Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnxruntime/transformers/fusion_attention.py
2024-10-30 22:14:35 +01:00

1236 lines
50 KiB
Python

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import List, Optional, Tuple, Union
import numpy as np
from fusion_base import Fusion
from fusion_options import AttentionMaskFormat
from fusion_utils import FusionUtils, NumpyHelper
from onnx import NodeProto, TensorProto, helper, numpy_helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class AttentionMask:
"""
Fuse Attention subgraph into one Attention node.
"""
def __init__(self, model: OnnxModel):
self.model = model
# A lookup table with mask input as key, and mask index output as value
self.mask_indice = {}
# A lookup table with mask input as key, and cast (to int32) output as value
self.mask_casted = {}
self.utils = FusionUtils(model)
self.mask_format = AttentionMaskFormat.MaskIndexEnd
self.opset_version = model.get_opset_version()
def set_mask_format(self, mask_format: AttentionMaskFormat):
self.mask_format = mask_format
def set_mask_indice(self, mask, mask_index):
if mask in self.mask_indice:
assert mask_index == self.mask_indice[mask]
self.mask_indice[mask] = mask_index
def get_first_mask(self):
assert len(self.mask_indice) > 0
return next(iter(self.mask_indice))
def process_mask(self, input: str) -> str:
if self.mask_format == AttentionMaskFormat.NoMask:
return None
if input in self.mask_indice:
return self.mask_indice[input]
# Add cast to convert int64 to int32
if self.model.find_graph_input(input):
casted, input_name = self.utils.cast_graph_input_to_int32(input)
else:
input_name, cast_node = self.utils.cast_input_to_int32(input)
casted = True
if casted:
self.mask_casted[input] = input_name
# Attention supports int32 attention mask (2D) since 1.4.0
if self.mask_format == AttentionMaskFormat.AttentionMask:
self.mask_indice[input] = input_name
return input_name
# Add a mask processing node to convert attention mask to mask index (1D)
output_name = self.model.create_node_name("mask_index")
if self.opset_version < 13:
mask_index_node = helper.make_node(
"ReduceSum",
inputs=[input_name],
outputs=[output_name],
name=self.model.create_node_name("ReduceSum", "MaskReduceSum"),
)
mask_index_node.attribute.extend([helper.make_attribute("axes", [1]), helper.make_attribute("keepdims", 0)])
else:
# ReduceSum-13: axes is moved from attribute to input
axes_name = "ort_const_1_reduce_sum_axes"
if self.model.get_initializer(axes_name) is None:
self.model.add_initializer(
helper.make_tensor(
name=axes_name,
data_type=TensorProto.INT64,
dims=[1],
vals=[1],
raw=False,
)
)
mask_index_node = helper.make_node(
"ReduceSum",
inputs=[input_name, axes_name],
outputs=[output_name],
name=self.model.create_node_name("ReduceSum", "MaskReduceSum"),
)
mask_index_node.attribute.extend([helper.make_attribute("keepdims", 0)])
self.model.add_node(mask_index_node)
self.mask_indice[input] = output_name
return output_name
class FusionAttention(Fusion):
"""
Fuse Attention subgraph into one Attention node.
"""
def __init__(
self,
model: OnnxModel,
hidden_size: int,
num_heads: int,
attention_mask: Optional[AttentionMask] = None,
use_multi_head_attention: bool = False,
disable_multi_head_attention_bias: bool = False,
search_op_types: List[str] = ["SkipLayerNormalization", "LayerNormalization"], # noqa: B006
):
attention_op_name = "MultiHeadAttention" if use_multi_head_attention else "Attention"
super().__init__(model, attention_op_name, search_op_types)
self.hidden_size = hidden_size
self.num_heads = num_heads
self.attention_mask = attention_mask if attention_mask else AttentionMask(model)
self.use_multi_head_attention = use_multi_head_attention
self.disable_multi_head_attention_bias = disable_multi_head_attention_bias
self.mask_filter_value = None
# Flags to show warning only once
self.num_heads_warning = True
self.hidden_size_warning = True
self.shape_infer = None
self.shape_infer_done = True
def get_num_heads_and_hidden_size_from_concat(self, concat: NodeProto) -> Tuple[int, int]:
"""
Detect num_heads and hidden_size from Concat node in the following subgraph:
SkipLayerNormalization or EmbedLayerNormalization
/ |
MatMul Shape
| |
Add Gather(indices=0)
| |
| Unsqueeze
| |
| Concat (*, -1, 12, 64)
| /
Reshape
|
Transpose
"""
if len(concat.input) == 4:
num_heads = self.model.get_constant_value(concat.input[2])
head_size = self.model.get_constant_value(concat.input[3])
if (
isinstance(num_heads, np.ndarray)
and num_heads.size == 1
and isinstance(head_size, np.ndarray)
and head_size.size == 1
):
return num_heads[0], num_heads[0] * head_size[0]
return self.num_heads, self.hidden_size
def get_num_heads_and_hidden_size(self, reshape_q: NodeProto) -> Tuple[int, int]:
"""Detect num_heads and hidden_size from a reshape node.
Args:
reshape_q (NodeProto): reshape node for Q
Returns:
Tuple[int, int]: num_heads and hidden_size
"""
# we assume that reshape fusion has done, so the shape is a tensor like [0, 0, num_heads, head_size]
q_shape = self.model.get_initializer(reshape_q.input[1])
if q_shape is None:
concat = self.model.get_parent(reshape_q, 1)
if concat is not None and concat.op_type == "Concat":
return self.get_num_heads_and_hidden_size_from_concat(concat)
logger.debug(f"{reshape_q.input[1]} is not initializer.")
return self.num_heads, self.hidden_size # Fall back to user specified value
q_shape_value = NumpyHelper.to_array(q_shape)
if len(q_shape_value) != 4 or (q_shape_value[2] <= 0 or q_shape_value[3] <= 0):
logger.debug(f"q_shape_value={q_shape_value}. Expected value are like [0, 0, num_heads, head_size].")
return self.num_heads, self.hidden_size # Fall back to user specified value
num_heads = q_shape_value[2]
head_size = q_shape_value[3]
hidden_size = num_heads * head_size
if self.num_heads > 0 and num_heads != self.num_heads:
if self.num_heads_warning:
logger.warning(f"--num_heads is {self.num_heads}. Detected value is {num_heads}. Using detected value.")
self.num_heads_warning = False # Do not show the warning more than once
if self.hidden_size > 0 and hidden_size != self.hidden_size:
if self.hidden_size_warning:
logger.warning(
f"--hidden_size is {self.hidden_size}. Detected value is {hidden_size}. Using detected value."
)
self.hidden_size_warning = False # Do not show the warning more than once
return num_heads, hidden_size
def get_add_qk_str(self, add_qk: NodeProto):
if not self.shape_infer_done:
self.shape_infer = self.model.infer_runtime_shape(update=True)
self.shape_infer_done = True
if self.shape_infer is None:
return None
input_0_shape = self.shape_infer.get_edge_shape(add_qk.input[0])
input_1_shape = self.shape_infer.get_edge_shape(add_qk.input[1])
if input_0_shape is None or input_1_shape is None:
logger.debug(f"one of the inputs of {add_qk} is None")
return None
if input_0_shape != input_1_shape:
logger.debug(f"the shape of two inputs of {add_qk} is not same")
return None
return add_qk.input[1]
def reshape_add_qk(self, add_qk: str):
# Convert 4D mask from (B,1,S,T) to (B,N,S,T)
# B = batch size, N = num heads, S = source sequence length, T = target sequence length
mask_output_name = add_qk + "_mask"
# Check if concat node for (B,1,S,T) --> (B,N,S,T) already exists
concat_node = list(filter(lambda node: node.output[0] == mask_output_name, self.nodes_to_add))
if len(concat_node) == 1:
return mask_output_name
assert len(concat_node) == 0
concat_node_name = self.model.create_node_name("Concat")
concat_add_qk_fp32 = helper.make_node(
"Concat",
inputs=[add_qk for _ in range(self.num_heads)],
outputs=[mask_output_name],
name=concat_node_name,
axis=1,
)
# Add new node to graph
self.nodes_to_add.append(concat_add_qk_fp32)
self.node_name_to_graph_name[concat_node_name] = self.this_graph_name
return mask_output_name
def concat_kv(self, past_k: str, past_v: str) -> str:
"""Concatenate past_k and past_v inputs to create past_kv input.
Args:
past_k (str): name of past K value
past_v (str): name of past V value
Returns:
kv_output_name (str): name of past KV value
"""
# Unsqueeze K and V nodes from (B,N,P,H) to (1,B,N,P,H)
# B = batch size, N = num heads, P = past sequence length, H = head size
unsqueeze_k_name = self.model.create_node_name("Unsqueeze")
unsqueeze_v_name = self.model.create_node_name("Unsqueeze")
k_5d_name = (past_k + "_5d").replace(".", "_")
v_5d_name = (past_v + "_5d").replace(".", "_")
k_5d = helper.make_node(
"Unsqueeze",
inputs=[past_k],
outputs=[k_5d_name],
name=unsqueeze_k_name,
axes=[0],
)
v_5d = helper.make_node(
"Unsqueeze",
inputs=[past_v],
outputs=[v_5d_name],
name=unsqueeze_v_name,
axes=[0],
)
# Add unsqueeze nodes to graph
self.nodes_to_add.append(k_5d)
self.nodes_to_add.append(v_5d)
self.node_name_to_graph_name[unsqueeze_k_name] = self.this_graph_name
self.node_name_to_graph_name[unsqueeze_v_name] = self.this_graph_name
# Concat K and V to get one node of size (2,B,N,P,H)
concat_node_name = self.model.create_node_name("Concat")
kv_output_name = past_v.replace(".value", ".kv").replace(".", "_").replace("_value", "_kv")
concat_kv = helper.make_node(
"Concat",
inputs=[k_5d_name, v_5d_name],
outputs=[kv_output_name],
name=concat_node_name,
axis=0,
)
# Add concat node to graph
self.nodes_to_add.append(concat_kv)
self.node_name_to_graph_name[concat_node_name] = self.this_graph_name
return kv_output_name
def reshape_kv(self, past_k: str, past_v: str) -> (str, str):
"""Reshape past_k and past_v from 4D to 3D to use as inputs for multihead attention node.
Args:
past_k (str): name of past K value of shape 4D
past_v (str): name of past V value of shape 4D
Returns:
k_3d (str): name of past K value of shape 3D
v_3d (str): name of past V value of shape 3D
"""
# Reshape past_k and past_v from (B,N,P,H) to (B,P,N*H)
# B = batch size, N = num heads, P = past seq len, H = head size
# Create initializer for reshaping past_k and past_v
new_dims_name = "kv_4d_to_3d"
new_dims = self.model.get_initializer(new_dims_name)
if new_dims is None:
new_dims = numpy_helper.from_array(
np.array([0, -1, self.model.hidden_size], dtype="int64"), name=new_dims_name
)
self.model.add_initializer(new_dims, self.this_graph_name)
reshape_k_name = self.model.create_node_name("Reshape")
reshape_v_name = self.model.create_node_name("Reshape")
k_3d_name = (past_k + "_3d").replace(".", "_")
v_3d_name = (past_v + "_3d").replace(".", "_")
k_3d = helper.make_node(
"Reshape",
inputs=[past_k, new_dims_name],
outputs=[k_3d_name],
name=reshape_k_name,
)
v_3d = helper.make_node(
"Reshape",
inputs=[past_v, new_dims_name],
outputs=[v_3d_name],
name=reshape_v_name,
)
# Add reshape nodes to graph
self.nodes_to_add.append(k_3d)
self.nodes_to_add.append(v_3d)
self.node_name_to_graph_name[reshape_k_name] = self.this_graph_name
self.node_name_to_graph_name[reshape_v_name] = self.this_graph_name
return k_3d_name, v_3d_name
def split_kv(self, present_k_name: str, present_v_name: str, kv_node: str):
"""Split kv_node containing present KV values into separate present K and present V values.
Args:
present_k_name (str): name of output to store present K value in
present_v_name (str): name of output to store present V value in
kv_node (str): name of present KV values
"""
# Split kv_node into present_k and present_v nodes
# Create initializers for indexing kv_node, whose shape is (2,B,N,P,H)
k_index, v_index = "index_0", "index_1"
k_dim = self.model.get_initializer(k_index)
v_dim = self.model.get_initializer(v_index)
if k_dim is None:
k_dim = numpy_helper.from_array(np.array(0, dtype="int64"), name=k_index)
self.model.add_initializer(k_dim, self.this_graph_name)
if v_dim is None:
v_dim = numpy_helper.from_array(np.array(1, dtype="int64"), name=v_index)
self.model.add_initializer(v_dim, self.this_graph_name)
# Create nodes to index kv_node
gather_k_name = self.model.create_node_name("Gather")
gather_v_name = self.model.create_node_name("Gather")
present_k = helper.make_node(
"Gather",
inputs=[kv_node, k_index],
outputs=[present_k_name],
name=gather_k_name,
axis=0,
)
present_v = helper.make_node(
"Gather",
inputs=[kv_node, v_index],
outputs=[present_v_name],
name=gather_v_name,
axis=0,
)
# Add gather nodes to graph
self.nodes_to_add.append(present_k)
self.nodes_to_add.append(present_v)
self.node_name_to_graph_name[gather_k_name] = self.this_graph_name
self.node_name_to_graph_name[gather_v_name] = self.this_graph_name
def transpose_kv(self, past_k: str, past_v: str):
"""Transpose past_k and past_v from (B,N,P,H) to (B,P,N,H)
Args:
past_k (str): name of past K value of shape (B,N,P,H)
past_v (str): name of past V value of shape (B,N,P,H)
Returns:
past_k_transpose (str): name of past K value of shape (B,P,N,H)
past_v_transpose (str): name of past V value of shape (B,P,N,H)
"""
past_k_transpose = (past_k + "_transposed").replace(".", "_")
past_v_transpose = (past_v + "_transposed").replace(".", "_")
transpose_k_name = self.model.create_node_name("Transpose")
transpose_v_name = self.model.create_node_name("Transpose")
transpose_k = helper.make_node(
"Transpose",
inputs=[past_k],
outputs=[past_k_transpose],
name=transpose_k_name,
perm=[0, 2, 1, 3],
)
transpose_v = helper.make_node(
"Transpose",
inputs=[past_v],
outputs=[past_v_transpose],
name=transpose_v_name,
perm=[0, 2, 1, 3],
)
# Add reshape nodes to graph
self.nodes_to_add.append(transpose_k)
self.nodes_to_add.append(transpose_v)
self.node_name_to_graph_name[transpose_k_name] = self.this_graph_name
self.node_name_to_graph_name[transpose_v_name] = self.this_graph_name
return past_k_transpose, past_v_transpose
def create_combined_qkv_bias(
self,
q_add: NodeProto,
k_add: Union[NodeProto, None],
v_add: Union[NodeProto, None],
name_prefix: str,
) -> Union[NodeProto, None]:
q_bias = self.model.get_initializer(q_add.input[1]) or self.model.get_initializer(q_add.input[0])
qb = NumpyHelper.to_array(q_bias)
kb = np.zeros_like(qb)
vb = np.zeros_like(qb)
if k_add is not None:
k_bias = self.model.get_initializer(k_add.input[1]) or self.model.get_initializer(k_add.input[0])
kb = NumpyHelper.to_array(k_bias)
if v_add is not None:
v_bias = self.model.get_initializer(v_add.input[1]) or self.model.get_initializer(v_add.input[0])
vb = NumpyHelper.to_array(v_bias)
qkv_bias = np.stack((qb, kb, vb), axis=0)
qkv_bias_dim = 3 * np.prod(qb.shape)
bias_name = name_prefix + "_qkv_bias"
self.add_initializer(
name=bias_name,
data_type=q_bias.data_type,
dims=[qkv_bias_dim],
vals=qkv_bias,
)
return bias_name
def create_packed_qkv_matmul_node(
self,
q_matmul: NodeProto,
k_matmul: NodeProto,
v_matmul: NodeProto,
q_add: NodeProto,
k_add: Union[NodeProto, None],
v_add: Union[NodeProto, None],
num_heads: int,
) -> Union[NodeProto, None]:
"""Create packed QKV MatMul node before MultiHeadAttention node.
This is for the scenario where an Attention node should be created but cannot be created
because past_key and past_value are separate inputs and not one concatenated input.
Args:
q_matmul (NodeProto): name of MatMul from Q path - (batch_size, sequence_length, hidden_size)
k_matmul (NodeProto): name of MatMul from K path - (batch_size, sequence_length, hidden_size)
v_matmul (NodeProto): name of MatMul from V path - (batch_size, sequence_length, hidden_size)
q_add (NodeProto): name of Add from Q path
k_add (NodeProto): name of Add from K path
v_add (NodeProto): name of Add from V path
num_heads (int): number of heads
Returns:
Union[NodeProto, None]: the node created or None if failed.
"""
matmul_node_name = self.model.create_node_name("MatMul")
# Check that input for Q, K, V is the same
assert q_matmul.input[0] == k_matmul.input[0] and k_matmul.input[0] == v_matmul.input[0]
# Created packed QKV weight
q_weight = self.model.get_initializer(q_matmul.input[1])
k_weight = self.model.get_initializer(k_matmul.input[1])
v_weight = self.model.get_initializer(v_matmul.input[1])
qw = NumpyHelper.to_array(q_weight)
kw = NumpyHelper.to_array(k_weight)
vw = NumpyHelper.to_array(v_weight)
assert qw.shape == kw.shape and kw.shape == vw.shape
d = qw.shape[0]
qkv_weight = np.stack((qw, kw, vw), axis=1).reshape((d, 3 * d))
qkv_weight_name = matmul_node_name + "_qkv_weight"
self.add_initializer(
name=qkv_weight_name,
data_type=q_weight.data_type,
dims=[qkv_weight.shape[0], qkv_weight.shape[1]],
vals=qkv_weight,
)
# Created packed QKV MatMul with output (B, S, 3*D)
# Output is of the form:
#
# [[[Q Q ... Q Q K K ... K K V V ... V V]]]
# [Q Q ... Q Q K K ... K K V V ... V V]
# .
# .
# .
# [[Q Q ... Q Q K K ... K K V V ... V V]
# [Q Q ... Q Q K K ... K K V V ... V V]]]
qkv_matmul_output = matmul_node_name + "_qkv_out"
qkv_matmul = helper.make_node(
"MatMul",
inputs=[q_matmul.input[0], qkv_weight_name],
outputs=[qkv_matmul_output],
name=matmul_node_name,
)
self.node_name_to_graph_name[matmul_node_name] = self.this_graph_name
qkv_nodes = [qkv_matmul]
# Create Slice nodes to access Q, K, V
q_slice_name = matmul_node_name + "_q_start_index"
self.add_initializer(name=q_slice_name, data_type=TensorProto.INT64, dims=[1], vals=[0], raw=False)
k_slice_name = matmul_node_name + "_k_start_index"
self.add_initializer(name=k_slice_name, data_type=TensorProto.INT64, dims=[1], vals=[d], raw=False)
v_slice_name = matmul_node_name + "_v_start_index"
self.add_initializer(name=v_slice_name, data_type=TensorProto.INT64, dims=[1], vals=[2 * d], raw=False)
end_of_qkv_name = matmul_node_name + "_end_of_qkv_index"
self.add_initializer(name=end_of_qkv_name, data_type=TensorProto.INT64, dims=[1], vals=[3 * d], raw=False)
qkv_last_axis_name = matmul_node_name + "_qkv_last_axis"
self.add_initializer(name=qkv_last_axis_name, data_type=TensorProto.INT64, dims=[1], vals=[-1], raw=False)
q_slice_output = matmul_node_name + "_q_out"
q_slice = helper.make_node(
"Slice",
inputs=[qkv_matmul_output, q_slice_name, k_slice_name, qkv_last_axis_name],
outputs=[q_slice_output],
name=self.model.create_node_name("Slice"),
)
self.node_name_to_graph_name[q_slice.name] = self.this_graph_name
k_slice_output = matmul_node_name + "_k_out"
k_slice = helper.make_node(
"Slice",
inputs=[qkv_matmul_output, k_slice_name, v_slice_name, qkv_last_axis_name],
outputs=[k_slice_output],
name=self.model.create_node_name("Slice"),
)
self.node_name_to_graph_name[k_slice.name] = self.this_graph_name
v_slice_output = matmul_node_name + "_v_out"
v_slice = helper.make_node(
"Slice",
inputs=[qkv_matmul_output, v_slice_name, end_of_qkv_name, qkv_last_axis_name],
outputs=[v_slice_output],
name=self.model.create_node_name("Slice"),
)
self.node_name_to_graph_name[v_slice.name] = self.this_graph_name
q_output = q_slice
k_output = k_slice
v_output = v_slice
qkv_nodes.extend([q_slice, k_slice, v_slice])
if self.disable_multi_head_attention_bias:
if q_add is not None:
initializer_input = 1 if self.model.get_initializer(q_add.input[1]) else 0
if np.any(NumpyHelper.to_array(self.model.get_initializer(q_add.input[initializer_input]))):
q_add.input[1 - initializer_input] = q_slice_output
q_output = q_add
qkv_nodes.append(q_add)
self.node_name_to_graph_name[q_add.name] = self.this_graph_name
if k_add is not None:
initializer_input = 1 if self.model.get_initializer(k_add.input[1]) else 0
if np.any(NumpyHelper.to_array(self.model.get_initializer(k_add.input[initializer_input]))):
k_add.input[1 - initializer_input] = k_slice_output
k_output = k_add
qkv_nodes.append(k_add)
self.node_name_to_graph_name[k_add.name] = self.this_graph_name
if v_add is not None:
initializer_input = 1 if self.model.get_initializer(v_add.input[1]) else 0
if np.any(NumpyHelper.to_array(self.model.get_initializer(v_add.input[initializer_input]))):
v_add.input[1 - initializer_input] = v_slice_output
v_output = v_add
qkv_nodes.append(v_add)
self.node_name_to_graph_name[v_add.name] = self.this_graph_name
# Add nodes to graph
self.nodes_to_add.extend(qkv_nodes)
return q_output, k_output, v_output
def create_multihead_attention_node(
self,
q_matmul: NodeProto,
k_matmul: Union[NodeProto, str, None],
v_matmul: Union[NodeProto, str, None],
q_add: NodeProto,
k_add: Union[NodeProto, None],
v_add: Union[NodeProto, None],
num_heads: int,
hidden_size: int,
output: str,
key_padding_mask: str = "",
add_qk: str = "",
past_k: str = "",
past_v: str = "",
present_k: str = "",
present_v: str = "",
packed_qkv: bool = False,
) -> Union[NodeProto, None]:
"""Create a MultiHeadAttention node.
Args:
q_matmul (NodeProto): name of MatMul from Q path - (batch_size, sequence_length, hidden_size)
k_matmul (NodeProto): name of MatMul from K path - (batch_size, sequence_length, hidden_size) or (batch_size, num_heads, past_sequence_length, head_size)
v_matmul (NodeProto): name of MatMul from V path - (batch_size, sequence_length, hidden_size) or (batch_size, num_heads, past_sequence_length, head_size)
q_add (NodeProto): name of Add from Q path
k_add (NodeProto): name of Add from K path
v_add (NodeProto): name of Add from V path
num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning.
hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning.
output (str): output name of MHA
key_padding_mask (str): name of key padding mask
add_qk (str): name of add after Q x K'
past_k (str): name of past K value - (batch_size, num_heads, past_sequence_length, head_size)
past_v (str): name of past V value - (batch_size, num_heads, past_sequence_length, head_size)
present_k (str): name of present K value - (batch_size, num_heads, sequence_length, head_size)
present_v (str): name of present V value - (batch_size, num_heads, sequence_length, head_size)
packed_qkv (bool): whether to combine MatMuls from Q, K, V paths
Note: This is for the scenario where an Attention node should be created but cannot be created
because past_key and past_value are separate inputs and not one concatenated input.
Returns:
Union[NodeProto, None]: the node created or None if failed.
"""
# B = batch size, N = num heads, P = past seq len, H = head size
assert num_heads > 0
if hidden_size > 0 and (hidden_size % num_heads) != 0:
logger.debug(f"input hidden size {hidden_size} is not a multiple of num of heads {num_heads}")
return None
graph_input_names = set([node.name for node in self.model.graph().input])
mha_node_name = self.model.create_node_name("Attention")
# Add initial Q/K/V inputs for MHA
mha_inputs = []
if packed_qkv:
q_slice, k_slice, v_slice = self.create_packed_qkv_matmul_node(
q_matmul, k_matmul, v_matmul, q_add, k_add, v_add, num_heads
)
mha_inputs.extend([q_slice.output[0], k_slice.output[0], v_slice.output[0]])
elif type(k_matmul) is NodeProto and type(v_matmul) is NodeProto:
if self.disable_multi_head_attention_bias:
mha_inputs.extend([q_add.output[0], k_matmul.output[0], v_add.output[0]])
else:
mha_inputs.extend([q_matmul.output[0], k_matmul.output[0], v_matmul.output[0]])
elif (
type(k_matmul) == str # noqa: E721
and type(v_matmul) == str # noqa: E721
and k_matmul in graph_input_names
and v_matmul in graph_input_names
):
if self.disable_multi_head_attention_bias:
mha_inputs.extend([q_add.output[0], k_matmul, v_matmul])
else:
mha_inputs.extend([q_matmul.output[0], k_matmul, v_matmul])
else:
return None
# Add bias to inputs for MHA
# Bias for cross attention is not fully supported in DMMHA and cpu MHA kernels since they assume
# bias has been added to key and value when they are in BNSH format, so only bias for query is used.
# Need add checks if we found such assumption is not true.
if not self.disable_multi_head_attention_bias:
bias_name = self.create_combined_qkv_bias(q_add, k_add, v_add, mha_node_name)
mha_inputs.append(bias_name)
else:
mha_inputs.append("")
# Add optional inputs for MHA
if past_k and past_v:
mha_inputs.extend([key_padding_mask, add_qk, past_k, past_v])
elif key_padding_mask or add_qk:
mha_inputs.extend([key_padding_mask, add_qk])
# Add outputs for MHA
mha_outputs = [output]
if present_k and present_v:
mha_outputs.extend([present_k, present_v])
mha_node = helper.make_node(
"MultiHeadAttention",
inputs=mha_inputs,
outputs=mha_outputs,
name=mha_node_name,
)
mha_node.domain = "com.microsoft"
mha_node.attribute.extend([helper.make_attribute("num_heads", num_heads)])
return mha_node
def create_attention_node(
self,
mask_index: str,
q_matmul: NodeProto,
k_matmul: NodeProto,
v_matmul: NodeProto,
q_add: NodeProto,
k_add: NodeProto,
v_add: NodeProto,
num_heads: int,
hidden_size: int,
input: str,
output: str,
add_qk_str: str = "",
past_k: str = "",
past_v: str = "",
present_k: str = "",
present_v: str = "",
scale: Optional[float] = None,
causal: bool = False,
) -> Union[NodeProto, None]:
"""Create an Attention node.
Args:
mask_index (str): mask input
q_matmul (NodeProto): MatMul node in fully connection for Q
k_matmul (NodeProto): MatMul node in fully connection for K
v_matmul (NodeProto): MatMul node in fully connection for V
q_add (NodeProto): Add bias node in fully connection for Q
k_add (NodeProto): Add bias node in fully connection for K
v_add (NodeProto): Add bias node in fully connection for V
num_heads (int): number of attention heads. If a model is pruned, it is the number of heads after pruning.
hidden_size (int): hidden dimension. If a model is pruned, it is the hidden dimension after pruning.
input (str): input name
output (str): output name
add_qk_str (str): name of Add node after Q x K'
past_k (str): name of input for past K value
past_v (str): name of input for past V value
present_k (str): name of output to store present K value
present_v (str): name of output to store present V value
scale: scale before softmax
causal: whether it is uni-directional mask.
Returns:
Union[NodeProto, None]: the node created or None if failed.
"""
assert num_heads > 0
if hidden_size > 0 and (hidden_size % num_heads) != 0:
logger.debug(f"input hidden size {hidden_size} is not a multiple of num of heads {num_heads}")
return None
has_bias = True
if q_add is None and k_add is None and v_add is None:
has_bias = False
q_weight = self.model.get_initializer(q_matmul.input[1])
k_weight = self.model.get_initializer(k_matmul.input[1])
v_weight = self.model.get_initializer(v_matmul.input[1])
q_bias, k_bias, v_bias = None, None, None
if has_bias:
q_bias = self.model.get_initializer(q_add.input[1]) or self.model.get_initializer(q_add.input[0])
k_bias = self.model.get_initializer(k_add.input[1]) or self.model.get_initializer(k_add.input[0])
v_bias = self.model.get_initializer(v_add.input[1]) or self.model.get_initializer(v_add.input[0])
if not (k_weight and v_weight and q_bias and k_bias):
return None
if q_weight is None:
print(
f"{q_matmul.input[1]} is not an initializer. "
"Please set do_constant_folding=True in torch.onnx.export to unblock attention fusion"
)
return None
qw = NumpyHelper.to_array(q_weight)
kw = NumpyHelper.to_array(k_weight)
vw = NumpyHelper.to_array(v_weight)
# assert q and k have same shape as expected
assert qw.shape == kw.shape
qw_in_size = qw.shape[0]
kw_in_size = kw.shape[0]
vw_in_size = vw.shape[0]
assert qw_in_size == kw_in_size == vw_in_size
if hidden_size > 0 and hidden_size != qw_in_size:
logger.warning(
f"Input hidden size ({hidden_size}) is not same as weight matrix dimension of q,k,v ({qw_in_size}). "
"Please provide a correct input hidden size or pass in 0"
)
is_qkv_diff_dims = False
if qw.shape != vw.shape:
is_qkv_diff_dims = True
# All the matrices can have the same shape or q, k matrices can have the same shape with v being different
# For 2d weights, the shapes would be [in_size, out_size].
# For 3d weights, shape would be [in_size, a, b] where a*b = out_size
qw_out_size = np.prod(qw.shape[1:])
kw_out_size = np.prod(kw.shape[1:])
vw_out_size = np.prod(vw.shape[1:])
qkv_weight_dim = 0
if is_qkv_diff_dims:
qkv_weight = np.concatenate((qw, kw, vw), axis=1)
qkv_weight_dim = qw_out_size + kw_out_size + vw_out_size
else:
qkv_weight = np.stack((qw, kw, vw), axis=1)
qkv_weight_dim = 3 * qw_out_size
if has_bias:
qb = NumpyHelper.to_array(q_bias)
kb = NumpyHelper.to_array(k_bias)
vb = NumpyHelper.to_array(v_bias)
q_bias_shape = np.prod(qb.shape)
k_bias_shape = np.prod(kb.shape)
v_bias_shape = np.prod(vb.shape)
assert q_bias_shape == k_bias_shape == qw_out_size
assert v_bias_shape == vw_out_size
if is_qkv_diff_dims:
qkv_bias = np.concatenate((qb, kb, vb), axis=0)
qkv_bias_dim = q_bias_shape + k_bias_shape + v_bias_shape
else:
qkv_bias = np.stack((qb, kb, vb), axis=0)
qkv_bias_dim = 3 * q_bias_shape
attention_node_name = self.model.create_node_name("Attention")
if not self.use_multi_head_attention:
self.add_initializer(
name=attention_node_name + "_qkv_weight",
data_type=q_weight.data_type,
dims=[qw_in_size, qkv_weight_dim],
vals=qkv_weight,
)
if has_bias:
self.add_initializer(
name=attention_node_name + "_qkv_bias",
data_type=q_bias.data_type,
dims=[qkv_bias_dim],
vals=qkv_bias,
)
# For MultiHeadAttention operator, use separated inputs for query, key and value, and no weights.
if self.use_multi_head_attention:
if add_qk_str:
logger.debug("MultiHeadAttention does not support relative_position_bias: cannot fuse the attention.")
return None
attention_inputs = [
q_matmul.output[0],
k_matmul.output[0],
v_matmul.output[0],
attention_node_name + "_qkv_bias",
]
if mask_index is not None:
attention_inputs.append(mask_index)
attention_node = helper.make_node(
"MultiHeadAttention",
inputs=attention_inputs,
outputs=[output],
name=attention_node_name,
)
else:
attention_inputs = [
input,
attention_node_name + "_qkv_weight",
attention_node_name + "_qkv_bias" if has_bias else "",
]
if mask_index is not None:
attention_inputs.append(mask_index)
else:
attention_inputs.append("")
past_exists = past_k and past_v
if past_exists:
past_kv = self.concat_kv(past_k, past_v)
attention_inputs.append(past_kv)
if add_qk_str is not None:
mask_output_name = self.reshape_add_qk(add_qk_str)
# Add attention mask to attention node
if not past_exists:
attention_inputs.append("")
attention_inputs.append(mask_output_name)
attention_outputs = [output]
if present_k and present_v:
present_kv = present_k.replace(".key", "").replace("_key", "").replace(".", "_")
attention_outputs.append(present_kv)
self.split_kv(present_k, present_v, present_kv)
attention_node = helper.make_node(
"Attention",
inputs=attention_inputs,
outputs=attention_outputs,
name=attention_node_name,
)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend([helper.make_attribute("num_heads", num_heads)])
if causal:
attention_node.attribute.extend([helper.make_attribute("unidirectional", 1)])
if scale is not None:
attention_node.attribute.extend([helper.make_attribute("scale", scale)])
if is_qkv_diff_dims:
attention_node.attribute.extend(
[helper.make_attribute("qkv_hidden_sizes", [qw_out_size, kw_out_size, vw_out_size])]
)
if self.mask_filter_value is not None:
attention_node.attribute.extend([helper.make_attribute("mask_filter_value", float(self.mask_filter_value))])
return attention_node
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
# Sometimes we can not fuse skiplayernormalization since the add before layernorm has an output that used by nodes outside skiplayernorm
# Conceptually we treat add before layernorm as skiplayernorm node since they share the same pattern
start_node = normalize_node
if normalize_node.op_type == "LayerNormalization":
add_before_layernorm = self.model.match_parent(normalize_node, "Add", 0)
if add_before_layernorm is not None:
start_node = add_before_layernorm
else:
return
# SkipLayerNormalization has two inputs, and one of them is the root input for attention.
qkv_nodes = self.model.match_parent_path(
start_node,
["Add", "MatMul", "Reshape", "Transpose", "MatMul"],
[None, None, 0, 0, 0],
)
einsum_node = None
if qkv_nodes is not None:
(_, _, reshape_qkv, transpose_qkv, matmul_qkv) = qkv_nodes
else:
# Match Albert
qkv_nodes = self.model.match_parent_path(
start_node, ["Add", "Einsum", "Transpose", "MatMul"], [1, None, 0, 0]
)
if qkv_nodes is not None:
(_, einsum_node, transpose_qkv, matmul_qkv) = qkv_nodes
else:
return
other_inputs = []
for _i, input in enumerate(start_node.input):
if input not in output_name_to_node:
continue
if input == qkv_nodes[0].output[0]:
continue
other_inputs.append(input)
if len(other_inputs) != 1:
return
root_input = other_inputs[0]
"""
Match flaubert Mask
|
Mul --> LayerNormalization --> Attention --> MatMul --> Add
| |
| |
+---------------------------------------------------------
"""
mul_before_layernorm = self.model.match_parent(start_node, "Mul", 0)
if mul_before_layernorm is not None:
mul_children = input_name_to_nodes[mul_before_layernorm.output[0]]
if mul_children is not None and len(mul_children) == 2:
layernorm_node = mul_children[1]
if layernorm_node.op_type == "LayerNormalization":
root_input = layernorm_node.output[0]
else:
return
elif mul_children is not None and len(mul_children) == 5:
root_input = mul_before_layernorm.output[0]
else:
return
elif normalize_node.op_type == "LayerNormalization":
children = input_name_to_nodes[root_input]
for child in children:
if child.op_type == "LayerNormalization":
root_input = child.output[0]
"""
When Add before the LayerNormalization produces an output
that is consumed by some other nodes other than the LayerNormalization itself,
fused SkipLayerNormalization will have several outputs.
In this case we need to pick the one used in Attention
For example, this is the case for ViT
SkipLayerNormalization --> Attention --> MatMul --> Add --> SkipLayerNormalization
| |
| |
+---------------------------------------------------------------------+
"""
parent_node = output_name_to_node[root_input]
if parent_node.op_type == "SkipLayerNormalization" and len(parent_node.output) == 4:
root_input = parent_node.output[0]
children = input_name_to_nodes[root_input]
children_types = [child.op_type for child in children]
if children_types.count("MatMul") != 3:
return
v_nodes = self.model.match_parent_path(matmul_qkv, ["Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, None])
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(_, _, add_v, matmul_v) = v_nodes
is_distill = False
is_distill_add = False
is_no_mask_attention = False
qk_paths = {
"path1": (["Softmax", "Add", "Div", "MatMul"], [0, 0, None, 0]),
"path2": (["Softmax", "Add", "Mul", "MatMul"], [0, 0, None, 0]),
"path3": (["Softmax", "Where", "MatMul", "Div"], [0, 0, 2, 0]),
"path4": (["Softmax", "Add", "Where", "MatMul"], [0, 0, 0, 2]),
"path5": (["Softmax", "Div", "MatMul"], [0, 0, 0]),
}
qk_nodes = None
for k, v in qk_paths.items():
qk_nodes = self.model.match_parent_path(matmul_qkv, v[0], v[1])
if qk_nodes is None:
continue
if k == "path3":
is_distill = True
if k == "path4":
is_distill_add = True
if k == "path5":
is_no_mask_attention = True
break
if qk_nodes is None:
logger.debug("fuse_attention: failed to match qk path")
return
add_qk = None
matmul_qk = None
where_qk = None
if is_distill:
(_, where_qk, matmul_qk, _) = qk_nodes
elif is_distill_add:
(_, add_qk, where_qk, matmul_qk) = qk_nodes
elif is_no_mask_attention:
(_, _, matmul_qk) = qk_nodes
else:
(_, add_qk, _, matmul_qk) = qk_nodes
q_nodes = self.model.match_parent_path(matmul_qk, ["Transpose", "Reshape", "Add", "MatMul"], [0, 0, 0, None])
if q_nodes is None:
q_nodes = self.model.match_parent_path(
matmul_qk,
["Div", "Transpose", "Reshape", "Add", "MatMul"],
[0, 0, 0, 0, None],
)
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
reshape_q = q_nodes[-3]
add_q = q_nodes[-2]
matmul_q = q_nodes[-1]
k_nodes = self.model.match_parent_path(matmul_qk, ["Transpose", "Reshape", "Add", "MatMul"], [1, 0, 0, None])
if k_nodes is None:
k_nodes = self.model.match_parent_path(
matmul_qk,
["Transpose", "Transpose", "Reshape", "Add", "MatMul"],
[1, 0, 0, 0, None],
)
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return
add_k = k_nodes[-2]
matmul_k = k_nodes[-1]
# Note that Cast might be removed by OnnxRuntime so we match two patterns here.
mask_nodes = None
add_qk_str = None
if is_distill:
_, mask_nodes, _ = self.model.match_parent_paths(
where_qk,
[
(["Expand", "Reshape", "Equal"], [0, 0, 0]),
(["Equal", "Unsqueeze", "Unsqueeze"], [0, 0, 0]),
(["Cast", "Expand", "Reshape", "Equal"], [0, 0, 0, 0]),
],
output_name_to_node,
)
elif is_distill_add:
_, mask_nodes, _ = self.model.match_parent_paths(
where_qk,
[
(["Cast", "Equal", "Unsqueeze", "Unsqueeze"], [0, 0, 0, 0]),
(["Equal", "Unsqueeze", "Unsqueeze"], [0, 0, 0]),
],
output_name_to_node,
)
if add_qk is not None:
add_qk_str = self.get_add_qk_str(add_qk)
if add_qk_str is None:
logger.debug(f"fuse_attention: failed to verify shape inference of {add_qk}")
return
elif is_no_mask_attention:
pass
else:
_, mask_nodes, _ = self.model.match_parent_paths(
add_qk,
[
(
["Mul", "Sub", "Cast", "Unsqueeze", "Unsqueeze"],
[None, 0, 1, 0, 0],
),
(["Mul", "Sub", "Unsqueeze", "Unsqueeze"], [None, 0, 1, 0]),
],
output_name_to_node,
)
if not is_no_mask_attention and mask_nodes is None:
logger.debug("fuse_attention: failed to match mask path")
return
if not is_no_mask_attention and len(mask_nodes) > 1 and mask_nodes[0].op_type == "Mul":
_, mul_val = self.model.get_constant_input(mask_nodes[0])
if mul_val != -10000:
self.mask_filter_value = mul_val
if matmul_v.input[0] == root_input and matmul_q.input[0] == root_input and matmul_k.input[0] == root_input:
mask_index = self.attention_mask.process_mask(mask_nodes[-1].input[0]) if not is_no_mask_attention else None
attention_last_node = reshape_qkv if einsum_node is None else transpose_qkv
q_num_heads, q_hidden_size = self.get_num_heads_and_hidden_size(reshape_q)
if q_num_heads <= 0 or q_hidden_size <= 0:
logger.warning(
"Failed to detect num_heads and hidden_size for Attention fusion. "
"Please specify those parameters in argument."
)
return
# number of heads are same for all the paths, hence to create attention node, we pass the q_num_heads
# the input_hidden_size represents the input hidden size, this is used as needed but hidden sizes for Q, K are extracted appropriately
new_node = self.create_attention_node(
mask_index,
matmul_q,
matmul_k,
matmul_v,
add_q,
add_k,
add_v,
q_num_heads,
q_hidden_size,
root_input,
attention_last_node.output[0],
add_qk_str,
)
if new_node is None:
return
self.nodes_to_add.append(new_node)
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
if einsum_node is not None:
unique_index = einsum_node.input[0]
new_edge = "edge_modified_" + unique_index
shape_tensor = self.add_initializer(
name="shape_modified_tensor" + unique_index,
data_type=TensorProto.INT64,
dims=[4],
vals=np.int64([0, 0, q_num_heads, int(q_hidden_size / q_num_heads)]),
raw=False,
)
self.model.add_node(
helper.make_node(
"Reshape",
[attention_last_node.output[0], shape_tensor.name],
[new_edge],
"reshape_modified_" + unique_index,
),
self.this_graph_name,
)
einsum_node.input[0] = new_edge
self.nodes_to_remove.extend([attention_last_node, transpose_qkv, matmul_qkv])
self.nodes_to_remove.extend(qk_nodes)
# For MultiHeadAttention operator, MatMul nodes for Q/K/V projection shall not be fused.
self.nodes_to_remove.extend(q_nodes if not self.use_multi_head_attention else q_nodes[:-1])
self.nodes_to_remove.extend(k_nodes if not self.use_multi_head_attention else k_nodes[:-1])
self.nodes_to_remove.extend(v_nodes if not self.use_multi_head_attention else v_nodes[:-1])
# Use prune graph to remove mask nodes since they are shared by all attention nodes.
self.prune_graph = True