462 lines
16 KiB
Python
462 lines
16 KiB
Python
# mypy: allow-untyped-decorators
|
|
# mypy: allow-untyped-defs
|
|
from typing import Any, cast, Dict, List, Optional, Union
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
from .optimizer import (
|
|
_capturable_doc,
|
|
_default_to_fused_or_foreach,
|
|
_differentiable_doc,
|
|
_disable_dynamo_if_unsupported,
|
|
_foreach_doc,
|
|
_get_capturable_supported_devices,
|
|
_get_scalar_dtype,
|
|
_maximize_doc,
|
|
_use_grad_for_differentiable,
|
|
_view_as_real,
|
|
Optimizer,
|
|
ParamsT,
|
|
)
|
|
|
|
|
|
__all__ = ["Adadelta", "adadelta"]
|
|
|
|
|
|
class Adadelta(Optimizer):
|
|
def __init__(
|
|
self,
|
|
params: ParamsT,
|
|
lr: Union[float, Tensor] = 1.0,
|
|
rho: float = 0.9,
|
|
eps: float = 1e-6,
|
|
weight_decay: float = 0,
|
|
foreach: Optional[bool] = None,
|
|
*,
|
|
capturable: bool = False,
|
|
maximize: bool = False,
|
|
differentiable: bool = False,
|
|
):
|
|
if isinstance(lr, Tensor) and lr.numel() != 1:
|
|
raise ValueError("Tensor lr must be 1-element")
|
|
if not 0.0 <= lr:
|
|
raise ValueError(f"Invalid learning rate: {lr}")
|
|
if not 0.0 <= rho <= 1.0:
|
|
raise ValueError(f"Invalid rho value: {rho}")
|
|
if not 0.0 <= eps:
|
|
raise ValueError(f"Invalid epsilon value: {eps}")
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
|
|
|
defaults = dict(
|
|
lr=lr,
|
|
rho=rho,
|
|
eps=eps,
|
|
weight_decay=weight_decay,
|
|
maximize=maximize,
|
|
capturable=capturable,
|
|
foreach=foreach,
|
|
differentiable=differentiable,
|
|
)
|
|
super().__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super().__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault("foreach", None)
|
|
group.setdefault("maximize", False)
|
|
group.setdefault("differentiable", False)
|
|
group.setdefault("capturable", False)
|
|
for p in group["params"]:
|
|
p_state = self.state.get(p, [])
|
|
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
|
|
step_val = float(p_state["step"])
|
|
p_state["step"] = (
|
|
torch.tensor(
|
|
step_val, dtype=_get_scalar_dtype(), device=p.device
|
|
)
|
|
if group["capturable"]
|
|
else torch.tensor(step_val, dtype=_get_scalar_dtype())
|
|
)
|
|
|
|
def _init_group(
|
|
self,
|
|
group: Dict[str, Any],
|
|
params_with_grad: List[Tensor],
|
|
grads: List[Tensor],
|
|
square_avgs: List[Tensor],
|
|
acc_deltas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
):
|
|
has_complex = False
|
|
p: Tensor
|
|
for p in group["params"]:
|
|
if p.grad is None:
|
|
continue
|
|
has_complex |= torch.is_complex(p)
|
|
params_with_grad.append(p)
|
|
if p.grad.is_sparse:
|
|
raise RuntimeError("Adadelta does not support sparse gradients")
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
|
|
# Lazy state initialization
|
|
if len(state) == 0:
|
|
state["step"] = (
|
|
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
|
|
if group["capturable"]
|
|
else torch.zeros((), dtype=_get_scalar_dtype())
|
|
)
|
|
|
|
state["square_avg"] = torch.zeros_like(
|
|
p, memory_format=torch.preserve_format
|
|
)
|
|
state["acc_delta"] = torch.zeros_like(
|
|
p, memory_format=torch.preserve_format
|
|
)
|
|
|
|
square_avgs.append(state["square_avg"])
|
|
acc_deltas.append(state["acc_delta"])
|
|
state_steps.append(state["step"])
|
|
|
|
return has_complex
|
|
|
|
@_use_grad_for_differentiable
|
|
def step(self, closure=None):
|
|
"""Perform a single optimization step.
|
|
|
|
Args:
|
|
closure (Callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
self._cuda_graph_capture_health_check()
|
|
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad: List[Tensor] = []
|
|
grads: List[Tensor] = []
|
|
square_avgs: List[Tensor] = []
|
|
acc_deltas: List[Tensor] = []
|
|
state_steps: List[Tensor] = []
|
|
(
|
|
lr,
|
|
rho,
|
|
eps,
|
|
weight_decay,
|
|
foreach,
|
|
maximize,
|
|
differentiable,
|
|
capturable,
|
|
) = (
|
|
group["lr"],
|
|
group["rho"],
|
|
group["eps"],
|
|
group["weight_decay"],
|
|
group["foreach"],
|
|
group["maximize"],
|
|
group["differentiable"],
|
|
group["capturable"],
|
|
)
|
|
|
|
has_complex = self._init_group(
|
|
group, params_with_grad, grads, square_avgs, acc_deltas, state_steps
|
|
)
|
|
|
|
adadelta(
|
|
params_with_grad,
|
|
grads,
|
|
square_avgs,
|
|
acc_deltas,
|
|
state_steps,
|
|
lr=lr,
|
|
rho=rho,
|
|
eps=eps,
|
|
weight_decay=weight_decay,
|
|
foreach=foreach,
|
|
maximize=maximize,
|
|
differentiable=differentiable,
|
|
capturable=capturable,
|
|
has_complex=has_complex,
|
|
)
|
|
|
|
return loss
|
|
|
|
|
|
Adadelta.__doc__ = (
|
|
r"""Implements Adadelta algorithm.
|
|
|
|
.. math::
|
|
\begin{aligned}
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},
|
|
\: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},
|
|
\: \lambda \text{ (weight decay)} \\
|
|
&\textbf{initialize} : v_0 \leftarrow 0 \: \text{ (square avg)},
|
|
\: u_0 \leftarrow 0 \: \text{ (accumulate variables)} \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
|
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
|
|
&\hspace{5mm}if \: \lambda \neq 0 \\
|
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
|
|
&\hspace{5mm} v_t \leftarrow v_{t-1} \rho + g^2_t (1 - \rho) \\
|
|
&\hspace{5mm}\Delta x_t \leftarrow \frac{\sqrt{u_{t-1} +
|
|
\epsilon }}{ \sqrt{v_t + \epsilon} }g_t \hspace{21mm} \\
|
|
&\hspace{5mm} u_t \leftarrow u_{t-1} \rho +
|
|
\Delta x^2_t (1 - \rho) \\
|
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \Delta x_t \\
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
&\bf{return} \: \theta_t \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
\end{aligned}
|
|
|
|
For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.
|
|
"""
|
|
+ rf"""
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
rho (float, optional): coefficient used for computing a running average
|
|
of squared gradients (default: 0.9). A higher value of `rho` will
|
|
result in a slower average, which can be helpful for preventing
|
|
oscillations in the learning process.
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-6).
|
|
lr (float, Tensor, optional): coefficient that scale delta before it is applied
|
|
to the parameters (default: 1.0)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
{_foreach_doc}
|
|
{_capturable_doc}
|
|
{_maximize_doc}
|
|
{_differentiable_doc}
|
|
|
|
.. _ADADELTA\: An Adaptive Learning Rate Method:
|
|
https://arxiv.org/abs/1212.5701
|
|
|
|
"""
|
|
)
|
|
|
|
|
|
def _single_tensor_adadelta(
|
|
params: List[Tensor],
|
|
grads: List[Tensor],
|
|
square_avgs: List[Tensor],
|
|
acc_deltas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
lr: float,
|
|
rho: float,
|
|
eps: float,
|
|
weight_decay: float,
|
|
maximize: bool,
|
|
differentiable: bool,
|
|
capturable: bool,
|
|
has_complex: bool,
|
|
):
|
|
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
|
|
if not torch._utils.is_compiling() and capturable:
|
|
capturable_supported_devices = _get_capturable_supported_devices(
|
|
supports_xla=False
|
|
)
|
|
assert all(
|
|
p.device.type == step.device.type
|
|
and p.device.type in capturable_supported_devices
|
|
for p, step in zip(params, state_steps)
|
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
|
|
|
|
for param, grad, square_avg, acc_delta, step in zip(
|
|
params, grads, square_avgs, acc_deltas, state_steps
|
|
):
|
|
step += 1
|
|
grad = grad if not maximize else -grad
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
if torch.is_complex(param):
|
|
square_avg = torch.view_as_real(square_avg)
|
|
acc_delta = torch.view_as_real(acc_delta)
|
|
grad = torch.view_as_real(grad)
|
|
|
|
square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho)
|
|
std = square_avg.add(eps).sqrt_()
|
|
delta = acc_delta.add(eps).sqrt_()
|
|
if differentiable:
|
|
delta = delta.clone()
|
|
delta.div_(std).mul_(grad)
|
|
acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho)
|
|
|
|
if torch.is_complex(param):
|
|
delta = torch.view_as_complex(delta)
|
|
param.add_(delta, alpha=-lr)
|
|
|
|
|
|
def _multi_tensor_adadelta(
|
|
params: List[Tensor],
|
|
grads: List[Tensor],
|
|
square_avgs: List[Tensor],
|
|
acc_deltas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
lr: float,
|
|
rho: float,
|
|
eps: float,
|
|
weight_decay: float,
|
|
maximize: bool,
|
|
differentiable: bool,
|
|
capturable: bool,
|
|
has_complex: bool,
|
|
):
|
|
assert not differentiable, "_foreach ops don't support autograd"
|
|
|
|
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
|
|
if not torch._utils.is_compiling() and capturable:
|
|
capturable_supported_devices = _get_capturable_supported_devices(
|
|
supports_xla=False
|
|
)
|
|
assert all(
|
|
p.device.type == step.device.type
|
|
and p.device.type in capturable_supported_devices
|
|
for p, step in zip(params, state_steps)
|
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
|
|
|
|
if len(params) == 0:
|
|
return
|
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
|
[params, grads, square_avgs, acc_deltas, state_steps] # type: ignore[list-item]
|
|
)
|
|
for (
|
|
device_params_,
|
|
device_grads_,
|
|
device_square_avgs_,
|
|
device_acc_deltas_,
|
|
device_state_steps_,
|
|
), _ in grouped_tensors.values():
|
|
device_params = cast(List[Tensor], device_params_)
|
|
device_grads = cast(List[Tensor], device_grads_)
|
|
device_square_avgs = cast(List[Tensor], device_square_avgs_)
|
|
device_acc_deltas = cast(List[Tensor], device_acc_deltas_)
|
|
device_state_steps = cast(List[Tensor], device_state_steps_)
|
|
if has_complex:
|
|
_view_as_real(
|
|
device_params, device_grads, device_square_avgs, device_acc_deltas
|
|
)
|
|
|
|
# Update steps
|
|
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
|
|
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
|
|
# wrapped it once now. The alpha is required to assure we go to the right overload.
|
|
if not torch._utils.is_compiling() and device_state_steps[0].is_cpu:
|
|
torch._foreach_add_(
|
|
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
|
|
)
|
|
else:
|
|
torch._foreach_add_(device_state_steps, 1)
|
|
|
|
if maximize:
|
|
device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
|
|
|
|
if weight_decay != 0:
|
|
# Re-use the intermediate memory (device_grads) already allocated for maximize
|
|
if maximize:
|
|
torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
|
|
else:
|
|
device_grads = torch._foreach_add( # type: ignore[assignment]
|
|
device_grads, device_params, alpha=weight_decay
|
|
)
|
|
|
|
torch._foreach_mul_(device_square_avgs, rho)
|
|
torch._foreach_addcmul_(
|
|
device_square_avgs, device_grads, device_grads, value=1 - rho
|
|
)
|
|
|
|
std = torch._foreach_add(device_square_avgs, eps)
|
|
torch._foreach_sqrt_(std)
|
|
|
|
deltas = torch._foreach_add(device_acc_deltas, eps)
|
|
torch._foreach_sqrt_(deltas)
|
|
torch._foreach_div_(deltas, std)
|
|
torch._foreach_mul_(deltas, device_grads)
|
|
|
|
torch._foreach_mul_(device_acc_deltas, rho)
|
|
torch._foreach_addcmul_(device_acc_deltas, deltas, deltas, value=1 - rho)
|
|
|
|
# If LR is a tensor, the else branch will internally call item()
|
|
# which will cause silent incorrectness if we are capturing
|
|
if capturable and isinstance(lr, torch.Tensor):
|
|
torch._foreach_mul_(deltas, -lr)
|
|
torch._foreach_add_(device_params, deltas)
|
|
else:
|
|
torch._foreach_add_(device_params, deltas, alpha=-lr)
|
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adadelta)
|
|
def adadelta(
|
|
params: List[Tensor],
|
|
grads: List[Tensor],
|
|
square_avgs: List[Tensor],
|
|
acc_deltas: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
|
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
|
capturable: bool = False,
|
|
foreach: Optional[bool] = None,
|
|
differentiable: bool = False,
|
|
has_complex: bool = False,
|
|
*,
|
|
lr: float,
|
|
rho: float,
|
|
eps: float,
|
|
weight_decay: float,
|
|
maximize: bool,
|
|
):
|
|
r"""Functional API that performs Adadelta algorithm computation.
|
|
|
|
See :class:`~torch.optim.Adadelta` for details.
|
|
"""
|
|
|
|
# this check is slow during compilation, so we skip it
|
|
# if it's strictly needed we can add this check back in dynamo
|
|
if not torch._utils.is_compiling() and not all(
|
|
isinstance(t, torch.Tensor) for t in state_steps
|
|
):
|
|
raise RuntimeError(
|
|
"API has changed, `state_steps` argument must contain a list of singleton tensors"
|
|
)
|
|
|
|
# We still respect when the user inputs False for foreach.
|
|
if foreach is None:
|
|
_, foreach = _default_to_fused_or_foreach(
|
|
params, differentiable, use_fused=False
|
|
)
|
|
|
|
if foreach and torch.jit.is_scripting():
|
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
|
|
|
|
if foreach and not torch.jit.is_scripting():
|
|
func = _multi_tensor_adadelta
|
|
else:
|
|
func = _single_tensor_adadelta
|
|
|
|
func(
|
|
params,
|
|
grads,
|
|
square_avgs,
|
|
acc_deltas,
|
|
state_steps,
|
|
lr=lr,
|
|
rho=rho,
|
|
eps=eps,
|
|
weight_decay=weight_decay,
|
|
maximize=maximize,
|
|
differentiable=differentiable,
|
|
capturable=capturable,
|
|
has_complex=has_complex,
|
|
)
|