Work in progress
This commit is contained in:
46
RegressionModels/BostonHousing/predict_housing.py
Normal file
46
RegressionModels/BostonHousing/predict_housing.py
Normal file
@ -0,0 +1,46 @@
|
||||
|
||||
"""
|
||||
Column Meaning
|
||||
crim Per capita crime rate by town
|
||||
zn Proportion of residential land zoned for lots over 25,000 sq.ft.
|
||||
indus Proportion of non-retail business acres per town
|
||||
chas Charles River dummy variable (1 if tract bounds river, 0 otherwise)
|
||||
nox Nitric oxides concentration (parts per 10 million)
|
||||
rm Average number of rooms per dwelling
|
||||
age Proportion of owner-occupied units built prior to 1940
|
||||
dis Weighted distances to five Boston employment centers
|
||||
rad Index of accessibility to radial highways
|
||||
tax Full-value property-tax rate per $10,000
|
||||
ptratio Pupil-teacher ratio by town
|
||||
black 1000(Bk - 0.63)^2, where Bk is the proportion of Black people by town
|
||||
lstat % lower status of the population
|
||||
medv Median value of owner-occupied homes in $1000’s (target variable)
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
df = pd.read_csv("./RegressionModels/BostonHousing/Boston.csv")
|
||||
|
||||
|
||||
# print(df.iloc[:,0:14])
|
||||
|
||||
X = torch.tensor(df.iloc[:,0:14].values, dtype=torch.float32)
|
||||
Y = torch.tensor(df["medv"].values, dtype=torch.float32)
|
||||
|
||||
model = torch.nn.Sequential(
|
||||
torch.nn.Linear(14, 1)
|
||||
)
|
||||
|
||||
loss_fn = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=5e-9)
|
||||
|
||||
for epoch in range(2000):
|
||||
predict_y = model(X)
|
||||
loss = loss_fn(predict_y, Y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if epoch % 99 ==0:
|
||||
print(f'Epoch: {epoch}, Loss: {loss.item():.2f}')
|
||||
Reference in New Issue
Block a user