array(zero_points)
zp_tensor.name = b_pb.name + "_zero_points"
bs_graph.initializer.extend([zp_tensor])
input_names.append(zp_tensor.name)
kwargs = {}
rows, cols = b_array.shape
kwargs["K"] = rows
kwargs["N"] = cols
kwargs["bits"] = self.config.bits
kwargs["block_size"] = self.config.block_size
matmul_q4_node = onnx.helper.make_node(
"MatMulNBits",
inputs=input_names,
outputs=[node.output[0]],
name=node.name + "_Q4" if node.name else "",
domain="com.microsoft",
**kwargs,
)
logger.info(f"complete quantization of {node.name} ...")
return [matmul_q4_node]
def get_initializer(name, graph_path: list[GraphProto]) -> tuple[TensorProto, GraphProto]:
for gid in range(len(graph_path) - 1, -1, -1):
graph = graph_path[gid]
for tensor in graph.initializer:
if tensor.name == name:
return tensor, graph
return None, None
class DefaultWeightOnlyQuantizer:
def __init__(self, config: DefaultWeightOnlyQuantConfig):
self.config = config
def int4_block_quant(self, fp32weight: npt.ArrayLike) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""4b quantize fp32 weight to a blob"""
if len(fp32weight.shape) != 2:
raise ValueError("Current int4 block quantization only supports 2D tensors!")
rows, cols = fp32weight.shape
block_size = self.config.block_size
k_blocks = (rows + block_size - 1) // block_size
if self.config.quant_format == QuantFormat.QOperator:
blob_size = block_size // 2
padded_rows = k_blocks * block_size
pad_len = padded_rows - rows
if pad_len > 0:
fp32weight = np.pad(fp32weight, ((0, pad_len), (0, 0)), "constant")
# block wise quantization, each block comes from a single column
packed = np.zeros((cols, k_blocks, blob_size), dtype="uint8")
zero_point = np.zeros(cols * ((k_blocks + 1) // 2), dtype="uint8")
scales = np.zeros((cols * k_blocks), dtype=fp32weight.dtype)
quantize_matmul_4bits(
packed, fp32weight, scales, zero_point, block_size, cols, rows, self.config.is_symmetric
)
else:
packed = np.zeros((rows * cols + 1) // 2, dtype="uint8")
zero_point = np.zeros((cols * k_blocks + 1) // 2, dtype="uint8")
scales = np.zeros((k_blocks, cols), dtype=fp32weight.dtype)
quantize_qdq_matmul_4bits(
packed, fp32weight, scales, zero_point, block_size, cols, rows, self.config.is_symmetric
)
return (packed, scales, zero_point)
def quantize(self, node: NodeProto, graph_stack: list[GraphProto]) -> list[NodeProto]:
"""
If the node is MatMul with fp32 const weight, quantize the weight with int4, and return the new node.
If QOperator format, return MatMulNbits. If QDQ format, return DeQuantizeLinear + MatMul.
"""
if node.op_type != "MatMul":
return [node] # only care about MatMul for now
logger.info(f"start to quantize {node.name} ...")
qtype = TensorProto.INT4 if self.config.is_symmetric else TensorProto.UINT4
input_b = node.input[1]
b_tensor, b_graph = get_initializer(input_b, graph_stack)
if b_tensor is None:
logger.info("MatMul doesn't have const weight. Skip to quantize")
return [node] # only care about constant weight
b_ndarray = onnx.numpy_helper.to_array(b_tensor)
if len(b_ndarray.shape) != 2:
logger.info("MatMul weight is not 2D. Skip to quantize")
return [node] # can only process 2-D matrix
packed, scales, zero_points = self.int4_block_quant(b_ndarray)
if self.config.quant_format == QuantFormat.QOperator:
b_quant = onnx.numpy_helper.from_array(packed, b_tensor.name + "_Q4")
scales_tensor = onnx.numpy_helper.from_array(scales, b_tensor.name + "_scales")
else:
b_quant = onnx.helper.make_tensor(b_tensor.name + "_DQ_Q4", qtype, b_ndarray.shape, packed.tobytes(), True)
scales_tensor = onnx.numpy_helper.from_array(scales, b_tensor.name + "_DQ_scales")
for input in b_graph.input:
if input.name == input_b:
b_graph.input.remove(input)
break
b_graph.initializer.extend([b_quant, scales_tensor])
output_nodes = []
if self.config.quant_format == QuantFormat.QOperator:
input_names = [node.input[0], b_quant.name, scales_tensor.name]
if not self.config.is_symmetric:
zp_tensor = onnx.numpy_helper.from_array(zero_points, b_tensor.name + "_zero_points")
input_names.append(zp_tensor.name)
b_graph.initializer.extend([zp_tensor])
kwargs = {}
rows, cols = b_ndarray.shape
kwargs["K"] = rows
kwargs["N"] = cols
kwargs["bits"] = 4
kwargs["block_size"] = self.config.block_size
if self.config.accuracy_level is not None:
kwargs["accuracy_level"] = self.config.accuracy_level
matmul_q4_node = onnx.helper.make_node(
"MatMulNBits",
inputs=input_names,
outputs=[node.output[0]],
name=node.name + "_Q4" if node.name else "",
domain="com.microsoft",
**kwargs,
)
output_nodes.append(matmul_q4_node)
else:
dq_input_names = [b_quant.name, scales_tensor.name]
dq_output_names = [b_quant.name + "_output"]
matmul_input_names = [node.input[0], dq_output_names[0]]
matmul_output_names = [node.output[0]]
if not self.config.is_symmetric:
zp_tensor = onnx.helper.make_tensor(
b_tensor.name + "_DQ_zero_points", qtype, scales.shape, zero_points.tobytes(), True
)
dq_input_names.append(zp_tensor.name)
b_graph.initializer.extend([zp_tensor])
dq_kwargs = {"axis": 0, "block_size": self.config.block_size}
dq_node = onnx.helper.make_node(
"DequantizeLinear",
inputs=dq_input_names,
outputs=dq_output_names,
name=node.name + "_DQ_Q4" if node.name else "",
**dq_kwargs,
)
matmul_node = onnx.helper.make_node(
"MatMul",
inputs=matmul_input_names,
outputs=matmul_output_names,
name=node.name + "_matmul_Q4" if node.name else "",
)
output_nodes.extend([dq_node, matmul_node])
logger.info(f"complete quantization of {node.name} ...")
return output_nodes
class MatMul4BitsQuantizer:
"""
Perform 4b quantization of constant MatMul weights.
If algo_config.quant_format is QOperator, the quantized weight is stored in a MatMulNBits node, which relaces the
MatMul node.
If algo_config.quant_format is QDQ, the quantized weight is stored in a DeQuantizeLinear node. The MatMul node is
replaced by the DequantizeLinear + MatMul nodes.
"""
def __init__(
self,
model: ModelProto | str,
block_size: int = 128,
is_symmetric: bool = False,
accuracy_level: int | None = None,
nodes_to_exclude=None,
quant_format=QuantFormat.QOperator,
algo_config: WeightOnlyQuantConfig | None = None,
):
if nodes_to_exclude is None:
nodes_to_exclude = []
self.model = ONNXModel(onnx.load(model)) if isinstance(model, str) else ONNXModel(model)
self.model_path = model if isinstance(model, str) else None
self.block_size = block_size
self.is_symmetric = is_symmetric
self.accuracy_level = accuracy_level
self.nodes_to_exclude = set(nodes_to_exclude)
self.node_quantizer = None
if algo_config is None:
algo_config = DefaultWeightOnlyQuantConfig(
block_size=block_size,
is_symmetric=is_symmetric,
accuracy_level=accuracy_level,
quant_format=quant_format,
)
self.algo_config = algo_config
if algo_config.algorithm == "HQQ":
self.node_quantizer = HQQWeightOnlyQuantizer(self.algo_config)
elif algo_config.algorithm == "DEFAULT":
self.node_quantizer = DefaultWeightOnlyQuantizer(self.algo_config)
def _process_subgraph(self, graph_stack: list[GraphProto]):
new_nodes = []
graph = graph_stack[-1]
for node in graph.node:
graph_attrs = [
attr
for attr in node.attribute
if attr.type == onnx.AttributeProto.GRAPH or attr.type == onnx.AttributeProto.GRAPHS
]
if len(graph_attrs):
kwargs = {}
for attr in node.attribute:
if attr.type == onnx.AttributeProto.GRAPH:
# recursive call to take care of sub-graph
graph_stack.append(attr.g)
kv = {attr.name: self._process_subgraph(graph_stack)}
elif attr.type == onnx.AttributeProto.GRAPHS:
value = []
for subgraph in attr.graphs:
# recursive call to take care of sub-graph
graph_stack.append(subgraph)
value.extend([self._process_subgraph(graph_stack)])
kv = {attr.name: value}
else:
kv = attribute_to_kwarg(attr)
kwargs.update(kv)
node = onnx.helper.make_node( # noqa: PLW2901
node.op_type, node.input, node.output, name=node.name, **kwargs
)
out_nodes = []
if node.name in self.nodes_to_exclude:
logger.info(f"exclude to quantize {node.name} as specified by nodes_to_exclude...")
out_nodes = [node]
elif self.algo_config is not None and self.algo_config.algorithm == "HQQ":
out_nodes = self.node_quantizer.quantize(node, graph_stack)
else:
out_nodes = self.node_quantizer.quantize(node, graph_stack)
new_nodes.extend(out_nodes)
graph.ClearField("node")
graph.node.extend(new_nodes)
graph_stack.pop()
return graph
def _generate_q4_node_config(self):
"""Generate weight only quant configuration for nodes."""
q4_node_config = {}
template_config_q4 = {
"bits": 4,
"group_size": self.block_size,
"scheme": "sym" if self.is_symmetric else "asym",
}
for node in self.model.model.graph.node:
if node.op_type in ["MatMul"]:
if not all([self.model.get_initializer(i) is None for i in node.input]):
q4_node_config[node.name] = template_config_q4
return q4_node_config
def int4_quant_algo(self):
"""4b quantize a model with RTN or GPTQ algorithm. Please refer to
https://github.com/intel/neural-compressor/blob/master/docs/source/quantization_weight_only.md
for more details on weight only quantization using Intel® Neural Compressor.
"""
def inc_dataloader():
data_reader = copy.deepcopy(self.algo_config.calibration_data_reader)
for data in data_reader:
yield data, None
kwargs = {}
if self.accuracy_level is not None:
kwargs["accuracy_level"] = self.accuracy_level
weight_only_node_config = self._generate_q4_node_config()
algorithm = self.algo_config.algorithm
logger.info(f"start to quantize model with {algorithm} algorithm...")
if algorithm == "RTN":
from neural_compressor.adaptor.ox_utils.weight_only import rtn_quantize
kwargs["ratios"] = self.algo_config.ratios
self.model = rtn_quantize(
model=self.model_path if self.model_path is not None else self.model.model,
weight_config=weight_only_node_config,
**kwargs,
)
elif algorithm == "GPTQ":
from neural_compressor.adaptor.ox_utils.weight_only import gptq_quantize
kwargs["percdamp"] = self.algo_config.percdamp
kwargs["blocksize"] = self.algo_config.block_size
kwargs["actorder"] = self.algo_config.actorder
kwargs["mse"] = self.algo_config.mse
kwargs["perchannel"] = self.algo_config.perchannel
kwargs["n_samples"] = -1
dataloader = inc_dataloader()
self.model = gptq_quantize(
model=self.model_path if self.model_path is not None else self.model.model,
weight_config=weight_only_node_config,
dataloader=dataloader,
**kwargs,
)
logger.info(f"complete quantization of model with {algorithm} algorithm.")
def process(self):
if self.algo_config.algorithm in ["HQQ", "DEFAULT"]:
# use a stack to keep track of sub-graphs
graph_stack = [self.model.graph()]
# Update domain opset
if self.algo_config.quant_format == QuantFormat.QOperator:
self.model.set_opset_import("com.microsoft", 1)
else:
opset_import = self.model.opset_import()
for opset in opset_import:
if opset.domain in [None, "ai.onnx", ""] and opset.version < 21:
logger.warning(
"The opset of the input model is under 21 and doesn't support int4 data type. "
"Force to update it to opset 21, but the generated model may not be a valid model."
)
self.model.set_opset_import(opset.domain, 21)
self._process_subgraph(graph_stack)
self.model.clean_initializers()
else:
# use Intel® Neural Compressor for RTN or GPTQ weight-only quantize algorithm
try:
importlib.import_module("neural_compressor")
except Exception as e:
logging.error(f"{e}.")
raise RuntimeError(
"neural-compressor is not correctly installed. Please check your environment."
) from e
import neural_compressor
assert version.parse(neural_compressor.__version__) >= version.parse(
"2.3.2"
), "Require neural-compressor >= 2.3.2 to support weight only quantization!"
self.int4_quant_algo()
def ort_convert_str_to_bool(value):
return value.lower() in ("true", "1")
def parse_args():
parser = argparse.ArgumentParser(
description="""Blockwise int4 quantization for MatMul 2D weight matrices.
A weight matrix is partitioned into into blocks, where each block is a
continguous subset inside each column. Each block is quantized into a
set of 4b integers with a scaling factor and an optional offset.
"""
)
parser.add_argument("--input_model", required=True, help="Path to the input model file")
parser.add_argument("--output_model", required=True, help="Path to the output model file")
parser.add_argument("--block_size", required=False, default=32, type=int, help="Block size for quantization")
parser.add_argument(
"--quant_method",
default="default",
type=str,
choices=["default", "hqq", "rtn", "gptq"],
help="the algorithm used to quantize weight, \nrtn and gptq leverage Intel® Neural Compressor",
)
parser.add_argument("--bits", default=4, type=int, help="the target bits to represent weight")
parser.add_argument(
"--symmetric",
required=False,
default=True,
const=True,
nargs="?",
type=ort_convert_str_to_bool,
choices=[True, False],
help="Indicate whether to quantize the model symmetrically, symmetric is not supported by hqq",
)
parser.add_argument(
"--accuracy_level",
required=False,
type=int,
help="Accuracy level of the 4-bit quantized MatMul computation. "
"Refer to the MatMulNBits contrib op's 'accuracy_level' attribute for details "
"(https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#commicrosoftmatmulnbits).",
)
parser.add_argument("-v", "--verbose", required=False, action="store_true")
parser.set_defaults(verbose=False)
parser.add_argument(
"--nodes_to_exclude",
nargs="+",
type=str,
required=False,
default=[],
help="Specify the nodes to be excluded from quantization with node names",
)
parser.add_argument(
"--quant_format",
default="QOperator",
type=str,
choices=["QOperator", "QDQ"],
help="QuantFormat {QOperator, QDQ}"
"QOperator format quantizes the model with quantized operators directly."
"QDQ format quantize the model by inserting DeQuantizeLinear before the MatMul.",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
if args.verbose:
logger.setLevel(logging.DEBUG)
input_model_path = args.input_model
output_model_path = args.output_model
quant_format = QuantFormat[args.quant_format]
if os.path.exists(output_model_path):
logger.error(f"file {output_model_path} already exists")
raise Exception(f"file {output_model_path} already exists")
if args.symmetric and args.quant_method == "hqq":
logger.warning("symmetric is not supportted by hqq, will force to symmetric=False")
args.symmetric = False
model = onnx.load(input_model_path)
if args.quant_method == "hqq":
quant_config = HQQWeightOnlyQuantConfig(block_size=args.block_size, bits=args.bits)
elif args.quant_method == "default":
quant_config = DefaultWeightOnlyQuantConfig(
block_size=args.block_size,
is_symmetric=args.symmetric,
accuracy_level=args.accuracy_level,
quant_format=quant_format,
)
elif args.quant_method == "rtn":
quant_config = RTNWeightOnlyQuantConfig()
elif args.quant_method == "gptq":
quant_config = GPTQWeightOnlyQuantConfig(block_size=args.block_size)
else:
raise ValueError(f"Unsupported quantization method: {args.quant_method}")
quant = MatMul4BitsQuantizer(
model=model,
accuracy_level=args.accuracy_level,
nodes_to_exclude=args.nodes_to_exclude,
algo_config=quant_config,
)
quant.process()
quant.model.save_model_to_file(output_model_path, True)

View File

@ -0,0 +1,240 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import argparse
import logging
import os
from typing import List, Tuple
import numpy as np
import numpy.typing as npt
import onnx
from onnx.onnx_pb import GraphProto, ModelProto, NodeProto, TensorProto
from onnxruntime.capi._pybind_state import quantize_matmul_bnb4
from .onnx_model import ONNXModel
from .quant_utils import attribute_to_kwarg
logger = logging.getLogger(__name__)
class MatMulBnb4Quantizer:
"""Perform 4b quantization of constant MatMul weights using FP4 or NF4 data type"""
##################
# quantization types, must be consistent with native code type
# Bnb_DataType_t defined in blockwise_quant_block_bnb4.h
# 4b floating point with bias of 3
FP4 = 0
# 4b NormalFloat
NF4 = 1
def __init__(self, model: ModelProto, quant_type: int, block_size: int, nodes_to_exclude=None):
nodes_to_exclude = nodes_to_exclude or []
assert quant_type in [MatMulBnb4Quantizer.FP4, MatMulBnb4Quantizer.NF4]
self.model = ONNXModel(model)
self.quant_type = quant_type
self.block_size = block_size
self.nodes_to_exclude = set(nodes_to_exclude)
@staticmethod
def __get_initializer(name, graph_path: List[GraphProto]) -> Tuple[TensorProto, GraphProto]:
for gid in range(len(graph_path) - 1, -1, -1):
graph = graph_path[gid]
for tensor in graph.initializer:
if tensor.name == name:
return tensor, graph
return None, None
def bnb4_block_quant(self, fpweight: npt.ArrayLike) -> np.ndarray:
"""4b quantize fp32/fp16 weight"""
if len(fpweight.shape) != 2:
raise ValueError("Current bnb4 block quantization only supports 2D tensors!")
# need to copy since the transposed weight still has the original memory layout
# Linear4bit quantizes its weight data which is the transposed weight
fpweight_t = fpweight.transpose().copy()
rows, cols = fpweight.shape
numel = rows * cols
block_size = self.block_size
num_blocks = (numel + block_size - 1) // block_size
quantized_numel = (numel + 1) // 2
packed = np.zeros(quantized_numel, dtype="uint8")
absmax = np.zeros(num_blocks, dtype=fpweight.dtype)
# block wise quantization, fpweight_t is flattened and divided into blocks
quantize_matmul_bnb4(packed, fpweight_t, absmax, block_size, self.quant_type, cols, rows)
return (packed, absmax)
def _bnb4_matmul_node_weight(self, node: NodeProto, graph_stack: List[GraphProto]) -> NodeProto:
"""If the node is MatMul with fp32 const weight, quantize the weight with int4, and return the new node"""
if node.op_type != "MatMul":
return node # only care about MatMul for now
logger.debug(f"start to quantize {node.name} ...")
if node.name in self.nodes_to_exclude:
logger.debug(f"exclude to quantize {node.name} as specified by nodes_to_exclude...")
return node
inputB = node.input[1] # noqa: N806
B, Bs_graph = MatMulBnb4Quantizer.__get_initializer(inputB, graph_stack) # noqa: N806
if B is None:
logger.debug("MatMul doesn't have const weight. Skip to quantize")
return node # only care about constant weight
B_array = onnx.numpy_helper.to_array(B) # noqa: N806
if len(B_array.shape) != 2:
logger.debug("MatMul weight is not 2D. Skip to quantize")
return node # can only process 2-D matrix
packed, absmax = self.bnb4_block_quant(B_array)
B_quant = onnx.numpy_helper.from_array(packed) # noqa: N806
B_quant.name = B.name + "_Bnb4"
for input in Bs_graph.input:
if input.name == inputB:
Bs_graph.input.remove(input)
break
absmax_tensor = onnx.numpy_helper.from_array(absmax)
absmax_tensor.name = B.name + "_absmax"
Bs_graph.initializer.extend([B_quant, absmax_tensor])
kwargs = {}
rows, cols = B_array.shape
kwargs["K"] = rows
kwargs["N"] = cols
kwargs["block_size"] = self.block_size
kwargs["quant_type"] = self.quant_type
matmul_bnb4_node = onnx.helper.make_node(
"MatMulBnb4",
inputs=[node.input[0], B_quant.name, absmax_tensor.name],
outputs=[node.output[0]],
name=node.name + "_Bnb4" if node.name else "",
domain="com.microsoft",
**kwargs,
)
logger.debug(f"complete quantization of {node.name} ...")
return matmul_bnb4_node
def _process_subgraph(self, graph_stack: List[GraphProto]):
new_nodes = []
graph = graph_stack[-1]
for node in graph.node:
graph_attrs = [
attr
for attr in node.attribute
if attr.type == onnx.AttributeProto.GRAPH or attr.type == onnx.AttributeProto.GRAPHS
]
if len(graph_attrs):
kwargs = {}
for attr in node.attribute:
if attr.type == onnx.AttributeProto.GRAPH:
# recursive call to take care of sub-graph
graph_stack.append(attr.g)
kv = {attr.name: self._process_subgraph(graph_stack)}
elif attr.type == onnx.AttributeProto.GRAPHS:
value = []
for subgraph in attr.graphs:
# recursive call to take care of sub-graph
graph_stack.append(subgraph)
value.extend([self._process_subgraph(graph_stack)])
kv = {attr.name: value}
else:
kv = attribute_to_kwarg(attr)
kwargs.update(kv)
node = onnx.helper.make_node( # noqa: PLW2901
node.op_type, node.input, node.output, name=node.name, **kwargs
)
new_nodes.append(self._bnb4_matmul_node_weight(node, graph_stack))
graph.ClearField("node")
graph.node.extend(new_nodes)
graph_stack.pop()
return graph
def process(self):
# use a stack to keep track of sub-graphs
graph_stack = [self.model.graph()]
opset_import = self.model.opset_import()
has_ms_domain = False
for opset in opset_import:
if opset.domain == "com.microsoft":
has_ms_domain = True
if not has_ms_domain:
opset_import.extend([onnx.helper.make_opsetid("com.microsoft", 1)])
self._process_subgraph(graph_stack)
self.model.clean_initializers()
def parse_args():
parser = argparse.ArgumentParser(
description="""Blockwise FP4/NF4 quantization for MatMul 2D weight matrices.
A weight matrix is partitioned into blocks, where each block is a contiguous
subset inside the flattened transposed weight matrix. Each block is quantized
into a set of 4b integers with an absolute value scaling factor.
"""
)
parser.add_argument("--input_model", required=True, help="Path to the input model file")
parser.add_argument("--output_model", required=True, help="Path to the output model file")
parser.add_argument(
"--quant_type",
required=False,
default=1,
choices=[MatMulBnb4Quantizer.FP4, MatMulBnb4Quantizer.NF4],
help="Quantization data type. 0: FP4, 1: NF4",
)
parser.add_argument(
"--block_size",
required=False,
default=64,
help="Block size for blockwise quantization. Note: bnb.nn.Linear4bit only uses block_size=64",
)
parser.add_argument("-v", "--verbose", required=False, action="store_true")
parser.set_defaults(verbose=False)
parser.add_argument(
"--nodes_to_exclude",
nargs="+",
type=str,
required=False,
default=[],
help="Specify the nodes to be excluded from quantization with node names",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
if args.verbose:
logger.setLevel(logging.DEBUG)
input_model_path = args.input_model
output_model_path = args.output_model
if os.path.exists(output_model_path):
logger.error(f"file {output_model_path} already exists")
raise Exception(f"file {output_model_path} already exists")
model = onnx.load(input_model_path)
quant = MatMulBnb4Quantizer(model, args.quant_type, args.block_size, nodes_to_exclude=args.nodes_to_exclude)
quant.process()
quant.model.save_model_to_file(output_model_path, True)

View File

@ -0,0 +1,580 @@
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from pathlib import Path
import onnx
import onnx.helper as onnx_helper
import onnx.numpy_helper as onnx_numpy_helper
from onnx.onnx_pb import ModelProto
from .quant_utils import attribute_to_kwarg, find_by_name
def _clean_initializers_helper(graph, model):
"""Clean unused initializers from graph.
Returns:
A cleaned graph without unused initializers
A list of tensor names, which are not produced by this graph and its subgraphes
"""
requesting_tensor_names = set()
requesting_tensor_names.update(input_name for node in graph.node for input_name in node.input if input_name)
requesting_tensor_names.update(g_out.name for g_out in graph.output if g_out.name)
new_nodes = []
for node in graph.node:
new_node = node
graph_attrs = [
attr
for attr in node.attribute
if attr.type == onnx.AttributeProto.GRAPH or attr.type == onnx.AttributeProto.GRAPHS
]
if graph_attrs:
kwargs = {}
for attr in node.attribute:
new_attribute = {}
if attr.type == onnx.AttributeProto.GRAPH:
(
cleaned_sub_graph,
sub_requesting_tensor_names,
) = _clean_initializers_helper(attr.g, model)
new_attribute = {attr.name: cleaned_sub_graph}
requesting_tensor_names.update(sub_requesting_tensor_names)
elif attr.type == onnx.AttributeProto.GRAPHS:
cleaned_graphes = []
for subgraph in attr.graphs:
(
cleaned_sub_graph,
sub_requesting_tensor_names,
) = _clean_initializers_helper(subgraph, model)
cleaned_graphes.append(cleaned_sub_graph)
requesting_tensor_names.update(sub_requesting_tensor_names)
new_attribute = {attr.name: cleaned_graphes}
else:
new_attribute = attribute_to_kwarg(attr)
kwargs.update(new_attribute)
new_node = onnx_helper.make_node(node.op_type, node.input, node.output, name=node.name, **kwargs)
new_nodes.append(new_node)
graph.ClearField("node")
graph.node.extend(new_nodes)
requesting_tensor_names.difference_update(output for node in graph.node for output in node.output)
unused_initializer = []
for initializer in graph.initializer:
if initializer.name in requesting_tensor_names:
requesting_tensor_names.remove(initializer.name)
else:
# mark it to remove, remove here directly will cause mis-behavier
unused_initializer.append(initializer)
name_to_input = {input.name: input for input in graph.input}
for initializer in unused_initializer:
graph.initializer.remove(initializer)
if initializer.name in name_to_input:
try:
graph.input.remove(name_to_input[initializer.name])
except StopIteration:
if model.ir_version < 4:
print(f"Warning: invalid weight name {initializer.name} found in the graph (not a graph input)")
requesting_tensor_names.difference_update(input.name for input in graph.input)
return graph, requesting_tensor_names
class ONNXModel:
def __init__(self, model: ModelProto):
self.model = model
def nodes(self):
return self.model.graph.node
def initializer(self):
return self.model.graph.initializer
def initializer_extend(self, inits):
if len(inits) == 0:
raise ValueError("Can add an empty list.")
for init in self.initializer():
self._check_init(init, "gain")
for init in inits:
self._check_init(init)
self.model.graph.initializer.append(init)
def graph(self):
return self.model.graph
def ir_version(self):
return self.model.ir_version
def opset_import(self):
return self.model.opset_import
def set_opset_import(self, domain, version):
for opset in self.model.opset_import:
if opset.domain == domain:
opset.version = version
return
self.model.opset_import.extend([onnx_helper.make_opsetid(domain, version)])
def remove_node(self, node):
if node in self.model.graph.node:
self.model.graph.node.remove(node)
def remove_nodes(self, nodes_to_remove):
for node in nodes_to_remove:
self.remove_node(node)
def add_node(self, node):
self.model.graph.node.extend([self._check_node(node)])
def add_nodes(self, nodes_to_add):
for node in nodes_to_add:
self.add_node(node)
def add_initializer(self, tensor):
if find_by_name(tensor.name, self.model.graph.initializer) is None:
self._check_init(tensor)
self.model.graph.initializer.extend([tensor])
def get_initializer(self, name):
for tensor in self.model.graph.initializer:
if tensor.name == name:
return tensor
return None
def find_graph_input(self, input_name):
for input in self.model.graph.input:
if input.name == input_name:
return input
return None
def find_graph_output(self, output_name):
for output in self.model.graph.output:
if output.name == output_name:
return output
return None
def get_tensor_type(self, tensor_name: str):
tensor_type_map = {obj.name: obj.type for obj in self.model.graph.value_info}
if tensor_name in tensor_type_map:
return tensor_type_map[tensor_name].tensor_type
g_input = self.find_graph_input(tensor_name)
if g_input:
return g_input.type.tensor_type
g_output = self.find_graph_output(tensor_name)
if g_output:
return g_output.type.tensor_type
return None
def get_constant_value(self, output_name):
for node in self.model.graph.node:
if node.op_type == "Constant":
if node.output[0] == output_name:
for attr in node.attribute:
if attr.name == "value":
return onnx_numpy_helper.to_array(attr.t)
# Fallback to initializer since constant folding may have been applied.
initializer = self.get_initializer(output_name)
if initializer is not None:
return onnx_numpy_helper.to_array(initializer)
return None
def get_initializer_name_set(self):
return {initializer.name for initializer in self.model.graph.initializer}
def remove_initializer(self, tensor):
if tensor in self.model.graph.initializer:
self.model.graph.initializer.remove(tensor)
for input in self.model.graph.input:
if input.name == tensor.name:
self.model.graph.input.remove(input)
break
def remove_initializers(self, init_to_remove):
for initializer in init_to_remove:
self.remove_initializer(initializer)
def get_non_initializer_inputs(self):
initializer_names = self.get_initializer_name_set()
non_initializer_inputs = set()
for input in self.model.graph.input:
if input.name not in initializer_names:
non_initializer_inputs.add(input.name)
return non_initializer_inputs
def input_name_to_nodes(self):
input_name_to_nodes = {}
for node in self.model.graph.node:
for input_name in node.input:
if input_name: # Could be empty when it is optional
if input_name not in input_name_to_nodes:
input_name_to_nodes[input_name] = [node]
else:
input_name_to_nodes[input_name].append(node)
return input_name_to_nodes
def output_name_to_node(self):
output_name_to_node = {}
for node in self.model.graph.node:
for output_name in node.output:
if output_name: # Could be empty when it is optional
output_name_to_node[output_name] = node
return output_name_to_node
def get_children(self, node, input_name_to_nodes=None):
if input_name_to_nodes is None:
input_name_to_nodes = self.input_name_to_nodes()
children = []
for output in node.output:
if output in input_name_to_nodes:
for node in input_name_to_nodes[output]:
children.append(node) # noqa: PERF402
return children
def get_parents(self, node, output_name_to_node=None):
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
parents = []
for input in node.input:
if input in output_name_to_node:
parents.append(output_name_to_node[input])
return parents
def get_parent(self, node, idx, output_name_to_node=None):
if output_name_to_node is None:
output_name_to_node = self.output_name_to_node()
if len(node.input) <= idx:
return None
input = node.input[idx]
if input not in output_name_to_node:
return None
return output_name_to_node[input]
def find_node_by_name(self, node_name, new_nodes_list, graph):
"""Find out if a node exists in a graph or a node is in the
new set of nodes created during quantization.
Returns:
The node found or None.
"""
graph_nodes_list = list(graph.node) # deep copy
graph_nodes_list.extend(new_nodes_list)
node = find_by_name(node_name, graph_nodes_list)
return node
def get_largest_node_name_suffix(self, node_name_prefix):
"""
Gets the largest node name (int) suffix for all node names that begin with `node_name_prefix`.
Example: for nodes my_prefix_0 and my_prefix_3, this method returns 3.
"""
suffix = -1
for node in self.model.graph.node:
if node.name and node.name.startswith(node_name_prefix):
try:
index = int(node.name[len(node_name_prefix) :])
suffix = max(index, suffix)
except ValueError:
continue
return suffix
def find_nodes_by_initializer(self, graph, initializer):
"""
Find all nodes with given initializer as an input.
"""
nodes = []
for node in graph.node:
for node_input in node.input:
if node_input == initializer.name:
nodes.append(node)
return nodes
@staticmethod
def __get_initializer(name, graph_path):
for gid in range(len(graph_path) - 1, -1, -1):
graph = graph_path[gid]
for tensor in graph.initializer:
if tensor.name == name:
return tensor, graph
return None, None
@staticmethod
def __replace_gemm_with_matmul(graph_path):
new_nodes = []
graph = graph_path[-1]
for node in graph.node:
graph_attrs = [attr for attr in node.attribute if attr.type == 5 or attr.type == 10]
if len(graph_attrs):
kwargs = {}
for attr in node.attribute:
if attr.type == 5:
graph_path.append(attr.g)
kv = {attr.name: ONNXModel.__replace_gemm_with_matmul(graph_path)}
elif attr.type == 10:
value = []
for subgraph in attr.graphs:
graph_path.append(subgraph)
value.extend([ONNXModel.__replace_gemm_with_matmul(graph_path)])
kv = {attr.name: value}
else:
kv = attribute_to_kwarg(attr)
kwargs.update(kv)
node = onnx_helper.make_node( # noqa: PLW2901
node.op_type, node.input, node.output, name=node.name, **kwargs
)
if node.op_type == "Gemm":
alpha = 1.0
beta = 1.0
transA = 0 # noqa: N806
transB = 0 # noqa: N806
for attr in node.attribute:
if attr.name == "alpha":
alpha = onnx_helper.get_attribute_value(attr)
elif attr.name == "beta":
beta = onnx_helper.get_attribute_value(attr)
elif attr.name == "transA":
transA = onnx_helper.get_attribute_value(attr) # noqa: N806
elif attr.name == "transB":
transB = onnx_helper.get_attribute_value(attr) # noqa: N806
if alpha == 1.0 and beta == 1.0 and transA == 0:
inputB = node.input[1] # noqa: N806
if transB == 1:
B, Bs_graph = ONNXModel.__get_initializer(node.input[1], graph_path) # noqa: N806
if B:
# assume B is not used by any other node
B_array = onnx_numpy_helper.to_array(B) # noqa: N806
B_trans = onnx_numpy_helper.from_array(B_array.T) # noqa: N806
B_trans.name = B.name
Bs_graph.initializer.remove(B)
for input in Bs_graph.input:
if input.name == inputB:
Bs_graph.input.remove(input)
break
Bs_graph.initializer.extend([B_trans])
else:
inputB += "_Transposed" # noqa: N806
transpose_node = onnx_helper.make_node(
"Transpose",
inputs=[node.input[1]],
outputs=[inputB],
name=node.name + "_Transpose" if node.name else "",
)
new_nodes.append(transpose_node)
matmul_node = onnx_helper.make_node(
"MatMul",
inputs=[node.input[0], inputB],
outputs=[node.output[0] + ("_MatMul" if len(node.input) > 2 else "")],
name=node.name + "_MatMul" if node.name else "",
)
new_nodes.append(matmul_node)
if len(node.input) > 2:
add_node = onnx_helper.make_node(
"Add",
inputs=[node.output[0] + "_MatMul", node.input[2]],
outputs=node.output,
name=node.name + "_Add" if node.name else "",
)
new_nodes.append(add_node)
# unsupported
else:
new_nodes.append(node)
# not GEMM
else:
new_nodes.append(node)
graph.ClearField("node")
graph.node.extend(new_nodes)
graph_path.pop()
return graph
def replace_gemm_with_matmul(self):
graph_path = [self.graph()]
ONNXModel.__replace_gemm_with_matmul(graph_path)
def save_model_to_file(self, output_path, use_external_data_format=False):
"""
Save model to external data, which is needed for model size > 2GB
"""
self.topological_sort()
if use_external_data_format:
onnx.external_data_helper.convert_model_to_external_data(
self.model,
all_tensors_to_one_file=True,
location=Path(output_path).name + ".data",
convert_attribute=True,
)
for init in self.model.graph.initializer:
self._check_init(init, "end")
onnx.save_model(self.model, output_path)
@staticmethod
def replace_node_input(node, old_input_name, new_input_name):
assert isinstance(old_input_name, str) and isinstance(new_input_name, str)
for j in range(len(node.input)):
if node.input[j] == old_input_name:
node.input[j] = new_input_name
def replace_input_of_all_nodes(self, old_input_name, new_input_name):
for node in self.model.graph.node:
ONNXModel.replace_node_input(node, old_input_name, new_input_name)
def replace_input_of_nodes(self, old_input_name, new_input_name, node_names_set):
for node in self.model.graph.node:
if node.name in node_names_set:
ONNXModel.replace_node_input(node, old_input_name, new_input_name)
@staticmethod
def replace_node_output(node, old_output_name, new_output_name):
assert isinstance(old_output_name, str) and isinstance(new_output_name, str)
for j in range(len(node.output)):
if node.output[j] == old_output_name:
node.output[j] = new_output_name
def replace_output_of_all_nodes(self, old_output_name, new_output_name):
for node in self.model.graph.node:
ONNXModel.replace_node_output(node, old_output_name, new_output_name)
def replace_output_of_nodes(self, old_output_name, new_output_name, node_names_set):
for node in self.model.graph.node:
if node.name in node_names_set:
ONNXModel.replace_node_output(node, old_output_name, new_output_name)
def remove_unused_constant(self):
input_name_to_nodes = self.input_name_to_nodes()
# remove unused constant
unused_nodes = []
nodes = self.nodes()
for node in nodes:
if (
node.op_type == "Constant"
and not self.is_graph_output(node.output[0])
and node.output[0] not in input_name_to_nodes
):
unused_nodes.append(node)
self.remove_nodes(unused_nodes)
ununsed_weights = []
for w in self.initializer():
if w.name not in input_name_to_nodes and not self.is_graph_output(w.name):
ununsed_weights.append(w)
# Remove from graph.input
for graph_input in self.graph().input:
if graph_input.name == w.name:
self.graph().input.remove(graph_input)
self.remove_initializers(ununsed_weights)
def is_graph_output(self, output_name):
return any(output.name == output_name for output in self.model.graph.output)
def is_graph_input(self, tensor_name: str) -> bool:
return any(input.name == tensor_name for input in self.model.graph.input)
# TODO:use OnnxModel.graph_topological_sort(self.model.graph) from transformers.onnx_model
# Currently it breaks Openvino/Linux training gpu pipeline so hold off for 1.8 release
def topological_sort(self):
deps_count = [0] * len(self.nodes()) # dependency count of each node
deps_to_nodes = {} # input to node indice
sorted_nodes = [] # initialize sorted_nodes
for node_idx, node in enumerate(self.nodes()):
# CANNOT use len(node.input) directly because input can be optional
deps_count[node_idx] = sum(1 for _ in node.input if _)
if deps_count[node_idx] == 0: # Constant doesn't depend on any inputs
sorted_nodes.append(self.nodes()[node_idx])
continue
for input_name in node.input:
if not input_name:
continue
if input_name not in deps_to_nodes:
deps_to_nodes[input_name] = [node_idx]
else:
deps_to_nodes[input_name].append(node_idx)
initializer_names = [init.name for init in self.initializer()]
graph_input_names = [input.name for input in self.model.graph.input]
input_names = initializer_names + graph_input_names
input_names.sort()
prev_input_name = None
for input_name in input_names:
if prev_input_name == input_name:
continue
prev_input_name = input_name
if input_name in deps_to_nodes:
for node_idx in deps_to_nodes[input_name]:
deps_count[node_idx] = deps_count[node_idx] - 1
if deps_count[node_idx] == 0:
sorted_nodes.append(self.nodes()[node_idx])
start = 0
end = len(sorted_nodes)
while start < end:
for output in sorted_nodes[start].output:
if output in deps_to_nodes:
for node_idx in deps_to_nodes[output]:
deps_count[node_idx] = deps_count[node_idx] - 1
if deps_count[node_idx] == 0:
sorted_nodes.append(self.nodes()[node_idx])
end = end + 1
start = start + 1
assert end == len(self.graph().node), "Graph is not a DAG"
self.graph().ClearField("node")
self.graph().node.extend(sorted_nodes)
def clean_initializers(self):
return _clean_initializers_helper(self.graph(), self.model)
def _check_init(self, init, test=None):
if init.data_type == onnx.TensorProto.FLOAT8E4M3FN:
if init.HasField("raw_data"):
b = list(init.raw_data)
if any(map(lambda i: (i & 127) == 127, b)):
raise ValueError(f"Initializer {init.name!r} has nan.")
return init
def _check_node(self, node):
"""
A quantization to float 8 does not use quantized bias but float 16 bias.
This function checks that DequantizeLinear is not used to
dequantize from float 16.
"""
if node.op_type == "DequantizeLinear":
zero_point = node.input[2]
init = self.get_initializer(zero_point)
dtype = init.data_type
if dtype in {
onnx.TensorProto.FLOAT16,
onnx.TensorProto.FLOAT,
onnx.TensorProto.DOUBLE,
onnx.TensorProto.BFLOAT16,
}:
raise RuntimeError(f"Unsupported DequantizeLinear operator, dequantization from {dtype}.")
return node

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,2 @@
# from .base_operator import QuantOperatorBase
# from .matmul import MatMulInteger

Some files were not shown because too many files have changed in this diff Show More