Files
Reinforced-Learning-Godot/rl/Lib/site-packages/onnx/reference/ops/op_loop.py
2024-10-30 22:14:35 +01:00

87 lines
3.5 KiB
Python

# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import numpy as np
from onnx.reference.op_run import OpRun
class Loop(OpRun):
def __init__(self, onnx_node, run_params): # type: ignore
OpRun.__init__(self, onnx_node, run_params)
if "opsets" not in self.run_params:
raise KeyError("run_params must contains key 'opsets'.")
if "verbose" not in run_params:
raise KeyError("run_params must contains key 'verbose'.")
self.output_index = {n: i for i, n in enumerate(self.body.output_names)} # type: ignore
self.N = len(self.body.input_names) - 2 # type: ignore
self.K = len(self.body.output_names) - self.N - 1 # type: ignore
def need_context(self) -> bool:
"""The operator Loop needs to know all results produced
so far as the loop may silently access one of them.
Some information are not always referred in the list of inputs
(kind of static variables).
"""
return True
def _run(self, M, cond, *args, context=None, body=None, attributes=None): # type: ignore
if args:
v_initial = args[0]
args = args[1:]
else:
v_initial = None
if M is not None and not hasattr(M, "dtype"):
raise TypeError(f"M must be empty or an array but its type is {type(M)}.")
body = self.body # type: ignore
loop_inputs = body.input_names
inputs = {name: None for name in loop_inputs}
if v_initial is not None:
inputs[loop_inputs[2]] = v_initial
cond_name = body.output_names[0]
if args:
begin = len(loop_inputs) - len(args)
all_inputs = loop_inputs[begin:]
for name, val in zip(all_inputs, args):
inputs[name] = val
if context is not None:
for a in context:
inputs[a] = context[a]
k_carried_away = [[] for i in range(self.K)] # type: ignore
it = 0
while cond and (M is None or it < M):
self._log(" -- loop> {%r}", context)
if len(body.input_names) > 0 and body.input_names[0] is not None:
inputs[body.input_names[0]] = np.array(
it, dtype=None if M is None else M.dtype
) # type: ignore
if len(body.input_names) > 1 and body.input_names[1] is not None:
inputs[body.input_names[1]] = cond
outputs = self._run_body(inputs, attributes=attributes) # type: ignore
if self.K > 0:
for k in range(self.K):
k_carried_away[k].append(outputs[-self.K + k])
index_cond = self.output_index[cond_name]
cond = outputs[index_cond]
if cond is None:
raise RuntimeError(
f"Condition {cond_name!r} returned by the subgraph cannot be None."
)
for i, o in zip(body.input_names[2:], body.output_names[1:]):
inputs[i] = outputs[self.output_index[o]]
it += 1
self._log(" -- loop<")
if it == 0:
outputs = [inputs[i] for i in body.input_names[2:]]
else:
outputs = outputs[1 : 1 + self.N]
outputs.extend([np.vstack(x) for x in k_carried_away])
while len(outputs) < len(self.onnx_node.output):
outputs.append(np.empty(shape=()))
res = tuple(outputs)
return self._check_and_fix_outputs(res)