Work in progress

This commit is contained in:
2025-09-29 08:59:47 +02:00
parent 8a2a9d1064
commit b93df4af0f
26 changed files with 22986 additions and 0 deletions

View File

@ -0,0 +1,47 @@
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import StandardScaler
df = pd.read_csv("./RegressionModels/CaliforniaHousing/housing.csv")
df = df.dropna(subset=df.columns[:8])
df['ocean_proximity_encoded'] = df['ocean_proximity'].astype('category').cat.codes #Encodes text values as numerical ones
# print(df)
# print(df.iloc[:,0:8])
scaler_x = StandardScaler()
scaled_X = scaler_x.fit_transform(df.iloc[:,0:8].join(df["ocean_proximity_encoded"]).values)
X = torch.tensor(scaled_X, dtype=torch.float32)
scaler_y = StandardScaler()
scaled_Y = scaler_y.fit_transform(df["median_house_value"].values.reshape(-1,1))
Y = torch.tensor(scaled_Y, dtype=torch.float32)
model = torch.nn.Sequential(
torch.nn.Linear(9, 18),
torch.nn.ReLU(),
torch.nn.Linear(18, 1)
)
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
X = X.to(device)
Y = Y.to(device)
for epoch in range(3000):
pred_y = model(X)
loss = loss_fn(pred_y, Y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 99 == 0:
print('Epoch: ', epoch, f"loss: {loss.item():.2f}")