import pandas as pd import torch import torch.nn as nn df = pd.read_csv("./RegressionModels/AdvertisementPrediction/advertising.csv") X = torch.tensor(df[["TV", "Radio", "Newspaper"]].values, dtype=torch.float32) Y = torch.tensor(df["Sales"].values, dtype=torch.float32) model = torch.nn.Sequential( torch.nn.Linear(3,1) ) loss_fn = torch.nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=3e-5) for epoch in range(2000): y_pred = model(X) loss = loss_fn(y_pred, Y) optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 99: print(f'Epoch {epoch+1}, Loss: {loss.item():.2f}')