65 lines
1.8 KiB
Python
65 lines
1.8 KiB
Python
import numpy as np
|
|
|
|
from gymnasium import utils
|
|
from gymnasium.envs.mujoco import MuJocoPyEnv
|
|
from gymnasium.spaces import Box
|
|
|
|
|
|
class HalfCheetahEnv(MuJocoPyEnv, utils.EzPickle):
|
|
metadata = {
|
|
"render_modes": [
|
|
"human",
|
|
"rgb_array",
|
|
"depth_array",
|
|
],
|
|
"render_fps": 20,
|
|
}
|
|
|
|
def __init__(self, **kwargs):
|
|
observation_space = Box(low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64)
|
|
MuJocoPyEnv.__init__(
|
|
self, "half_cheetah.xml", 5, observation_space=observation_space, **kwargs
|
|
)
|
|
utils.EzPickle.__init__(self, **kwargs)
|
|
|
|
def step(self, action):
|
|
xposbefore = self.sim.data.qpos[0]
|
|
self.do_simulation(action, self.frame_skip)
|
|
xposafter = self.sim.data.qpos[0]
|
|
|
|
ob = self._get_obs()
|
|
reward_ctrl = -0.1 * np.square(action).sum()
|
|
reward_run = (xposafter - xposbefore) / self.dt
|
|
reward = reward_ctrl + reward_run
|
|
terminated = False
|
|
|
|
if self.render_mode == "human":
|
|
self.render()
|
|
return (
|
|
ob,
|
|
reward,
|
|
terminated,
|
|
False,
|
|
dict(reward_run=reward_run, reward_ctrl=reward_ctrl),
|
|
)
|
|
|
|
def _get_obs(self):
|
|
return np.concatenate(
|
|
[
|
|
self.sim.data.qpos.flat[1:],
|
|
self.sim.data.qvel.flat,
|
|
]
|
|
)
|
|
|
|
def reset_model(self):
|
|
qpos = self.init_qpos + self.np_random.uniform(
|
|
low=-0.1, high=0.1, size=self.model.nq
|
|
)
|
|
qvel = self.init_qvel + self.np_random.standard_normal(self.model.nv) * 0.1
|
|
self.set_state(qpos, qvel)
|
|
return self._get_obs()
|
|
|
|
def viewer_setup(self):
|
|
assert self.viewer is not None
|
|
self.viewer.cam.distance = self.model.stat.extent * 0.5
|