Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnxruntime/quantization/operators/attention.py
2024-10-30 22:14:35 +01:00

74 lines
2.5 KiB
Python

import onnx
from onnx import onnx_pb as onnx_proto # noqa: F401
from ..quant_utils import attribute_to_kwarg, ms_domain
from .base_operator import QuantOperatorBase
"""
Quantize Attention
"""
class AttentionQuant(QuantOperatorBase):
def __init__(self, onnx_quantizer, onnx_node):
super().__init__(onnx_quantizer, onnx_node)
def should_quantize(self):
return self.quantizer.should_quantize_node(self.node)
def quantize(self):
"""
parameter node: Attention node.
parameter new_nodes_list: List of new nodes created before processing this node.
return: a list of nodes in topological order that represents quantized Attention node.
"""
node = self.node
assert node.op_type == "Attention"
# TODO This is a temporary fix to stop exporting QAttention with qkv_hidden_sizes
# attribute. This needs to be removed once the QAttention for varied q,k,v sizes
# is implemented
for attr in node.attribute:
if attr.name == "qkv_hidden_sizes":
return super().quantize()
(
quantized_input_names,
zero_point_names,
scale_names,
nodes,
) = self.quantizer.quantize_activation(node, [0])
(
quantized_input_names_weight,
zero_point_names_weight,
scale_names_weight,
nodes_weight,
) = self.quantizer.quantize_weight(node, [1], reduce_range=True, op_level_per_channel=True)
quantized_input_names.extend(quantized_input_names_weight)
zero_point_names.extend(zero_point_names_weight)
scale_names.extend(scale_names_weight)
nodes.extend(nodes_weight)
if quantized_input_names is None:
return super().quantize()
qattention_name = "" if not node.name else node.name + "_quant"
inputs = []
inputs.extend(quantized_input_names)
inputs.extend([node.input[2]])
inputs.extend(scale_names)
inputs.extend([node.input[3] if len(node.input) > 3 else ""])
inputs.extend(zero_point_names)
inputs.extend([node.input[4] if len(node.input) > 4 else ""])
kwargs = {}
for attribute in node.attribute:
kwargs.update(attribute_to_kwarg(attribute))
kwargs["domain"] = ms_domain
qattention_node = onnx.helper.make_node("QAttention", inputs, node.output, qattention_name, **kwargs)
nodes.append(qattention_node)
self.quantizer.new_nodes += nodes