188 lines
5.6 KiB
Python
188 lines
5.6 KiB
Python
import numpy as np
|
|
|
|
from gymnasium import utils
|
|
from gymnasium.envs.mujoco import MuJocoPyEnv
|
|
from gymnasium.spaces import Box
|
|
|
|
|
|
DEFAULT_CAMERA_CONFIG = {
|
|
"distance": 4.0,
|
|
}
|
|
|
|
|
|
class AntEnv(MuJocoPyEnv, utils.EzPickle):
|
|
metadata = {
|
|
"render_modes": [
|
|
"human",
|
|
"rgb_array",
|
|
"depth_array",
|
|
],
|
|
"render_fps": 20,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
xml_file="ant.xml",
|
|
ctrl_cost_weight=0.5,
|
|
contact_cost_weight=5e-4,
|
|
healthy_reward=1.0,
|
|
terminate_when_unhealthy=True,
|
|
healthy_z_range=(0.2, 1.0),
|
|
contact_force_range=(-1.0, 1.0),
|
|
reset_noise_scale=0.1,
|
|
exclude_current_positions_from_observation=True,
|
|
**kwargs,
|
|
):
|
|
utils.EzPickle.__init__(
|
|
self,
|
|
xml_file,
|
|
ctrl_cost_weight,
|
|
contact_cost_weight,
|
|
healthy_reward,
|
|
terminate_when_unhealthy,
|
|
healthy_z_range,
|
|
contact_force_range,
|
|
reset_noise_scale,
|
|
exclude_current_positions_from_observation,
|
|
**kwargs,
|
|
)
|
|
|
|
self._ctrl_cost_weight = ctrl_cost_weight
|
|
self._contact_cost_weight = contact_cost_weight
|
|
|
|
self._healthy_reward = healthy_reward
|
|
self._terminate_when_unhealthy = terminate_when_unhealthy
|
|
self._healthy_z_range = healthy_z_range
|
|
|
|
self._contact_force_range = contact_force_range
|
|
|
|
self._reset_noise_scale = reset_noise_scale
|
|
|
|
self._exclude_current_positions_from_observation = (
|
|
exclude_current_positions_from_observation
|
|
)
|
|
|
|
if exclude_current_positions_from_observation:
|
|
observation_space = Box(
|
|
low=-np.inf, high=np.inf, shape=(111,), dtype=np.float64
|
|
)
|
|
else:
|
|
observation_space = Box(
|
|
low=-np.inf, high=np.inf, shape=(113,), dtype=np.float64
|
|
)
|
|
|
|
MuJocoPyEnv.__init__(
|
|
self, xml_file, 5, observation_space=observation_space, **kwargs
|
|
)
|
|
|
|
@property
|
|
def healthy_reward(self):
|
|
return (
|
|
float(self.is_healthy or self._terminate_when_unhealthy)
|
|
* self._healthy_reward
|
|
)
|
|
|
|
def control_cost(self, action):
|
|
control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
|
|
return control_cost
|
|
|
|
@property
|
|
def contact_forces(self):
|
|
raw_contact_forces = self.sim.data.cfrc_ext
|
|
min_value, max_value = self._contact_force_range
|
|
contact_forces = np.clip(raw_contact_forces, min_value, max_value)
|
|
return contact_forces
|
|
|
|
@property
|
|
def contact_cost(self):
|
|
contact_cost = self._contact_cost_weight * np.sum(
|
|
np.square(self.contact_forces)
|
|
)
|
|
return contact_cost
|
|
|
|
@property
|
|
def is_healthy(self):
|
|
state = self.state_vector()
|
|
min_z, max_z = self._healthy_z_range
|
|
is_healthy = np.isfinite(state).all() and min_z <= state[2] <= max_z
|
|
return is_healthy
|
|
|
|
@property
|
|
def terminated(self):
|
|
terminated = not self.is_healthy if self._terminate_when_unhealthy else False
|
|
return terminated
|
|
|
|
def step(self, action):
|
|
xy_position_before = self.get_body_com("torso")[:2].copy()
|
|
self.do_simulation(action, self.frame_skip)
|
|
xy_position_after = self.get_body_com("torso")[:2].copy()
|
|
|
|
xy_velocity = (xy_position_after - xy_position_before) / self.dt
|
|
x_velocity, y_velocity = xy_velocity
|
|
|
|
ctrl_cost = self.control_cost(action)
|
|
contact_cost = self.contact_cost
|
|
|
|
forward_reward = x_velocity
|
|
healthy_reward = self.healthy_reward
|
|
|
|
rewards = forward_reward + healthy_reward
|
|
costs = ctrl_cost + contact_cost
|
|
|
|
reward = rewards - costs
|
|
terminated = self.terminated
|
|
observation = self._get_obs()
|
|
info = {
|
|
"reward_forward": forward_reward,
|
|
"reward_ctrl": -ctrl_cost,
|
|
"reward_contact": -contact_cost,
|
|
"reward_survive": healthy_reward,
|
|
"x_position": xy_position_after[0],
|
|
"y_position": xy_position_after[1],
|
|
"distance_from_origin": np.linalg.norm(xy_position_after, ord=2),
|
|
"x_velocity": x_velocity,
|
|
"y_velocity": y_velocity,
|
|
"forward_reward": forward_reward,
|
|
}
|
|
|
|
if self.render_mode == "human":
|
|
self.render()
|
|
return observation, reward, terminated, False, info
|
|
|
|
def _get_obs(self):
|
|
position = self.sim.data.qpos.flat.copy()
|
|
velocity = self.sim.data.qvel.flat.copy()
|
|
contact_force = self.contact_forces.flat.copy()
|
|
|
|
if self._exclude_current_positions_from_observation:
|
|
position = position[2:]
|
|
|
|
observations = np.concatenate((position, velocity, contact_force))
|
|
|
|
return observations
|
|
|
|
def reset_model(self):
|
|
noise_low = -self._reset_noise_scale
|
|
noise_high = self._reset_noise_scale
|
|
|
|
qpos = self.init_qpos + self.np_random.uniform(
|
|
low=noise_low, high=noise_high, size=self.model.nq
|
|
)
|
|
qvel = (
|
|
self.init_qvel
|
|
+ self._reset_noise_scale * self.np_random.standard_normal(self.model.nv)
|
|
)
|
|
self.set_state(qpos, qvel)
|
|
|
|
observation = self._get_obs()
|
|
|
|
return observation
|
|
|
|
def viewer_setup(self):
|
|
assert self.viewer is not None
|
|
for key, value in DEFAULT_CAMERA_CONFIG.items():
|
|
if isinstance(value, np.ndarray):
|
|
getattr(self.viewer.cam, key)[:] = value
|
|
else:
|
|
setattr(self.viewer.cam, key, value)
|