713 lines
30 KiB
C++
713 lines
30 KiB
C++
// Copyright (c) ONNX Project Contributors
|
|
//
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include <climits>
|
|
#include <limits>
|
|
#include <tuple>
|
|
#include <unordered_map>
|
|
|
|
#include "onnx/checker.h"
|
|
#include "onnx/defs/function.h"
|
|
#include "onnx/defs/parser.h"
|
|
#include "onnx/defs/printer.h"
|
|
#include "onnx/defs/schema.h"
|
|
#include "onnx/inliner/inliner.h"
|
|
#include "onnx/py_utils.h"
|
|
#include "onnx/shape_inference/implementation.h"
|
|
#include "onnx/version_converter/convert.h"
|
|
|
|
#if (PYBIND11_VERSION_MAJOR != 2 || PYBIND11_VERSION_MINOR < 12)
|
|
#pragma error "Pybind11 must be >= 2.12 to be compatible with numpy 2.0."
|
|
#endif
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
namespace py = pybind11;
|
|
using namespace pybind11::literals;
|
|
|
|
template <typename ProtoType>
|
|
static std::tuple<bool, py::bytes, py::bytes> Parse(const char* cstr) {
|
|
ProtoType proto{};
|
|
OnnxParser parser(cstr);
|
|
auto status = parser.Parse(proto);
|
|
std::string out;
|
|
proto.SerializeToString(&out);
|
|
return std::make_tuple(status.IsOK(), py::bytes(status.ErrorMessage()), py::bytes(out));
|
|
}
|
|
|
|
template <typename ProtoType>
|
|
static std::string ProtoBytesToText(const py::bytes& bytes) {
|
|
ProtoType proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
return ProtoToString(proto);
|
|
}
|
|
|
|
template <typename T, typename Ts = typename std::remove_const<T>::type>
|
|
std::pair<std::unique_ptr<Ts[]>, std::unordered_map<std::string, T*>> ParseProtoFromBytesMap(
|
|
std::unordered_map<std::string, py::bytes> bytesMap) {
|
|
std::unique_ptr<Ts[]> values(new Ts[bytesMap.size()]);
|
|
std::unordered_map<std::string, T*> result;
|
|
size_t i = 0;
|
|
for (auto kv : bytesMap) {
|
|
ParseProtoFromPyBytes(&values[i], kv.second);
|
|
result[kv.first] = &values[i];
|
|
i++;
|
|
}
|
|
return std::make_pair(std::move(values), result);
|
|
}
|
|
|
|
std::unordered_map<std::string, py::bytes> CallNodeInferenceFunction(
|
|
OpSchema* schema,
|
|
const py::bytes& nodeBytes,
|
|
std::unordered_map<std::string, py::bytes> valueTypesByNameBytes,
|
|
std::unordered_map<std::string, py::bytes> inputDataByNameBytes,
|
|
std::unordered_map<std::string, py::bytes> inputSparseDataByNameBytes,
|
|
std::unordered_map<std::string, int> opsetImports,
|
|
const int irVersion) {
|
|
NodeProto node{};
|
|
ParseProtoFromPyBytes(&node, nodeBytes);
|
|
// Early fail if node is badly defined - may throw ValidationError
|
|
schema->Verify(node);
|
|
|
|
// Convert arguments to C++ types, allocating memory
|
|
const auto& valueTypes = ParseProtoFromBytesMap<TypeProto>(valueTypesByNameBytes);
|
|
const auto& inputData = ParseProtoFromBytesMap<const TensorProto>(inputDataByNameBytes);
|
|
const auto& inputSparseData = ParseProtoFromBytesMap<const SparseTensorProto>(inputSparseDataByNameBytes);
|
|
if (opsetImports.empty()) {
|
|
opsetImports[schema->domain()] = schema->SinceVersion();
|
|
}
|
|
|
|
shape_inference::GraphInferenceContext graphInferenceContext(
|
|
valueTypes.second, opsetImports, nullptr, {}, OpSchemaRegistry::Instance(), nullptr, irVersion);
|
|
// Construct inference context and get results - may throw InferenceError
|
|
// TODO: if it is desirable for infer_node_outputs to provide check_type, strict_mode, data_prop,
|
|
// we can add them to the Python API. For now we just assume the default options.
|
|
ShapeInferenceOptions options{false, 0, false};
|
|
shape_inference::InferenceContextImpl ctx(
|
|
node, valueTypes.second, inputData.second, inputSparseData.second, options, nullptr, &graphInferenceContext);
|
|
schema->GetTypeAndShapeInferenceFunction()(ctx);
|
|
// Verify the inference succeeded - may also throw ValidationError
|
|
// Note that input types were not validated until now (except that their count was correct)
|
|
schema->CheckInputOutputType(ctx);
|
|
|
|
// Convert back into bytes returned to Python
|
|
std::unordered_map<std::string, py::bytes> typeProtoBytes;
|
|
for (size_t i = 0; i < ctx.allOutputTypes_.size(); i++) {
|
|
const auto& proto = ctx.allOutputTypes_[i];
|
|
if (proto.IsInitialized()) {
|
|
std::string s;
|
|
proto.SerializeToString(&s);
|
|
typeProtoBytes[node.output(i)] = py::bytes(s);
|
|
}
|
|
}
|
|
|
|
return typeProtoBytes;
|
|
}
|
|
|
|
PYBIND11_MODULE(onnx_cpp2py_export, onnx_cpp2py_export) {
|
|
onnx_cpp2py_export.doc() = "Python interface to ONNX";
|
|
|
|
onnx_cpp2py_export.attr("ONNX_ML") = py::bool_(
|
|
#ifdef ONNX_ML
|
|
true
|
|
#else // ONNX_ML
|
|
false
|
|
#endif // ONNX_ML
|
|
);
|
|
|
|
// Submodule `schema`
|
|
auto defs = onnx_cpp2py_export.def_submodule("defs");
|
|
defs.doc() = "Schema submodule";
|
|
py::register_exception<SchemaError>(defs, "SchemaError");
|
|
|
|
py::class_<OpSchema> op_schema(defs, "OpSchema", "Schema of an operator.");
|
|
|
|
// Define the class enums first because they are used as default values in function definitions
|
|
py::enum_<OpSchema::FormalParameterOption>(op_schema, "FormalParameterOption")
|
|
.value("Single", OpSchema::Single)
|
|
.value("Optional", OpSchema::Optional)
|
|
.value("Variadic", OpSchema::Variadic);
|
|
|
|
py::enum_<OpSchema::DifferentiationCategory>(op_schema, "DifferentiationCategory")
|
|
.value("Unknown", OpSchema::Unknown)
|
|
.value("Differentiable", OpSchema::Differentiable)
|
|
.value("NonDifferentiable", OpSchema::NonDifferentiable);
|
|
|
|
py::enum_<AttributeProto::AttributeType>(op_schema, "AttrType")
|
|
.value("FLOAT", AttributeProto::FLOAT)
|
|
.value("INT", AttributeProto::INT)
|
|
.value("STRING", AttributeProto::STRING)
|
|
.value("TENSOR", AttributeProto::TENSOR)
|
|
.value("GRAPH", AttributeProto::GRAPH)
|
|
.value("FLOATS", AttributeProto::FLOATS)
|
|
.value("INTS", AttributeProto::INTS)
|
|
.value("STRINGS", AttributeProto::STRINGS)
|
|
.value("TENSORS", AttributeProto::TENSORS)
|
|
.value("GRAPHS", AttributeProto::GRAPHS)
|
|
.value("SPARSE_TENSOR", AttributeProto::SPARSE_TENSOR)
|
|
.value("SPARSE_TENSORS", AttributeProto::SPARSE_TENSORS)
|
|
.value("TYPE_PROTO", AttributeProto::TYPE_PROTO)
|
|
.value("TYPE_PROTOS", AttributeProto::TYPE_PROTOS);
|
|
|
|
py::enum_<OpSchema::SupportType>(op_schema, "SupportType")
|
|
.value("COMMON", OpSchema::SupportType::COMMON)
|
|
.value("EXPERIMENTAL", OpSchema::SupportType::EXPERIMENTAL);
|
|
|
|
py::class_<OpSchema::Attribute>(op_schema, "Attribute")
|
|
.def(
|
|
py::init([](std::string name, AttributeProto::AttributeType type, std::string description, bool required) {
|
|
// Construct an attribute.
|
|
// Use a lambda to swap the order of the arguments to match the Python API
|
|
return OpSchema::Attribute(std::move(name), std::move(description), type, required);
|
|
}),
|
|
py::arg("name"),
|
|
py::arg("type"),
|
|
py::arg("description") = "",
|
|
py::kw_only(),
|
|
py::arg("required") = true)
|
|
.def(
|
|
py::init([](std::string name, const py::object& default_value, std::string description) {
|
|
// Construct an attribute with a default value.
|
|
// Attributes with default values are not required
|
|
auto bytes = default_value.attr("SerializeToString")().cast<py::bytes>();
|
|
AttributeProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
return OpSchema::Attribute(std::move(name), std::move(description), std::move(proto));
|
|
}),
|
|
py::arg("name"),
|
|
py::arg("default_value"), // type: onnx.AttributeProto
|
|
py::arg("description") = "")
|
|
.def_readonly("name", &OpSchema::Attribute::name)
|
|
.def_readonly("description", &OpSchema::Attribute::description)
|
|
.def_readonly("type", &OpSchema::Attribute::type)
|
|
.def_property_readonly(
|
|
"_default_value",
|
|
[](OpSchema::Attribute* attr) -> py::bytes {
|
|
std::string out;
|
|
attr->default_value.SerializeToString(&out);
|
|
return out;
|
|
})
|
|
.def_readonly("required", &OpSchema::Attribute::required);
|
|
|
|
py::class_<OpSchema::TypeConstraintParam>(op_schema, "TypeConstraintParam")
|
|
.def(
|
|
py::init<std::string, std::vector<std::string>, std::string>(),
|
|
py::arg("type_param_str"),
|
|
py::arg("allowed_type_strs"),
|
|
py::arg("description") = "")
|
|
.def_readonly("type_param_str", &OpSchema::TypeConstraintParam::type_param_str)
|
|
.def_readonly("allowed_type_strs", &OpSchema::TypeConstraintParam::allowed_type_strs)
|
|
.def_readonly("description", &OpSchema::TypeConstraintParam::description);
|
|
|
|
py::class_<OpSchema::FormalParameter>(op_schema, "FormalParameter")
|
|
.def(
|
|
py::init([](std::string name,
|
|
std::string type_str,
|
|
const std::string& description,
|
|
OpSchema::FormalParameterOption param_option,
|
|
bool is_homogeneous,
|
|
int min_arity,
|
|
OpSchema::DifferentiationCategory differentiation_category) {
|
|
// Use a lambda to swap the order of the arguments to match the Python API
|
|
return OpSchema::FormalParameter(
|
|
std::move(name),
|
|
description,
|
|
std::move(type_str),
|
|
param_option,
|
|
is_homogeneous,
|
|
min_arity,
|
|
differentiation_category);
|
|
}),
|
|
py::arg("name"),
|
|
py::arg("type_str"),
|
|
py::arg("description") = "",
|
|
py::kw_only(),
|
|
py::arg("param_option") = OpSchema::Single,
|
|
py::arg("is_homogeneous") = true,
|
|
py::arg("min_arity") = 1,
|
|
py::arg("differentiation_category") = OpSchema::DifferentiationCategory::Unknown)
|
|
|
|
.def_property_readonly("name", &OpSchema::FormalParameter::GetName)
|
|
.def_property_readonly("types", &OpSchema::FormalParameter::GetTypes)
|
|
.def_property_readonly("type_str", &OpSchema::FormalParameter::GetTypeStr)
|
|
.def_property_readonly("description", &OpSchema::FormalParameter::GetDescription)
|
|
.def_property_readonly("option", &OpSchema::FormalParameter::GetOption)
|
|
.def_property_readonly("is_homogeneous", &OpSchema::FormalParameter::GetIsHomogeneous)
|
|
.def_property_readonly("min_arity", &OpSchema::FormalParameter::GetMinArity)
|
|
.def_property_readonly("differentiation_category", &OpSchema::FormalParameter::GetDifferentiationCategory);
|
|
|
|
op_schema
|
|
.def(
|
|
py::init([](std::string name,
|
|
std::string domain,
|
|
int since_version,
|
|
std::string doc,
|
|
std::vector<OpSchema::FormalParameter> inputs,
|
|
std::vector<OpSchema::FormalParameter> outputs,
|
|
std::vector<std::tuple<std::string, std::vector<std::string>, std::string>> type_constraints,
|
|
std::vector<OpSchema::Attribute> attributes) {
|
|
auto self = OpSchema();
|
|
|
|
self.SetName(std::move(name)).SetDomain(std::move(domain)).SinceVersion(since_version).SetDoc(doc);
|
|
// Add inputs and outputs
|
|
for (auto i = 0; i < inputs.size(); ++i) {
|
|
self.Input(i, std::move(inputs[i]));
|
|
}
|
|
for (auto i = 0; i < outputs.size(); ++i) {
|
|
self.Output(i, std::move(outputs[i]));
|
|
}
|
|
// Add type constraints
|
|
for (auto& type_constraint : type_constraints) {
|
|
std::string type_str;
|
|
std::vector<std::string> constraints;
|
|
std::string description;
|
|
tie(type_str, constraints, description) = std::move(type_constraint);
|
|
self.TypeConstraint(std::move(type_str), std::move(constraints), std::move(description));
|
|
}
|
|
// Add attributes
|
|
for (auto& attribute : attributes) {
|
|
self.Attr(std::move(attribute));
|
|
}
|
|
|
|
self.Finalize();
|
|
|
|
return self;
|
|
}),
|
|
py::arg("name"),
|
|
py::arg("domain"),
|
|
py::arg("since_version"),
|
|
py::arg("doc") = "",
|
|
py::kw_only(),
|
|
py::arg("inputs") = std::vector<OpSchema::FormalParameter>{},
|
|
py::arg("outputs") = std::vector<OpSchema::FormalParameter>{},
|
|
py::arg("type_constraints") = std::vector<std::tuple<
|
|
std::string /* type_str */,
|
|
std::vector<std::string> /* constraints */,
|
|
std::string /* description */>>{},
|
|
py::arg("attributes") = std::vector<OpSchema::Attribute>{})
|
|
.def_property("name", &OpSchema::Name, [](OpSchema& self, const std::string& name) { self.SetName(name); })
|
|
.def_property(
|
|
"domain", &OpSchema::domain, [](OpSchema& self, const std::string& domain) { self.SetDomain(domain); })
|
|
.def_property("doc", &OpSchema::doc, [](OpSchema& self, const std::string& doc) { self.SetDoc(doc); })
|
|
.def_property_readonly("file", &OpSchema::file)
|
|
.def_property_readonly("line", &OpSchema::line)
|
|
.def_property_readonly("support_level", &OpSchema::support_level)
|
|
.def_property_readonly("since_version", &OpSchema::since_version)
|
|
.def_property_readonly("deprecated", &OpSchema::deprecated)
|
|
.def_property_readonly("function_opset_versions", &OpSchema::function_opset_versions)
|
|
.def_property_readonly(
|
|
"context_dependent_function_opset_versions", &OpSchema::context_dependent_function_opset_versions)
|
|
.def_property_readonly(
|
|
"all_function_opset_versions",
|
|
[](OpSchema* op) -> std::vector<int> {
|
|
std::vector<int> all_function_opset_versions = op->function_opset_versions();
|
|
std::vector<int> context_dependent_function_opset_versions =
|
|
op->context_dependent_function_opset_versions();
|
|
all_function_opset_versions.insert(
|
|
all_function_opset_versions.end(),
|
|
context_dependent_function_opset_versions.begin(),
|
|
context_dependent_function_opset_versions.end());
|
|
std::sort(all_function_opset_versions.begin(), all_function_opset_versions.end());
|
|
all_function_opset_versions.erase(
|
|
std::unique(all_function_opset_versions.begin(), all_function_opset_versions.end()),
|
|
all_function_opset_versions.end());
|
|
return all_function_opset_versions;
|
|
})
|
|
.def_property_readonly("min_input", &OpSchema::min_input)
|
|
.def_property_readonly("max_input", &OpSchema::max_input)
|
|
.def_property_readonly("min_output", &OpSchema::min_output)
|
|
.def_property_readonly("max_output", &OpSchema::max_output)
|
|
.def_property_readonly("attributes", &OpSchema::attributes)
|
|
.def_property_readonly("inputs", &OpSchema::inputs)
|
|
.def_property_readonly("outputs", &OpSchema::outputs)
|
|
.def_property_readonly("has_type_and_shape_inference_function", &OpSchema::has_type_and_shape_inference_function)
|
|
.def_property_readonly("has_data_propagation_function", &OpSchema::has_data_propagation_function)
|
|
.def_property_readonly("type_constraints", &OpSchema::typeConstraintParams)
|
|
.def_static("is_infinite", [](int v) { return v == std::numeric_limits<int>::max(); })
|
|
.def(
|
|
"_infer_node_outputs",
|
|
CallNodeInferenceFunction,
|
|
py::arg("nodeBytes"),
|
|
py::arg("valueTypesByNameBytes"),
|
|
py::arg("inputDataByNameBytes") = std::unordered_map<std::string, py::bytes>{},
|
|
py::arg("inputSparseDataByNameBytes") = std::unordered_map<std::string, py::bytes>{},
|
|
py::arg("opsetImports") = std::unordered_map<std::string, int>{},
|
|
py::arg("irVersion") = int(IR_VERSION))
|
|
.def_property_readonly("has_function", &OpSchema::HasFunction)
|
|
.def_property_readonly(
|
|
"_function_body",
|
|
[](OpSchema* op) -> py::bytes {
|
|
std::string bytes = "";
|
|
if (op->HasFunction())
|
|
op->GetFunction()->SerializeToString(&bytes);
|
|
return py::bytes(bytes);
|
|
})
|
|
.def(
|
|
"get_function_with_opset_version",
|
|
[](OpSchema* op, int opset_version) -> py::bytes {
|
|
std::string bytes = "";
|
|
const FunctionProto* function_proto = op->GetFunction(opset_version);
|
|
if (function_proto) {
|
|
function_proto->SerializeToString(&bytes);
|
|
}
|
|
return py::bytes(bytes);
|
|
})
|
|
.def_property_readonly("has_context_dependent_function", &OpSchema::HasContextDependentFunction)
|
|
.def(
|
|
"get_context_dependent_function",
|
|
[](OpSchema* op, const py::bytes& bytes, const std::vector<py::bytes>& input_types_bytes) -> py::bytes {
|
|
NodeProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
std::string func_bytes = "";
|
|
if (op->HasContextDependentFunction()) {
|
|
std::vector<TypeProto> input_types;
|
|
input_types.reserve(input_types_bytes.size());
|
|
for (auto& type_bytes : input_types_bytes) {
|
|
TypeProto type_proto{};
|
|
ParseProtoFromPyBytes(&type_proto, type_bytes);
|
|
input_types.push_back(type_proto);
|
|
}
|
|
FunctionBodyBuildContextImpl ctx(proto, input_types);
|
|
FunctionProto func_proto;
|
|
op->BuildContextDependentFunction(ctx, func_proto);
|
|
func_proto.SerializeToString(&func_bytes);
|
|
}
|
|
return py::bytes(func_bytes);
|
|
})
|
|
.def(
|
|
"get_context_dependent_function_with_opset_version",
|
|
[](OpSchema* op, int opset_version, const py::bytes& bytes, const std::vector<py::bytes>& input_types_bytes)
|
|
-> py::bytes {
|
|
NodeProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
std::string func_bytes = "";
|
|
if (op->HasContextDependentFunctionWithOpsetVersion(opset_version)) {
|
|
std::vector<TypeProto> input_types;
|
|
input_types.reserve(input_types_bytes.size());
|
|
for (auto& type_bytes : input_types_bytes) {
|
|
TypeProto type_proto{};
|
|
ParseProtoFromPyBytes(&type_proto, type_bytes);
|
|
input_types.push_back(type_proto);
|
|
}
|
|
FunctionBodyBuildContextImpl ctx(proto, input_types);
|
|
FunctionProto func_proto;
|
|
op->BuildContextDependentFunction(ctx, func_proto, opset_version);
|
|
func_proto.SerializeToString(&func_bytes);
|
|
}
|
|
return py::bytes(func_bytes);
|
|
});
|
|
|
|
defs.def(
|
|
"has_schema",
|
|
[](const std::string& op_type, const std::string& domain) -> bool {
|
|
return OpSchemaRegistry::Schema(op_type, domain) != nullptr;
|
|
},
|
|
"op_type"_a,
|
|
"domain"_a = ONNX_DOMAIN)
|
|
.def(
|
|
"has_schema",
|
|
[](const std::string& op_type, int max_inclusive_version, const std::string& domain) -> bool {
|
|
return OpSchemaRegistry::Schema(op_type, max_inclusive_version, domain) != nullptr;
|
|
},
|
|
"op_type"_a,
|
|
"max_inclusive_version"_a,
|
|
"domain"_a = ONNX_DOMAIN)
|
|
.def(
|
|
"schema_version_map",
|
|
[]() -> std::unordered_map<std::string, std::pair<int, int>> {
|
|
return OpSchemaRegistry::DomainToVersionRange::Instance().Map();
|
|
})
|
|
.def(
|
|
"get_schema",
|
|
[](const std::string& op_type, const int max_inclusive_version, const std::string& domain) -> OpSchema {
|
|
const auto* schema = OpSchemaRegistry::Schema(op_type, max_inclusive_version, domain);
|
|
if (!schema) {
|
|
fail_schema(
|
|
"No schema registered for '" + op_type + "' version '" + std::to_string(max_inclusive_version) +
|
|
"' and domain '" + domain + "'!");
|
|
}
|
|
return *schema;
|
|
},
|
|
"op_type"_a,
|
|
"max_inclusive_version"_a,
|
|
"domain"_a = ONNX_DOMAIN,
|
|
"Return the schema of the operator *op_type* and for a specific version.")
|
|
.def(
|
|
"get_schema",
|
|
[](const std::string& op_type, const std::string& domain) -> OpSchema {
|
|
const auto* schema = OpSchemaRegistry::Schema(op_type, domain);
|
|
if (!schema) {
|
|
fail_schema("No schema registered for '" + op_type + "' and domain '" + domain + "'!");
|
|
}
|
|
return *schema;
|
|
},
|
|
"op_type"_a,
|
|
"domain"_a = ONNX_DOMAIN,
|
|
"Return the schema of the operator *op_type* and for a specific version.")
|
|
.def(
|
|
"get_all_schemas",
|
|
[]() -> const std::vector<OpSchema> { return OpSchemaRegistry::get_all_schemas(); },
|
|
"Return the schema of all existing operators for the latest version.")
|
|
.def(
|
|
"get_all_schemas_with_history",
|
|
[]() -> const std::vector<OpSchema> { return OpSchemaRegistry::get_all_schemas_with_history(); },
|
|
"Return the schema of all existing operators and all versions.")
|
|
.def(
|
|
"set_domain_to_version",
|
|
[](const std::string& domain, int min_version, int max_version, int last_release_version) {
|
|
auto& obj = OpSchemaRegistry::DomainToVersionRange::Instance();
|
|
if (obj.Map().count(domain) == 0) {
|
|
obj.AddDomainToVersion(domain, min_version, max_version, last_release_version);
|
|
} else {
|
|
obj.UpdateDomainToVersion(domain, min_version, max_version, last_release_version);
|
|
}
|
|
},
|
|
"domain"_a,
|
|
"min_version"_a,
|
|
"max_version"_a,
|
|
"last_release_version"_a = -1,
|
|
"Set the version range and last release version of the specified domain.")
|
|
.def(
|
|
"register_schema",
|
|
[](OpSchema schema) { RegisterSchema(std::move(schema), 0, true, true); },
|
|
"schema"_a,
|
|
"Register a user provided OpSchema.")
|
|
.def(
|
|
"deregister_schema",
|
|
&DeregisterSchema,
|
|
"op_type"_a,
|
|
"version"_a,
|
|
"domain"_a,
|
|
"Deregister the specified OpSchema.");
|
|
|
|
// Submodule `checker`
|
|
auto checker = onnx_cpp2py_export.def_submodule("checker");
|
|
checker.doc() = "Checker submodule";
|
|
|
|
py::class_<checker::CheckerContext> checker_context(checker, "CheckerContext");
|
|
checker_context.def(py::init<>())
|
|
.def_property("ir_version", &checker::CheckerContext::get_ir_version, &checker::CheckerContext::set_ir_version)
|
|
.def_property(
|
|
"opset_imports", &checker::CheckerContext::get_opset_imports, &checker::CheckerContext::set_opset_imports);
|
|
|
|
py::class_<checker::LexicalScopeContext> lexical_scope_context(checker, "LexicalScopeContext");
|
|
lexical_scope_context.def(py::init<>());
|
|
|
|
py::register_exception<checker::ValidationError>(checker, "ValidationError");
|
|
|
|
checker.def("check_value_info", [](const py::bytes& bytes, const checker::CheckerContext& ctx) -> void {
|
|
ValueInfoProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_value_info(proto, ctx);
|
|
});
|
|
|
|
checker.def("check_tensor", [](const py::bytes& bytes, const checker::CheckerContext& ctx) -> void {
|
|
TensorProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_tensor(proto, ctx);
|
|
});
|
|
|
|
checker.def("check_sparse_tensor", [](const py::bytes& bytes, const checker::CheckerContext& ctx) -> void {
|
|
SparseTensorProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_sparse_tensor(proto, ctx);
|
|
});
|
|
|
|
checker.def(
|
|
"check_attribute",
|
|
[](const py::bytes& bytes,
|
|
const checker::CheckerContext& ctx,
|
|
const checker::LexicalScopeContext& lex_ctx) -> void {
|
|
AttributeProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_attribute(proto, ctx, lex_ctx);
|
|
});
|
|
|
|
checker.def(
|
|
"check_node",
|
|
[](const py::bytes& bytes,
|
|
const checker::CheckerContext& ctx,
|
|
const checker::LexicalScopeContext& lex_ctx) -> void {
|
|
NodeProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_node(proto, ctx, lex_ctx);
|
|
});
|
|
|
|
checker.def(
|
|
"check_function",
|
|
[](const py::bytes& bytes,
|
|
const checker::CheckerContext& ctx,
|
|
const checker::LexicalScopeContext& lex_ctx) -> void {
|
|
FunctionProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_function(proto, ctx, lex_ctx);
|
|
});
|
|
|
|
checker.def(
|
|
"check_graph",
|
|
[](const py::bytes& bytes,
|
|
const checker::CheckerContext& ctx,
|
|
const checker::LexicalScopeContext& lex_ctx) -> void {
|
|
GraphProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_graph(proto, ctx, lex_ctx);
|
|
});
|
|
|
|
checker.def(
|
|
"check_model",
|
|
[](const py::bytes& bytes, bool full_check, bool skip_opset_compatibility_check, bool check_custom_domain)
|
|
-> void {
|
|
ModelProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
checker::check_model(proto, full_check, skip_opset_compatibility_check, check_custom_domain);
|
|
},
|
|
"bytes"_a,
|
|
"full_check"_a = false,
|
|
"skip_opset_compatibility_check"_a = false,
|
|
"check_custom_domain"_a = false);
|
|
|
|
checker.def(
|
|
"check_model_path",
|
|
(void (*)(
|
|
const std::string& path, bool full_check, bool skip_opset_compatibility_check, bool check_custom_domain)) &
|
|
checker::check_model,
|
|
"path"_a,
|
|
"full_check"_a = false,
|
|
"skip_opset_compatibility_check"_a = false,
|
|
"check_custom_domain"_a = false);
|
|
|
|
checker.def("_resolve_external_data_location", &checker::resolve_external_data_location);
|
|
|
|
// Submodule `version_converter`
|
|
auto version_converter = onnx_cpp2py_export.def_submodule("version_converter");
|
|
version_converter.doc() = "VersionConverter submodule";
|
|
py::register_exception<ConvertError>(version_converter, "ConvertError");
|
|
|
|
version_converter.def("convert_version", [](const py::bytes& bytes, py::int_ target) {
|
|
ModelProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
shape_inference::InferShapes(proto);
|
|
auto result = version_conversion::ConvertVersion(proto, target);
|
|
std::string out;
|
|
result.SerializeToString(&out);
|
|
return py::bytes(out);
|
|
});
|
|
|
|
// Submodule `inliner`
|
|
auto inliner = onnx_cpp2py_export.def_submodule("inliner");
|
|
inliner.doc() = "Inliner submodule";
|
|
|
|
inliner.def("inline_local_functions", [](const py::bytes& bytes, bool convert_version) {
|
|
ModelProto model{};
|
|
ParseProtoFromPyBytes(&model, bytes);
|
|
inliner::InlineLocalFunctions(model, convert_version);
|
|
std::string out;
|
|
model.SerializeToString(&out);
|
|
return py::bytes(out);
|
|
});
|
|
|
|
// inline_selected_functions: Inlines all functions specified in function_ids, unless
|
|
// exclude is true, in which case it inlines all functions except those specified in
|
|
// function_ids.
|
|
inliner.def(
|
|
"inline_selected_functions",
|
|
[](const py::bytes& bytes, std::vector<std::pair<std::string, std::string>> function_ids, bool exclude) {
|
|
ModelProto model{};
|
|
ParseProtoFromPyBytes(&model, bytes);
|
|
auto function_id_set = inliner::FunctionIdSet::Create(std::move(function_ids), exclude);
|
|
inliner::InlineSelectedFunctions(model, *function_id_set);
|
|
std::string out;
|
|
model.SerializeToString(&out);
|
|
return py::bytes(out);
|
|
});
|
|
|
|
// Submodule `shape_inference`
|
|
auto shape_inference = onnx_cpp2py_export.def_submodule("shape_inference");
|
|
shape_inference.doc() = "Shape Inference submodule";
|
|
py::register_exception<InferenceError>(shape_inference, "InferenceError");
|
|
|
|
shape_inference.def(
|
|
"infer_shapes",
|
|
[](const py::bytes& bytes, bool check_type, bool strict_mode, bool data_prop) {
|
|
ModelProto proto{};
|
|
ParseProtoFromPyBytes(&proto, bytes);
|
|
ShapeInferenceOptions options{check_type, strict_mode == true ? 1 : 0, data_prop};
|
|
shape_inference::InferShapes(proto, OpSchemaRegistry::Instance(), options);
|
|
std::string out;
|
|
proto.SerializeToString(&out);
|
|
return py::bytes(out);
|
|
},
|
|
"bytes"_a,
|
|
"check_type"_a = false,
|
|
"strict_mode"_a = false,
|
|
"data_prop"_a = false);
|
|
|
|
shape_inference.def(
|
|
"infer_shapes_path",
|
|
[](const std::string& model_path,
|
|
const std::string& output_path,
|
|
bool check_type,
|
|
bool strict_mode,
|
|
bool data_prop) -> void {
|
|
ShapeInferenceOptions options{check_type, strict_mode == true ? 1 : 0, data_prop};
|
|
shape_inference::InferShapes(model_path, output_path, OpSchemaRegistry::Instance(), options);
|
|
});
|
|
|
|
shape_inference.def(
|
|
"infer_function_output_types",
|
|
[](const py::bytes& function_proto_bytes,
|
|
const std::vector<py::bytes> input_types_bytes,
|
|
const std::vector<py::bytes> attributes_bytes) -> std::vector<py::bytes> {
|
|
FunctionProto proto{};
|
|
ParseProtoFromPyBytes(&proto, function_proto_bytes);
|
|
|
|
std::vector<TypeProto> input_types;
|
|
input_types.reserve(input_types_bytes.size());
|
|
for (const py::bytes& bytes : input_types_bytes) {
|
|
TypeProto type;
|
|
ParseProtoFromPyBytes(&type, bytes);
|
|
input_types.push_back(type);
|
|
}
|
|
|
|
std::vector<AttributeProto> attributes;
|
|
attributes.reserve(attributes_bytes.size());
|
|
for (const py::bytes& bytes : attributes_bytes) {
|
|
AttributeProto attr;
|
|
ParseProtoFromPyBytes(&attr, bytes);
|
|
attributes.push_back(attr);
|
|
}
|
|
|
|
std::vector<TypeProto> output_types = shape_inference::InferFunctionOutputTypes(proto, input_types, attributes);
|
|
std::vector<py::bytes> result;
|
|
result.reserve(output_types.size());
|
|
for (auto& type_proto : output_types) {
|
|
std::string out;
|
|
type_proto.SerializeToString(&out);
|
|
result.push_back(py::bytes(out));
|
|
}
|
|
return result;
|
|
});
|
|
|
|
// Submodule `parser`
|
|
auto parser = onnx_cpp2py_export.def_submodule("parser");
|
|
parser.doc() = "Parser submodule";
|
|
|
|
parser.def("parse_model", Parse<ModelProto>);
|
|
parser.def("parse_graph", Parse<GraphProto>);
|
|
parser.def("parse_function", Parse<FunctionProto>);
|
|
parser.def("parse_node", Parse<NodeProto>);
|
|
|
|
// Submodule `printer`
|
|
auto printer = onnx_cpp2py_export.def_submodule("printer");
|
|
printer.doc() = "Printer submodule";
|
|
|
|
printer.def("model_to_text", ProtoBytesToText<ModelProto>);
|
|
printer.def("function_to_text", ProtoBytesToText<FunctionProto>);
|
|
printer.def("graph_to_text", ProtoBytesToText<GraphProto>);
|
|
}
|
|
|
|
} // namespace ONNX_NAMESPACE
|