87 lines
2.3 KiB
Python
87 lines
2.3 KiB
Python
# mypy: allow-untyped-defs
|
|
import contextlib
|
|
import tempfile
|
|
|
|
import torch
|
|
|
|
from . import check_error, cudart
|
|
|
|
|
|
__all__ = ["init", "start", "stop", "profile"]
|
|
|
|
DEFAULT_FLAGS = [
|
|
"gpustarttimestamp",
|
|
"gpuendtimestamp",
|
|
"gridsize3d",
|
|
"threadblocksize",
|
|
"streamid",
|
|
"enableonstart 0",
|
|
"conckerneltrace",
|
|
]
|
|
|
|
|
|
def init(output_file, flags=None, output_mode="key_value"):
|
|
rt = cudart()
|
|
if not hasattr(rt, "cudaOutputMode"):
|
|
raise AssertionError("HIP does not support profiler initialization!")
|
|
if (
|
|
hasattr(torch.version, "cuda")
|
|
and torch.version.cuda is not None
|
|
and int(torch.version.cuda.split(".")[0]) >= 12
|
|
):
|
|
# Check https://github.com/pytorch/pytorch/pull/91118
|
|
# cudaProfilerInitialize is no longer needed after CUDA 12
|
|
raise AssertionError("CUDA12+ does not need profiler initialization!")
|
|
flags = DEFAULT_FLAGS if flags is None else flags
|
|
if output_mode == "key_value":
|
|
output_mode_enum = rt.cudaOutputMode.KeyValuePair
|
|
elif output_mode == "csv":
|
|
output_mode_enum = rt.cudaOutputMode.CSV
|
|
else:
|
|
raise RuntimeError(
|
|
"supported CUDA profiler output modes are: key_value and csv"
|
|
)
|
|
with tempfile.NamedTemporaryFile(delete=True) as f:
|
|
f.write(b"\n".join(f.encode("ascii") for f in flags))
|
|
f.flush()
|
|
check_error(rt.cudaProfilerInitialize(f.name, output_file, output_mode_enum))
|
|
|
|
|
|
def start():
|
|
r"""Starts cuda profiler data collection.
|
|
|
|
.. warning::
|
|
Raises CudaError in case of it is unable to start the profiler.
|
|
"""
|
|
check_error(cudart().cudaProfilerStart())
|
|
|
|
|
|
def stop():
|
|
r"""Stops cuda profiler data collection.
|
|
|
|
.. warning::
|
|
Raises CudaError in case of it is unable to stop the profiler.
|
|
"""
|
|
check_error(cudart().cudaProfilerStop())
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def profile():
|
|
"""
|
|
Enable profiling.
|
|
|
|
Context Manager to enabling profile collection by the active profiling tool from CUDA backend.
|
|
Example:
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
|
>>> import torch
|
|
>>> model = torch.nn.Linear(20, 30).cuda()
|
|
>>> inputs = torch.randn(128, 20).cuda()
|
|
>>> with torch.cuda.profiler.profile() as prof:
|
|
... model(inputs)
|
|
"""
|
|
try:
|
|
start()
|
|
yield
|
|
finally:
|
|
stop()
|