37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
from hypothesis import given
|
|
from hypothesis import strategies as st
|
|
from sympy.abc import x
|
|
from sympy.polys.polytools import Poly
|
|
|
|
|
|
def polys(*, nonzero=False, domain="ZZ"):
|
|
# This is a simple strategy, but sufficient the tests below
|
|
elems = {"ZZ": st.integers(), "QQ": st.fractions()}
|
|
coeff_st = st.lists(elems[domain])
|
|
if nonzero:
|
|
coeff_st = coeff_st.filter(any)
|
|
return st.builds(Poly, coeff_st, st.just(x), domain=st.just(domain))
|
|
|
|
|
|
@given(f=polys(), g=polys(), r=polys())
|
|
def test_gcd_hypothesis(f, g, r):
|
|
gcd_1 = f.gcd(g)
|
|
gcd_2 = g.gcd(f)
|
|
assert gcd_1 == gcd_2
|
|
|
|
# multiply by r
|
|
gcd_3 = g.gcd(f + r * g)
|
|
assert gcd_1 == gcd_3
|
|
|
|
|
|
@given(f_z=polys(), g_z=polys(nonzero=True))
|
|
def test_poly_hypothesis_integers(f_z, g_z):
|
|
remainder_z = f_z.rem(g_z)
|
|
assert g_z.degree() >= remainder_z.degree() or remainder_z.degree() == 0
|
|
|
|
|
|
@given(f_q=polys(domain="QQ"), g_q=polys(nonzero=True, domain="QQ"))
|
|
def test_poly_hypothesis_rationals(f_q, g_q):
|
|
remainder_q = f_q.rem(g_q)
|
|
assert g_q.degree() >= remainder_q.degree() or remainder_q.degree() == 0
|