186 lines
7.8 KiB
Python
186 lines
7.8 KiB
Python
# mypy: allow-untyped-defs
|
|
from typing import List, Tuple, Union
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
from . import _functional as F
|
|
from .optimizer import _maximize_doc, Optimizer, ParamsT
|
|
|
|
|
|
__all__ = ["SparseAdam"]
|
|
|
|
|
|
class SparseAdam(Optimizer):
|
|
def __init__(
|
|
self,
|
|
params: ParamsT,
|
|
lr: Union[float, Tensor] = 1e-3,
|
|
betas: Tuple[float, float] = (0.9, 0.999),
|
|
eps: float = 1e-8,
|
|
maximize: bool = False,
|
|
):
|
|
if isinstance(lr, Tensor) and lr.numel() != 1:
|
|
raise ValueError("Tensor lr must be 1-element")
|
|
if not 0.0 < lr:
|
|
raise ValueError(f"Invalid learning rate: {lr}")
|
|
if not 0.0 < eps:
|
|
raise ValueError(f"Invalid epsilon value: {eps}")
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
|
|
|
defaults = dict(lr=lr, betas=betas, eps=eps, maximize=maximize)
|
|
super().__init__(params, defaults)
|
|
|
|
sparse_params = []
|
|
complex_params = []
|
|
for index, param_group in enumerate(self.param_groups):
|
|
assert isinstance(
|
|
param_group, dict
|
|
), f"param_groups must be a list of dicts, but got {type(param_group)}"
|
|
# given param group, convert given params to a list first before iterating
|
|
for d_index, d_param in enumerate(param_group["params"]):
|
|
if d_param.is_sparse:
|
|
sparse_params.append([index, d_index])
|
|
if d_param.is_complex():
|
|
complex_params.append([index, d_index])
|
|
if sparse_params:
|
|
raise ValueError(
|
|
f"Sparse params at indices {sparse_params}: SparseAdam requires dense parameter tensors"
|
|
)
|
|
if complex_params:
|
|
raise ValueError(
|
|
f"Complex params at indices {complex_params}: SparseAdam does not support complex parameters"
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Perform a single optimization step.
|
|
|
|
Args:
|
|
closure (Callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad: List[Tensor] = []
|
|
grads: List[Tensor] = []
|
|
exp_avgs: List[Tensor] = []
|
|
exp_avg_sqs: List[Tensor] = []
|
|
state_steps: List[int] = []
|
|
beta1, beta2 = group["betas"]
|
|
maximize = group.get("maximize", False)
|
|
|
|
for p in group["params"]:
|
|
if p.grad is not None:
|
|
params_with_grad.append(p)
|
|
if not p.grad.is_sparse:
|
|
raise RuntimeError(
|
|
"SparseAdam does not support dense gradients, please consider Adam instead"
|
|
)
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state["step"] = 0
|
|
# Exponential moving average of gradient values
|
|
state["exp_avg"] = torch.zeros_like(
|
|
p, memory_format=torch.preserve_format
|
|
)
|
|
# Exponential moving average of squared gradient values
|
|
state["exp_avg_sq"] = torch.zeros_like(
|
|
p, memory_format=torch.preserve_format
|
|
)
|
|
|
|
exp_avgs.append(state["exp_avg"])
|
|
exp_avg_sqs.append(state["exp_avg_sq"])
|
|
|
|
# update the steps for each param group update
|
|
state["step"] += 1
|
|
# record the step after step update
|
|
state_steps.append(state["step"])
|
|
|
|
F.sparse_adam(
|
|
params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
state_steps,
|
|
eps=group["eps"],
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
lr=group["lr"],
|
|
maximize=maximize,
|
|
)
|
|
|
|
return loss
|
|
|
|
|
|
SparseAdam.__doc__ = rf"""SparseAdam implements a masked version of the Adam algorithm
|
|
suitable for sparse gradients. Currently, due to implementation constraints (explained
|
|
below), SparseAdam is only intended for a narrow subset of use cases, specifically
|
|
parameters of a dense layout with gradients of a sparse layout. This occurs in a
|
|
special case where the module backwards produces grads already in a sparse layout.
|
|
One example NN module that behaves as such is ``nn.Embedding(sparse=True)``.
|
|
|
|
SparseAdam approximates the Adam algorithm by masking out the parameter and moment
|
|
updates corresponding to the zero values in the gradients. Whereas the Adam algorithm
|
|
will update the first moment, the second moment, and the parameters based on all values
|
|
of the gradients, SparseAdam only updates the moments and parameters corresponding
|
|
to the non-zero values of the gradients.
|
|
|
|
A simplified way of thinking about the `intended` implementation is as such:
|
|
|
|
1. Create a mask of the non-zero values in the sparse gradients. For example,
|
|
if your gradient looks like [0, 5, 0, 0, 9], the mask would be [0, 1, 0, 0, 1].
|
|
2. Apply this mask over the running moments and do computation on only the
|
|
non-zero values.
|
|
3. Apply this mask over the parameters and only apply an update on non-zero values.
|
|
|
|
In actuality, we use sparse layout Tensors to optimize this approximation, which means the
|
|
more gradients that are masked by not being materialized, the more performant the optimization.
|
|
Since we rely on using sparse layout tensors, we infer that any materialized value in the
|
|
sparse layout is non-zero and we do NOT actually verify that all values are not zero!
|
|
It is important to not conflate a semantically sparse tensor (a tensor where many
|
|
of its values are zeros) with a sparse layout tensor (a tensor where ``.is_sparse``
|
|
returns ``True``). The SparseAdam approximation is intended for `semantically` sparse
|
|
tensors and the sparse layout is only a implementation detail. A clearer implementation
|
|
would be to use MaskedTensors, but those are experimental.
|
|
|
|
|
|
.. note::
|
|
|
|
If you suspect your gradients are semantically sparse (but do not have sparse
|
|
layout), this variant may not be the best for you. Ideally, you want to avoid
|
|
materializing anything that is suspected to be sparse in the first place, since
|
|
needing to convert all your grads from dense layout to sparse layout may outweigh
|
|
the performance gain. Here, using Adam may be the best alternative, unless you
|
|
can easily rig up your module to output sparse grads similar to
|
|
``nn.Embedding(sparse=True)``. If you insist on converting your grads, you can do
|
|
so by manually overriding your parameters' ``.grad`` fields with their sparse
|
|
equivalents before calling ``.step()``.
|
|
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, Tensor, optional): learning rate (default: 1e-3)
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
running averages of gradient and its square (default: (0.9, 0.999))
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-8)
|
|
{_maximize_doc}
|
|
|
|
.. _Adam\: A Method for Stochastic Optimization:
|
|
https://arxiv.org/abs/1412.6980
|
|
|
|
"""
|