Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnxruntime/quantization/operators/pad.py
2024-10-30 22:14:35 +01:00

101 lines
4.7 KiB
Python

import onnx
from ..quant_utils import (
TENSOR_NAME_QUANT_SUFFIX,
QuantizedValue,
QuantizedValueType,
attribute_to_kwarg,
quantize_nparray,
)
from .base_operator import QuantOperatorBase
class QPad(QuantOperatorBase):
def __init__(self, onnx_quantizer, onnx_node):
super().__init__(onnx_quantizer, onnx_node)
def quantize(self):
node = self.node
assert node.op_type == "Pad"
# Only after version 11, it has the optional constant_value
# If input[0] is not quantized, do not quanitize this node
if (self.quantizer.opset_version < 11) or (node.input[0] not in self.quantizer.quantized_value_map):
super().quantize()
return
quantized_input_value = self.quantizer.quantized_value_map[node.input[0]]
kwargs = {}
for attribute in node.attribute:
kv = attribute_to_kwarg(attribute)
kwargs.update(kv)
if "mode" not in kwargs or kwargs["mode"] == b"constant":
if len(node.input) > 2 and node.input[2] != "": # There is 3rd input 'constant_value'
zp_tensor = self.quantizer.model.get_initializer(quantized_input_value.zp_name)
scale_tensor = self.quantizer.model.get_initializer(quantized_input_value.scale_name)
if zp_tensor is None or scale_tensor is None:
super().quantize()
return
padding_constant_initializer = self.quantizer.model.get_initializer(node.input[2])
if padding_constant_initializer is not None:
zp_array = onnx.numpy_helper.to_array(zp_tensor)
zp_value = zp_array.item() if zp_array.ndim == 0 else zp_array[0]
scale_array = onnx.numpy_helper.to_array(scale_tensor)
scale_value = scale_array.item() if scale_array.ndim == 0 else scale_array[0]
padding_constant_array = onnx.numpy_helper.to_array(padding_constant_initializer)
quantized_padding_constant_array = quantize_nparray(
self.quantizer.activation_qType,
padding_constant_array,
scale_value,
zp_value,
)
quantized_padding_constant_name = node.input[2] + TENSOR_NAME_QUANT_SUFFIX
quantized_padding_constant_initializer = onnx.numpy_helper.from_array(
quantized_padding_constant_array,
quantized_padding_constant_name,
)
# Suppose this padding constant initializer only used by the node
self.quantizer.model.remove_initializer(padding_constant_initializer)
self.quantizer.model.add_initializer(quantized_padding_constant_initializer)
node.input[2] = quantized_padding_constant_name
else:
# TODO: check quantize_inputs after sub graph is supported
pad_value_qnodes = self.quantizer._get_quantize_input_nodes(
node,
2,
self.quantizer.activation_qType,
quantized_input_value.scale_name,
quantized_input_value.zp_name,
initial_type=scale_tensor.data_type,
)
self.quantizer.new_nodes.extend(pad_value_qnodes)
node.input[2] = pad_value_qnodes[0].output[0]
else:
# In quantized format, the `zero` before quantization is mapped
# to quantized_input_value.zp_name. Thus, padding 0 to
# original tensor should become padding zero point to quantized
# tensor.
if len(node.input) == 2:
# Feed quantization's zero point to padding node.
node.input.append(quantized_input_value.zp_name)
else:
# Assign quantization's zero point to padding node.
assert node.input[2] == ""
node.input[2] = quantized_input_value.zp_name
# Create an entry for output quantized value
quantized_output_value = QuantizedValue(
node.output[0],
node.output[0] + TENSOR_NAME_QUANT_SUFFIX,
quantized_input_value.scale_name,
quantized_input_value.zp_name,
QuantizedValueType.Input,
)
self.quantizer.quantized_value_map[node.output[0]] = quantized_output_value
node.input[0] = quantized_input_value.q_name
node.output[0] = quantized_output_value.q_name
self.quantizer.new_nodes += [node]