# -*- coding: utf-8 -*- import torch import math # Create Tensors to hold input and outputs. x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x) # Prepare the input tensor (x, x^2, x^3). p = torch.tensor([1, 2, 3]) xx = x.unsqueeze(-1).pow(p) # Use the nn package to define our model and loss function. model = torch.nn.Sequential( torch.nn.Linear(3, 1), torch.nn.Flatten(0, 1) ) loss_fn = torch.nn.MSELoss(reduction='sum') # Use the optim package to define an Optimizer that will update the weights of # the model for us. Here we will use RMSprop; the optim package contains many other # optimization algorithms. The first argument to the RMSprop constructor tells the # optimizer which Tensors it should update. learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate) for t in range(2000): # Forward pass: compute predicted y by passing x to the model. y_pred = model(xx) # Compute and print loss. loss = loss_fn(y_pred, y) if t % 100 == 99: print(t, loss.item()) # Before the backward pass, use the optimizer object to zero all of the # gradients for the variables it will update (which are the learnable # weights of the model). This is because by default, gradients are # accumulated in buffers( i.e, not overwritten) whenever .backward() # is called. Checkout docs of torch.autograd.backward for more details. optimizer.zero_grad() # Backward pass: compute gradient of the loss with respect to model # parameters loss.backward() # Calling the step function on an Optimizer makes an update to its # parameters optimizer.step() linear_layer = model[0] print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')