Work in progress
This commit is contained in:
25
RegressionModels/AdvertisementPrediction/predict_sales.py
Normal file
25
RegressionModels/AdvertisementPrediction/predict_sales.py
Normal file
@ -0,0 +1,25 @@
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
df = pd.read_csv("./RegressionModels/AdvertisementPrediction/advertising.csv")
|
||||
|
||||
X = torch.tensor(df[["TV", "Radio", "Newspaper"]].values, dtype=torch.float32)
|
||||
Y = torch.tensor(df["Sales"].values, dtype=torch.float32)
|
||||
|
||||
model = torch.nn.Sequential(
|
||||
torch.nn.Linear(3,1)
|
||||
)
|
||||
|
||||
loss_fn = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=3e-5)
|
||||
|
||||
for epoch in range(2000):
|
||||
y_pred = model(X)
|
||||
loss = loss_fn(y_pred, Y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if epoch % 100 == 99:
|
||||
print(f'Epoch {epoch+1}, Loss: {loss.item():.2f}')
|
||||
|
||||
Reference in New Issue
Block a user