Work in progress

This commit is contained in:
2025-09-29 08:59:47 +02:00
parent 8a2a9d1064
commit b93df4af0f
26 changed files with 22986 additions and 0 deletions

View File

@ -0,0 +1,25 @@
import pandas as pd
import torch
import torch.nn as nn
df = pd.read_csv("./RegressionModels/AdvertisementPrediction/advertising.csv")
X = torch.tensor(df[["TV", "Radio", "Newspaper"]].values, dtype=torch.float32)
Y = torch.tensor(df["Sales"].values, dtype=torch.float32)
model = torch.nn.Sequential(
torch.nn.Linear(3,1)
)
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=3e-5)
for epoch in range(2000):
y_pred = model(X)
loss = loss_fn(y_pred, Y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 99:
print(f'Epoch {epoch+1}, Loss: {loss.item():.2f}')