Files
Reinforced-Learning-Godot/rl/Lib/site-packages/sympy/functions/special/elliptic_integrals.py
2024-10-30 22:14:35 +01:00

446 lines
14 KiB
Python

""" Elliptic Integrals. """
from sympy.core import S, pi, I, Rational
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.symbol import Dummy,uniquely_named_symbol
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.hyperbolic import atanh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, tan
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper, meijerg
class elliptic_k(Function):
r"""
The complete elliptic integral of the first kind, defined by
.. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right)
where $F\left(z\middle| m\right)$ is the Legendre incomplete
elliptic integral of the first kind.
Explanation
===========
The function $K(m)$ is a single-valued function on the complex
plane with branch cut along the interval $(1, \infty)$.
Note that our notation defines the incomplete elliptic integral
in terms of the parameter $m$ instead of the elliptic modulus
(eccentricity) $k$.
In this case, the parameter $m$ is defined as $m=k^2$.
Examples
========
>>> from sympy import elliptic_k, I
>>> from sympy.abc import m
>>> elliptic_k(0)
pi/2
>>> elliptic_k(1.0 + I)
1.50923695405127 + 0.625146415202697*I
>>> elliptic_k(m).series(n=3)
pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3)
See Also
========
elliptic_f
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticK
"""
@classmethod
def eval(cls, m):
if m.is_zero:
return pi*S.Half
elif m is S.Half:
return 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2
elif m is S.One:
return S.ComplexInfinity
elif m is S.NegativeOne:
return gamma(Rational(1, 4))**2/(4*sqrt(2*pi))
elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity,
I*S.NegativeInfinity, S.ComplexInfinity):
return S.Zero
def fdiff(self, argindex=1):
m = self.args[0]
return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m))
def _eval_conjugate(self):
m = self.args[0]
if (m.is_real and (m - 1).is_positive) is False:
return self.func(m.conjugate())
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.simplify import hyperexpand
return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx))
def _eval_rewrite_as_hyper(self, m, **kwargs):
return pi*S.Half*hyper((S.Half, S.Half), (S.One,), m)
def _eval_rewrite_as_meijerg(self, m, **kwargs):
return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2
def _eval_is_zero(self):
m = self.args[0]
if m.is_infinite:
return True
def _eval_rewrite_as_Integral(self, *args, **kwargs):
from sympy.integrals.integrals import Integral
t = Dummy(uniquely_named_symbol('t', args).name)
m = self.args[0]
return Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2))
class elliptic_f(Function):
r"""
The Legendre incomplete elliptic integral of the first
kind, defined by
.. math:: F\left(z\middle| m\right) =
\int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}}
Explanation
===========
This function reduces to a complete elliptic integral of
the first kind, $K(m)$, when $z = \pi/2$.
Note that our notation defines the incomplete elliptic integral
in terms of the parameter $m$ instead of the elliptic modulus
(eccentricity) $k$.
In this case, the parameter $m$ is defined as $m=k^2$.
Examples
========
>>> from sympy import elliptic_f, I
>>> from sympy.abc import z, m
>>> elliptic_f(z, m).series(z)
z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6)
>>> elliptic_f(3.0 + I/2, 1.0 + I)
2.909449841483 + 1.74720545502474*I
See Also
========
elliptic_k
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticF
"""
@classmethod
def eval(cls, z, m):
if z.is_zero:
return S.Zero
if m.is_zero:
return z
k = 2*z/pi
if k.is_integer:
return k*elliptic_k(m)
elif m in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif z.could_extract_minus_sign():
return -elliptic_f(-z, m)
def fdiff(self, argindex=1):
z, m = self.args
fm = sqrt(1 - m*sin(z)**2)
if argindex == 1:
return 1/fm
elif argindex == 2:
return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) -
sin(2*z)/(4*(1 - m)*fm))
raise ArgumentIndexError(self, argindex)
def _eval_conjugate(self):
z, m = self.args
if (m.is_real and (m - 1).is_positive) is False:
return self.func(z.conjugate(), m.conjugate())
def _eval_rewrite_as_Integral(self, *args, **kwargs):
from sympy.integrals.integrals import Integral
t = Dummy(uniquely_named_symbol('t', args).name)
z, m = self.args[0], self.args[1]
return Integral(1/(sqrt(1 - m*sin(t)**2)), (t, 0, z))
def _eval_is_zero(self):
z, m = self.args
if z.is_zero:
return True
if m.is_extended_real and m.is_infinite:
return True
class elliptic_e(Function):
r"""
Called with two arguments $z$ and $m$, evaluates the
incomplete elliptic integral of the second kind, defined by
.. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt
Called with a single argument $m$, evaluates the Legendre complete
elliptic integral of the second kind
.. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right)
Explanation
===========
The function $E(m)$ is a single-valued function on the complex
plane with branch cut along the interval $(1, \infty)$.
Note that our notation defines the incomplete elliptic integral
in terms of the parameter $m$ instead of the elliptic modulus
(eccentricity) $k$.
In this case, the parameter $m$ is defined as $m=k^2$.
Examples
========
>>> from sympy import elliptic_e, I
>>> from sympy.abc import z, m
>>> elliptic_e(z, m).series(z)
z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6)
>>> elliptic_e(m).series(n=4)
pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4)
>>> elliptic_e(1 + I, 2 - I/2).n()
1.55203744279187 + 0.290764986058437*I
>>> elliptic_e(0)
pi/2
>>> elliptic_e(2.0 - I)
0.991052601328069 + 0.81879421395609*I
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticE2
.. [3] https://functions.wolfram.com/EllipticIntegrals/EllipticE
"""
@classmethod
def eval(cls, m, z=None):
if z is not None:
z, m = m, z
k = 2*z/pi
if m.is_zero:
return z
if z.is_zero:
return S.Zero
elif k.is_integer:
return k*elliptic_e(m)
elif m in (S.Infinity, S.NegativeInfinity):
return S.ComplexInfinity
elif z.could_extract_minus_sign():
return -elliptic_e(-z, m)
else:
if m.is_zero:
return pi/2
elif m is S.One:
return S.One
elif m is S.Infinity:
return I*S.Infinity
elif m is S.NegativeInfinity:
return S.Infinity
elif m is S.ComplexInfinity:
return S.ComplexInfinity
def fdiff(self, argindex=1):
if len(self.args) == 2:
z, m = self.args
if argindex == 1:
return sqrt(1 - m*sin(z)**2)
elif argindex == 2:
return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m)
else:
m = self.args[0]
if argindex == 1:
return (elliptic_e(m) - elliptic_k(m))/(2*m)
raise ArgumentIndexError(self, argindex)
def _eval_conjugate(self):
if len(self.args) == 2:
z, m = self.args
if (m.is_real and (m - 1).is_positive) is False:
return self.func(z.conjugate(), m.conjugate())
else:
m = self.args[0]
if (m.is_real and (m - 1).is_positive) is False:
return self.func(m.conjugate())
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.simplify import hyperexpand
if len(self.args) == 1:
return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx))
return super()._eval_nseries(x, n=n, logx=logx)
def _eval_rewrite_as_hyper(self, *args, **kwargs):
if len(args) == 1:
m = args[0]
return (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), m)
def _eval_rewrite_as_meijerg(self, *args, **kwargs):
if len(args) == 1:
m = args[0]
return -meijerg(((S.Half, Rational(3, 2)), []), \
((S.Zero,), (S.Zero,)), -m)/4
def _eval_rewrite_as_Integral(self, *args, **kwargs):
from sympy.integrals.integrals import Integral
z, m = (pi/2, self.args[0]) if len(self.args) == 1 else self.args
t = Dummy(uniquely_named_symbol('t', args).name)
return Integral(sqrt(1 - m*sin(t)**2), (t, 0, z))
class elliptic_pi(Function):
r"""
Called with three arguments $n$, $z$ and $m$, evaluates the
Legendre incomplete elliptic integral of the third kind, defined by
.. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt}
{\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}}
Called with two arguments $n$ and $m$, evaluates the complete
elliptic integral of the third kind:
.. math:: \Pi\left(n\middle| m\right) =
\Pi\left(n; \tfrac{\pi}{2}\middle| m\right)
Explanation
===========
Note that our notation defines the incomplete elliptic integral
in terms of the parameter $m$ instead of the elliptic modulus
(eccentricity) $k$.
In this case, the parameter $m$ is defined as $m=k^2$.
Examples
========
>>> from sympy import elliptic_pi, I
>>> from sympy.abc import z, n, m
>>> elliptic_pi(n, z, m).series(z, n=4)
z + z**3*(m/6 + n/3) + O(z**4)
>>> elliptic_pi(0.5 + I, 1.0 - I, 1.2)
2.50232379629182 - 0.760939574180767*I
>>> elliptic_pi(0, 0)
pi/2
>>> elliptic_pi(1.0 - I/3, 2.0 + I)
3.29136443417283 + 0.32555634906645*I
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] https://functions.wolfram.com/EllipticIntegrals/EllipticPi3
.. [3] https://functions.wolfram.com/EllipticIntegrals/EllipticPi
"""
@classmethod
def eval(cls, n, m, z=None):
if z is not None:
n, z, m = n, m, z
if n.is_zero:
return elliptic_f(z, m)
elif n is S.One:
return (elliptic_f(z, m) +
(sqrt(1 - m*sin(z)**2)*tan(z) -
elliptic_e(z, m))/(1 - m))
k = 2*z/pi
if k.is_integer:
return k*elliptic_pi(n, m)
elif m.is_zero:
return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1)
elif n == m:
return (elliptic_f(z, n) - elliptic_pi(1, z, n) +
tan(z)/sqrt(1 - n*sin(z)**2))
elif n in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif m in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif z.could_extract_minus_sign():
return -elliptic_pi(n, -z, m)
if n.is_zero:
return elliptic_f(z, m)
if m.is_extended_real and m.is_infinite or \
n.is_extended_real and n.is_infinite:
return S.Zero
else:
if n.is_zero:
return elliptic_k(m)
elif n is S.One:
return S.ComplexInfinity
elif m.is_zero:
return pi/(2*sqrt(1 - n))
elif m == S.One:
return S.NegativeInfinity/sign(n - 1)
elif n == m:
return elliptic_e(n)/(1 - n)
elif n in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif m in (S.Infinity, S.NegativeInfinity):
return S.Zero
if n.is_zero:
return elliptic_k(m)
if m.is_extended_real and m.is_infinite or \
n.is_extended_real and n.is_infinite:
return S.Zero
def _eval_conjugate(self):
if len(self.args) == 3:
n, z, m = self.args
if (n.is_real and (n - 1).is_positive) is False and \
(m.is_real and (m - 1).is_positive) is False:
return self.func(n.conjugate(), z.conjugate(), m.conjugate())
else:
n, m = self.args
return self.func(n.conjugate(), m.conjugate())
def fdiff(self, argindex=1):
if len(self.args) == 3:
n, z, m = self.args
fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2
if argindex == 1:
return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n +
(n**2 - m)*elliptic_pi(n, z, m)/n -
n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1))
elif argindex == 2:
return 1/(fm*fn)
elif argindex == 3:
return (elliptic_e(z, m)/(m - 1) +
elliptic_pi(n, z, m) -
m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m))
else:
n, m = self.args
if argindex == 1:
return (elliptic_e(m) + (m - n)*elliptic_k(m)/n +
(n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1))
elif argindex == 2:
return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m))
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Integral(self, *args, **kwargs):
from sympy.integrals.integrals import Integral
if len(self.args) == 2:
n, m, z = self.args[0], self.args[1], pi/2
else:
n, z, m = self.args
t = Dummy(uniquely_named_symbol('t', args).name)
return Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z))