Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnxruntime/tools/onnxruntime_test.py
2024-10-30 22:14:35 +01:00

165 lines
5.5 KiB
Python

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from __future__ import annotations
import argparse
import os
import sys
from timeit import default_timer as timer
import numpy as np
import onnxruntime as onnxrt
float_dict = {
"tensor(float16)": "float16",
"tensor(float)": "float32",
"tensor(double)": "float64",
}
integer_dict = {
"tensor(int32)": "int32",
"tensor(int8)": "int8",
"tensor(uint8)": "uint8",
"tensor(int16)": "int16",
"tensor(uint16)": "uint16",
"tensor(int64)": "int64",
"tensor(uint64)": "uint64",
}
def generate_feeds(sess, symbolic_dims: dict | None = None):
feeds = {}
symbolic_dims = symbolic_dims or {}
for input_meta in sess.get_inputs():
# replace any symbolic dimensions
shape = []
for dim in input_meta.shape:
if not dim:
# unknown dim
shape.append(1)
elif isinstance(dim, str):
# symbolic dim. see if we have a value otherwise use 1
if dim in symbolic_dims:
shape.append(int(symbolic_dims[dim]))
else:
shape.append(1)
else:
shape.append(dim)
if input_meta.type in float_dict:
feeds[input_meta.name] = np.random.rand(*shape).astype(float_dict[input_meta.type])
elif input_meta.type in integer_dict:
feeds[input_meta.name] = np.random.uniform(high=1000, size=tuple(shape)).astype(
integer_dict[input_meta.type]
)
elif input_meta.type == "tensor(bool)":
feeds[input_meta.name] = np.random.randint(2, size=tuple(shape)).astype("bool")
else:
print(f"unsupported input type {input_meta.type} for input {input_meta.name}")
sys.exit(-1)
return feeds
# simple test program for loading onnx model, feeding all inputs and running the model num_iters times.
def run_model(
model_path,
num_iters=1,
debug=None,
profile=None,
symbolic_dims=None,
feeds=None,
override_initializers=True,
):
symbolic_dims = symbolic_dims or {}
if debug:
print(f"Pausing execution ready for debugger to attach to pid: {os.getpid()}")
print("Press key to continue.")
sys.stdin.read(1)
sess_options = None
if profile:
sess_options = onnxrt.SessionOptions()
sess_options.enable_profiling = True
sess_options.profile_file_prefix = os.path.basename(model_path)
sess = onnxrt.InferenceSession(
model_path,
sess_options=sess_options,
providers=onnxrt.get_available_providers(),
)
meta = sess.get_modelmeta()
if not feeds:
feeds = generate_feeds(sess, symbolic_dims)
if override_initializers:
# Starting with IR4 some initializers provide default values
# and can be overridden (available in IR4). For IR < 4 models
# the list would be empty
for initializer in sess.get_overridable_initializers():
shape = [dim if dim else 1 for dim in initializer.shape]
if initializer.type in float_dict:
feeds[initializer.name] = np.random.rand(*shape).astype(float_dict[initializer.type])
elif initializer.type in integer_dict:
feeds[initializer.name] = np.random.uniform(high=1000, size=tuple(shape)).astype(
integer_dict[initializer.type]
)
elif initializer.type == "tensor(bool)":
feeds[initializer.name] = np.random.randint(2, size=tuple(shape)).astype("bool")
else:
print(f"unsupported initializer type {initializer.type} for initializer {initializer.name}")
sys.exit(-1)
start = timer()
for _i in range(num_iters):
outputs = sess.run([], feeds) # fetch all outputs
end = timer()
print(f"model: {meta.graph_name}")
print(f"version: {meta.version}")
print(f"iterations: {num_iters}")
print(f"avg latency: {((end - start) * 1000) / num_iters} ms")
if profile:
trace_file = sess.end_profiling()
print(f"trace file written to: {trace_file}")
return 0, feeds, num_iters > 0 and outputs
def main():
parser = argparse.ArgumentParser(description="Simple ONNX Runtime Test Tool.")
parser.add_argument("model_path", help="model path")
parser.add_argument(
"num_iters",
nargs="?",
type=int,
default=1000,
help="model run iterations. default=1000",
)
parser.add_argument(
"--debug",
action="store_true",
help="pause execution to allow attaching a debugger.",
)
parser.add_argument("--profile", action="store_true", help="enable chrome timeline trace profiling.")
parser.add_argument(
"--symbolic_dims",
default={},
type=lambda s: dict(x.split("=") for x in s.split(",")),
help="Comma separated name=value pairs for any symbolic dimensions in the model input. "
"e.g. --symbolic_dims batch=1,seqlen=5. "
"If not provided, the value of 1 will be used for all symbolic dimensions.",
)
args = parser.parse_args()
exit_code, _, _ = run_model(args.model_path, args.num_iters, args.debug, args.profile, args.symbolic_dims)
sys.exit(exit_code)
if __name__ == "__main__":
main()