Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnx/reference/ops/op_scatternd.py
2024-10-30 22:14:35 +01:00

31 lines
1008 B
Python

# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import numpy as np
from onnx.reference.op_run import OpRun
def _scatter_nd_impl(data, indices, updates, reduction=None): # type: ignore
output = np.copy(data)
for i in np.ndindex(indices.shape[:-1]):
if reduction == "add":
output[tuple(indices[i])] += updates[i]
elif reduction == "mul":
output[tuple(indices[i])] *= updates[i]
elif reduction == "max":
output[tuple(indices[i])] = np.maximum(output[indices[i]], updates[i])
elif reduction == "min":
output[tuple(indices[i])] = np.minimum(output[indices[i]], updates[i])
else:
output[tuple(indices[i])] = updates[i]
return output
class ScatterND(OpRun):
def _run(self, data, indices, updates, reduction=None): # type: ignore
y = _scatter_nd_impl(data, indices, updates, reduction=reduction)
return (y,)