Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnxruntime/quantization/fusions/fusion.py
2024-10-30 22:14:35 +01:00

312 lines
12 KiB
Python

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
from collections import deque
import onnx
from ..onnx_model import ONNXModel
class Fusion:
"""
Base class for fusions.
"""
def __init__(self, model: ONNXModel, fused_op_type: str, search_op_type: str):
self.search_op_type: str = search_op_type
self.fused_op_type: str = fused_op_type
self.model: ONNXModel = model
self.nodes_to_remove: list = []
self.nodes_to_add: list = []
self._new_node_name_prefix = self.fused_op_type + "_fused_" + self.search_op_type + "_"
self._new_node_name_suffix = None # int|None used to create unique node names for the fused ops.
def fuse(
self,
node: onnx.NodeProto,
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
):
"""
Interface function for derived fusion classes. Tries to fuse a node sequence containing
the specified node.
"""
raise NotImplementedError
def apply(self) -> bool:
"""
Apply graph fusion on the entire model graph.
"""
input_name_to_nodes = self.model.input_name_to_nodes()
output_name_to_node = self.model.output_name_to_node()
for node in self.model.nodes():
if node.op_type == self.search_op_type:
self.fuse(node, input_name_to_nodes, output_name_to_node)
self.model.remove_nodes(self.nodes_to_remove)
self.model.add_nodes(self.nodes_to_add)
graph_updated = bool(self.nodes_to_remove or self.nodes_to_add)
if graph_updated:
self.model.remove_unused_constant()
return graph_updated
def create_unique_node_name(self):
prefix = self._new_node_name_prefix
if self._new_node_name_suffix is None:
largest_suffix: int = self.model.get_largest_node_name_suffix(prefix)
self._new_node_name_suffix = largest_suffix + 1
new_name = f"{prefix}{self._new_node_name_suffix!s}"
self._new_node_name_suffix += 1
return new_name
@staticmethod
def is_safe_to_fuse_nodes(
nodes_to_remove: list[onnx.NodeProto],
keep_outputs: list[str],
input_name_to_nodes: dict[str, list[onnx.NodeProto]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> bool:
for node_to_remove in nodes_to_remove:
for output_to_remove in node_to_remove.output:
if output_to_remove in keep_outputs:
continue
if output_to_remove in input_name_to_nodes:
for impacted_node in input_name_to_nodes[output_to_remove]:
if impacted_node not in nodes_to_remove:
# Not safe to remove nodes since output is used by impacted_node
return False
return True
@staticmethod
def get_node_attribute(node: onnx.NodeProto, attribute_name: str):
for attr in node.attribute:
if attr.name == attribute_name:
value = onnx.helper.get_attribute_value(attr)
return value
return None
@staticmethod
def input_index(node_output: str, child_node: onnx.NodeProto) -> int:
for index, input_name in enumerate(child_node.input):
if input_name == node_output:
return index
return -1
@staticmethod
def tensor_shape_to_list(tensor_type) -> list[int]:
shape_list = []
for d in tensor_type.shape.dim:
if d.HasField("dim_value"):
shape_list.append(d.dim_value) # known dimension
elif d.HasField("dim_param"):
shape_list.append(d.dim_param) # unknown dimension with symbolic name
else:
shape_list.append("?") # shall not happen
return shape_list
def get_constant_input(self, node: onnx.NodeProto):
for i, inp in enumerate(node.input):
value = self.model.get_constant_value(inp)
if value is not None:
return i, value
return None, None
def find_constant_input(self, node: onnx.NodeProto, expected_value: float, delta: float = 0.000001) -> int:
i, value = self.get_constant_input(node)
if value is not None and value.size == 1 and abs(value - expected_value) < delta:
return i
return -1
def has_constant_input(self, node: onnx.NodeProto, expected_value: float, delta: float = 0.000001) -> bool:
return self.find_constant_input(node, expected_value, delta) >= 0
def is_constant_with_specified_rank(self, output_name: str, rank: int) -> bool:
value = self.model.get_constant_value(output_name)
if value is None:
return False # Not an initializer
if len(value.shape) != rank:
return False # Wrong dimensions
return True
def match_first_parent(
self,
node: onnx.NodeProto,
parent_op_type: str,
output_name_to_node: dict[str, onnx.NodeProto] | None = None,
exclude: list[onnx.NodeProto] = [], # noqa: B006
) -> tuple[onnx.NodeProto | None, int | None]:
"""
Find parent node based on constraints on op_type.
Args:
node: current node.
parent_op_type (str): constraint of parent node op_type.
output_name_to_node (dict): dictionary with output name as key, and node as value.
exclude (list): list of nodes that are excluded (not allowed to match as parent).
Returns:
parent: The matched parent node. None if not found.
index: The input index of matched parent node. None if not found.
"""
if output_name_to_node is None:
output_name_to_node = self.model.output_name_to_node()
for i, inp in enumerate(node.input):
if inp in output_name_to_node:
parent = output_name_to_node[inp]
if parent.op_type == parent_op_type and parent not in exclude:
return parent, i
return None, None
def match_parent(
self,
node: onnx.NodeProto,
parent_op_type: str,
input_index: int | None = None,
output_name_to_node: dict[str, onnx.NodeProto] | None = None,
exclude: list[onnx.NodeProto] = [], # noqa: B006
return_indice: list[int] | None = None,
) -> onnx.NodeProto | None:
"""
Find parent node based on constraints on op_type and index.
When input_index is None, we will find the first parent node based on constraints,
and return_indice will be appended the corresponding input index.
Args:
node (str): current node name.
parent_op_type (str): constraint of parent node op_type.
input_index (int or None): only check the parent given input index of current node.
output_name_to_node (dict): dictionary with output name as key, and node as value.
exclude (list): list of nodes that are excluded (not allowed to match as parent).
return_indice (list): a list to append the input index when input_index is None.
Returns:
parent: The matched parent node.
"""
assert node is not None
assert input_index is None or input_index >= 0
if output_name_to_node is None:
output_name_to_node = self.model.output_name_to_node()
if input_index is None:
parent, index = self.match_first_parent(node, parent_op_type, output_name_to_node, exclude)
if return_indice is not None:
return_indice.append(index)
return parent
if input_index >= len(node.input):
# Input index out of bounds.
return None
parent = self.model.get_parent(node, input_index, output_name_to_node)
if parent is not None and parent.op_type == parent_op_type and parent not in exclude:
return parent
return None
def match_parent_path(
self,
node: onnx.NodeProto,
parent_op_types: list[str],
parent_input_index: list[int] | None = None,
output_name_to_node: dict[str, onnx.NodeProto] | None = None,
return_indice: list[int] | None = None,
) -> list[onnx.NodeProto] | None:
"""
Find a sequence of input edges based on constraints on parent op_type and index.
When input_index is None, we will find the first parent node based on constraints,
and return_indice will be appended the corresponding input index.
Args:
node (str): current node name.
parent_op_types (str): constraint of parent node op_type of each input edge.
parent_input_index (list): constraint of input index of each input edge. None means no constraint.
output_name_to_node (dict): dictionary with output name as key, and node as value.
return_indice (list): a list to append the input index
When there is no constraint on input index of an edge.
Returns:
parents: a list of matched parent node.
"""
if parent_input_index is not None:
assert len(parent_input_index) == len(parent_op_types)
if output_name_to_node is None:
output_name_to_node = self.model.output_name_to_node()
current_node = node
matched_parents = []
for i, op_type in enumerate(parent_op_types):
matched_parent = self.match_parent(
current_node,
op_type,
parent_input_index[i] if parent_input_index is not None else None,
output_name_to_node,
exclude=[],
return_indice=return_indice,
)
if matched_parent is None:
return None
matched_parents.append(matched_parent)
current_node = matched_parent
return matched_parents
def match_parent_paths(
self,
node: onnx.NodeProto,
paths: list[tuple[list[str], list[int]]],
output_name_to_node: dict[str, onnx.NodeProto],
) -> tuple[int, list[onnx.NodeProto] | None, list[int] | None]:
"""
Find a matching parent path to the given node.
"""
for i, path in enumerate(paths):
return_indice = []
matched = self.match_parent_path(node, path[0], path[1], output_name_to_node, return_indice)
if matched:
return i, matched, return_indice
return -1, None, None
def find_first_child_by_type(
self,
node: onnx.NodeProto,
child_type: str,
input_name_to_nodes: dict[str, list[onnx.NodeProto]] | None = None,
recursive: bool = True,
) -> onnx.NodeProto | None:
children = self.model.get_children(node, input_name_to_nodes)
dq = deque(children)
while len(dq) > 0:
current_node = dq.pop()
if current_node.op_type == child_type:
return current_node
if recursive:
children = self.model.get_children(current_node, input_name_to_nodes)
for child in children:
dq.appendleft(child)
return None