4305 lines
149 KiB
Python
4305 lines
149 KiB
Python
from typing import Type
|
|
from sympy import Interval, numer, Rational, solveset
|
|
from sympy.core.add import Add
|
|
from sympy.core.basic import Basic
|
|
from sympy.core.containers import Tuple
|
|
from sympy.core.evalf import EvalfMixin
|
|
from sympy.core.expr import Expr
|
|
from sympy.core.function import expand
|
|
from sympy.core.logic import fuzzy_and
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.numbers import I, pi, oo
|
|
from sympy.core.power import Pow
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import Dummy, Symbol
|
|
from sympy.functions import Abs
|
|
from sympy.core.sympify import sympify, _sympify
|
|
from sympy.matrices import Matrix, ImmutableMatrix, ImmutableDenseMatrix, eye, ShapeError, zeros
|
|
from sympy.functions.elementary.exponential import (exp, log)
|
|
from sympy.matrices.expressions import MatMul, MatAdd
|
|
from sympy.polys import Poly, rootof
|
|
from sympy.polys.polyroots import roots
|
|
from sympy.polys.polytools import (cancel, degree)
|
|
from sympy.series import limit
|
|
from sympy.utilities.misc import filldedent
|
|
|
|
from mpmath.libmp.libmpf import prec_to_dps
|
|
|
|
__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel',
|
|
'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix', 'StateSpace', 'gbt', 'bilinear', 'forward_diff', 'backward_diff',
|
|
'phase_margin', 'gain_margin']
|
|
|
|
def _roots(poly, var):
|
|
""" like roots, but works on higher-order polynomials. """
|
|
r = roots(poly, var, multiple=True)
|
|
n = degree(poly)
|
|
if len(r) != n:
|
|
r = [rootof(poly, var, k) for k in range(n)]
|
|
return r
|
|
|
|
def gbt(tf, sample_per, alpha):
|
|
r"""
|
|
Returns falling coefficients of H(z) from numerator and denominator.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Where H(z) is the corresponding discretized transfer function,
|
|
discretized with the generalised bilinear transformation method.
|
|
H(z) is obtained from the continuous transfer function H(s)
|
|
by substituting $s(z) = \frac{z-1}{T(\alpha z + (1-\alpha))}$ into H(s), where T is the
|
|
sample period.
|
|
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned
|
|
as [a, b], [c, d].
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control.lti import TransferFunction, gbt
|
|
>>> from sympy.abc import s, L, R, T
|
|
|
|
>>> tf = TransferFunction(1, s*L + R, s)
|
|
>>> numZ, denZ = gbt(tf, T, 0.5)
|
|
>>> numZ
|
|
[T/(2*(L + R*T/2)), T/(2*(L + R*T/2))]
|
|
>>> denZ
|
|
[1, (-L + R*T/2)/(L + R*T/2)]
|
|
|
|
>>> numZ, denZ = gbt(tf, T, 0)
|
|
>>> numZ
|
|
[T/L]
|
|
>>> denZ
|
|
[1, (-L + R*T)/L]
|
|
|
|
>>> numZ, denZ = gbt(tf, T, 1)
|
|
>>> numZ
|
|
[T/(L + R*T), 0]
|
|
>>> denZ
|
|
[1, -L/(L + R*T)]
|
|
|
|
>>> numZ, denZ = gbt(tf, T, 0.3)
|
|
>>> numZ
|
|
[3*T/(10*(L + 3*R*T/10)), 7*T/(10*(L + 3*R*T/10))]
|
|
>>> denZ
|
|
[1, (-L + 7*R*T/10)/(L + 3*R*T/10)]
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://www.polyu.edu.hk/ama/profile/gfzhang/Research/ZCC09_IJC.pdf
|
|
"""
|
|
if not tf.is_SISO:
|
|
raise NotImplementedError("Not implemented for MIMO systems.")
|
|
|
|
T = sample_per # and sample period T
|
|
s = tf.var
|
|
z = s # dummy discrete variable z
|
|
|
|
np = tf.num.as_poly(s).all_coeffs()
|
|
dp = tf.den.as_poly(s).all_coeffs()
|
|
alpha = Rational(alpha).limit_denominator(1000)
|
|
|
|
# The next line results from multiplying H(z) with z^N/z^N
|
|
N = max(len(np), len(dp)) - 1
|
|
num = Add(*[ T**(N-i) * c * (z-1)**i * (alpha * z + 1 - alpha)**(N-i) for c, i in zip(np[::-1], range(len(np))) ])
|
|
den = Add(*[ T**(N-i) * c * (z-1)**i * (alpha * z + 1 - alpha)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ])
|
|
|
|
num_coefs = num.as_poly(z).all_coeffs()
|
|
den_coefs = den.as_poly(z).all_coeffs()
|
|
|
|
para = den_coefs[0]
|
|
num_coefs = [coef/para for coef in num_coefs]
|
|
den_coefs = [coef/para for coef in den_coefs]
|
|
|
|
return num_coefs, den_coefs
|
|
|
|
def bilinear(tf, sample_per):
|
|
r"""
|
|
Returns falling coefficients of H(z) from numerator and denominator.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Where H(z) is the corresponding discretized transfer function,
|
|
discretized with the bilinear transform method.
|
|
H(z) is obtained from the continuous transfer function H(s)
|
|
by substituting $s(z) = \frac{2}{T}\frac{z-1}{z+1}$ into H(s), where T is the
|
|
sample period.
|
|
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned
|
|
as [a, b], [c, d].
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control.lti import TransferFunction, bilinear
|
|
>>> from sympy.abc import s, L, R, T
|
|
|
|
>>> tf = TransferFunction(1, s*L + R, s)
|
|
>>> numZ, denZ = bilinear(tf, T)
|
|
>>> numZ
|
|
[T/(2*(L + R*T/2)), T/(2*(L + R*T/2))]
|
|
>>> denZ
|
|
[1, (-L + R*T/2)/(L + R*T/2)]
|
|
"""
|
|
return gbt(tf, sample_per, S.Half)
|
|
|
|
def forward_diff(tf, sample_per):
|
|
r"""
|
|
Returns falling coefficients of H(z) from numerator and denominator.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Where H(z) is the corresponding discretized transfer function,
|
|
discretized with the forward difference transform method.
|
|
H(z) is obtained from the continuous transfer function H(s)
|
|
by substituting $s(z) = \frac{z-1}{T}$ into H(s), where T is the
|
|
sample period.
|
|
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned
|
|
as [a, b], [c, d].
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control.lti import TransferFunction, forward_diff
|
|
>>> from sympy.abc import s, L, R, T
|
|
|
|
>>> tf = TransferFunction(1, s*L + R, s)
|
|
>>> numZ, denZ = forward_diff(tf, T)
|
|
>>> numZ
|
|
[T/L]
|
|
>>> denZ
|
|
[1, (-L + R*T)/L]
|
|
"""
|
|
return gbt(tf, sample_per, S.Zero)
|
|
|
|
def backward_diff(tf, sample_per):
|
|
r"""
|
|
Returns falling coefficients of H(z) from numerator and denominator.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Where H(z) is the corresponding discretized transfer function,
|
|
discretized with the backward difference transform method.
|
|
H(z) is obtained from the continuous transfer function H(s)
|
|
by substituting $s(z) = \frac{z-1}{Tz}$ into H(s), where T is the
|
|
sample period.
|
|
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned
|
|
as [a, b], [c, d].
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control.lti import TransferFunction, backward_diff
|
|
>>> from sympy.abc import s, L, R, T
|
|
|
|
>>> tf = TransferFunction(1, s*L + R, s)
|
|
>>> numZ, denZ = backward_diff(tf, T)
|
|
>>> numZ
|
|
[T/(L + R*T), 0]
|
|
>>> denZ
|
|
[1, -L/(L + R*T)]
|
|
"""
|
|
return gbt(tf, sample_per, S.One)
|
|
|
|
def phase_margin(system):
|
|
r"""
|
|
Returns the phase margin of a continuous time system.
|
|
Only applicable to Transfer Functions which can generate valid bode plots.
|
|
|
|
Raises
|
|
======
|
|
|
|
NotImplementedError
|
|
When time delay terms are present in the system.
|
|
|
|
ValueError
|
|
When a SISO LTI system is not passed.
|
|
|
|
When more than one free symbol is present in the system.
|
|
The only variable in the transfer function should be
|
|
the variable of the Laplace transform.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control import TransferFunction, phase_margin
|
|
>>> from sympy.abc import s
|
|
|
|
>>> tf = TransferFunction(1, s**3 + 2*s**2 + s, s)
|
|
>>> phase_margin(tf)
|
|
180*(-pi + atan((-1 + (-2*18**(1/3)/(9 + sqrt(93))**(1/3) + 12**(1/3)*(9 + sqrt(93))**(1/3))**2/36)/(-12**(1/3)*(9 + sqrt(93))**(1/3)/3 + 2*18**(1/3)/(3*(9 + sqrt(93))**(1/3)))))/pi + 180
|
|
>>> phase_margin(tf).n()
|
|
21.3863897518751
|
|
|
|
>>> tf1 = TransferFunction(s**3, s**2 + 5*s, s)
|
|
>>> phase_margin(tf1)
|
|
-180 + 180*(atan(sqrt(2)*(-51/10 - sqrt(101)/10)*sqrt(1 + sqrt(101))/(2*(sqrt(101)/2 + 51/2))) + pi)/pi
|
|
>>> phase_margin(tf1).n()
|
|
-25.1783920627277
|
|
|
|
>>> tf2 = TransferFunction(1, s + 1, s)
|
|
>>> phase_margin(tf2)
|
|
-180
|
|
|
|
See Also
|
|
========
|
|
|
|
gain_margin
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Phase_margin
|
|
|
|
"""
|
|
from sympy.functions import arg
|
|
|
|
if not isinstance(system, SISOLinearTimeInvariant):
|
|
raise ValueError("Margins are only applicable for SISO LTI systems.")
|
|
|
|
_w = Dummy("w", real=True)
|
|
repl = I*_w
|
|
expr = system.to_expr()
|
|
len_free_symbols = len(expr.free_symbols)
|
|
if expr.has(exp):
|
|
raise NotImplementedError("Margins for systems with Time delay terms are not supported.")
|
|
elif len_free_symbols > 1:
|
|
raise ValueError("Extra degree of freedom found. Make sure"
|
|
" that there are no free symbols in the dynamical system other"
|
|
" than the variable of Laplace transform.")
|
|
|
|
w_expr = expr.subs({system.var: repl})
|
|
|
|
mag = 20*log(Abs(w_expr), 10)
|
|
mag_sol = list(solveset(mag, _w, Interval(0, oo, left_open=True)))
|
|
|
|
if (len(mag_sol) == 0):
|
|
pm = S(-180)
|
|
else:
|
|
wcp = mag_sol[0]
|
|
pm = ((arg(w_expr)*S(180)/pi).subs({_w:wcp}) + S(180)) % 360
|
|
|
|
if(pm >= 180):
|
|
pm = pm - 360
|
|
|
|
return pm
|
|
|
|
def gain_margin(system):
|
|
r"""
|
|
Returns the gain margin of a continuous time system.
|
|
Only applicable to Transfer Functions which can generate valid bode plots.
|
|
|
|
Raises
|
|
======
|
|
|
|
NotImplementedError
|
|
When time delay terms are present in the system.
|
|
|
|
ValueError
|
|
When a SISO LTI system is not passed.
|
|
|
|
When more than one free symbol is present in the system.
|
|
The only variable in the transfer function should be
|
|
the variable of the Laplace transform.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control import TransferFunction, gain_margin
|
|
>>> from sympy.abc import s
|
|
|
|
>>> tf = TransferFunction(1, s**3 + 2*s**2 + s, s)
|
|
>>> gain_margin(tf)
|
|
20*log(2)/log(10)
|
|
>>> gain_margin(tf).n()
|
|
6.02059991327962
|
|
|
|
>>> tf1 = TransferFunction(s**3, s**2 + 5*s, s)
|
|
>>> gain_margin(tf1)
|
|
oo
|
|
|
|
See Also
|
|
========
|
|
|
|
phase_margin
|
|
|
|
References
|
|
==========
|
|
|
|
https://en.wikipedia.org/wiki/Bode_plot
|
|
|
|
"""
|
|
if not isinstance(system, SISOLinearTimeInvariant):
|
|
raise ValueError("Margins are only applicable for SISO LTI systems.")
|
|
|
|
_w = Dummy("w", real=True)
|
|
repl = I*_w
|
|
expr = system.to_expr()
|
|
len_free_symbols = len(expr.free_symbols)
|
|
if expr.has(exp):
|
|
raise NotImplementedError("Margins for systems with Time delay terms are not supported.")
|
|
elif len_free_symbols > 1:
|
|
raise ValueError("Extra degree of freedom found. Make sure"
|
|
" that there are no free symbols in the dynamical system other"
|
|
" than the variable of Laplace transform.")
|
|
|
|
w_expr = expr.subs({system.var: repl})
|
|
|
|
mag = 20*log(Abs(w_expr), 10)
|
|
phase = w_expr
|
|
phase_sol = list(solveset(numer(phase.as_real_imag()[1].cancel()),_w, Interval(0, oo, left_open = True)))
|
|
|
|
if (len(phase_sol) == 0):
|
|
gm = oo
|
|
else:
|
|
wcg = phase_sol[0]
|
|
gm = -mag.subs({_w:wcg})
|
|
|
|
return gm
|
|
|
|
class LinearTimeInvariant(Basic, EvalfMixin):
|
|
"""A common class for all the Linear Time-Invariant Dynamical Systems."""
|
|
|
|
_clstype: Type
|
|
|
|
# Users should not directly interact with this class.
|
|
def __new__(cls, *system, **kwargs):
|
|
if cls is LinearTimeInvariant:
|
|
raise NotImplementedError('The LTICommon class is not meant to be used directly.')
|
|
return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs)
|
|
|
|
@classmethod
|
|
def _check_args(cls, args):
|
|
if not args:
|
|
raise ValueError("At least 1 argument must be passed.")
|
|
if not all(isinstance(arg, cls._clstype) for arg in args):
|
|
raise TypeError(f"All arguments must be of type {cls._clstype}.")
|
|
var_set = {arg.var for arg in args}
|
|
if len(var_set) != 1:
|
|
raise ValueError(filldedent(f"""
|
|
All transfer functions should use the same complex variable
|
|
of the Laplace transform. {len(var_set)} different
|
|
values found."""))
|
|
|
|
@property
|
|
def is_SISO(self):
|
|
"""Returns `True` if the passed LTI system is SISO else returns False."""
|
|
return self._is_SISO
|
|
|
|
|
|
class SISOLinearTimeInvariant(LinearTimeInvariant):
|
|
"""A common class for all the SISO Linear Time-Invariant Dynamical Systems."""
|
|
# Users should not directly interact with this class.
|
|
_is_SISO = True
|
|
|
|
|
|
class MIMOLinearTimeInvariant(LinearTimeInvariant):
|
|
"""A common class for all the MIMO Linear Time-Invariant Dynamical Systems."""
|
|
# Users should not directly interact with this class.
|
|
_is_SISO = False
|
|
|
|
|
|
SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant
|
|
MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant
|
|
|
|
|
|
def _check_other_SISO(func):
|
|
def wrapper(*args, **kwargs):
|
|
if not isinstance(args[-1], SISOLinearTimeInvariant):
|
|
return NotImplemented
|
|
else:
|
|
return func(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
def _check_other_MIMO(func):
|
|
def wrapper(*args, **kwargs):
|
|
if not isinstance(args[-1], MIMOLinearTimeInvariant):
|
|
return NotImplemented
|
|
else:
|
|
return func(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
class TransferFunction(SISOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing LTI (Linear, time-invariant) systems that can be strictly described
|
|
by ratio of polynomials in the Laplace transform complex variable. The arguments
|
|
are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and
|
|
denominator polynomials of the ``TransferFunction`` respectively, and the third argument is
|
|
a complex variable of the Laplace transform used by these polynomials of the transfer function.
|
|
``num`` and ``den`` can be either polynomials or numbers, whereas ``var``
|
|
has to be a :py:class:`~.Symbol`.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Generally, a dynamical system representing a physical model can be described in terms of Linear
|
|
Ordinary Differential Equations like -
|
|
|
|
$\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y=
|
|
a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$
|
|
|
|
Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative
|
|
(not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater
|
|
than $n$.
|
|
|
|
It is not feasible to analyse the properties of such systems in their native form therefore, we use
|
|
mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform
|
|
of both the sides in the equation (at zero initial conditions), we get -
|
|
|
|
$\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]=
|
|
\mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$
|
|
|
|
Using the linearity property of Laplace transform and also considering zero initial conditions
|
|
(i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation
|
|
above gets translated to -
|
|
|
|
$\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]=
|
|
a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$
|
|
|
|
Now, applying Derivative property of Laplace transform,
|
|
|
|
$\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]=
|
|
a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$
|
|
|
|
Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important
|
|
and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above
|
|
cannot be reached.
|
|
|
|
Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio
|
|
$\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer
|
|
function.
|
|
|
|
The numerator of the transfer function is, therefore, the Laplace transform of the output signal
|
|
(The signals are represented as functions of time) and similarly, the denominator
|
|
of the transfer function is the Laplace transform of the input signal. It is also a convention
|
|
to denote the input and output signal's Laplace transform with capital alphabets like shown below.
|
|
|
|
$H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$
|
|
|
|
$s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the
|
|
equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace
|
|
transform of the system's impulse response. Transfer function, $H$, is represented as a rational
|
|
function in $s$ like,
|
|
|
|
$H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$
|
|
|
|
Parameters
|
|
==========
|
|
|
|
num : Expr, Number
|
|
The numerator polynomial of the transfer function.
|
|
den : Expr, Number
|
|
The denominator polynomial of the transfer function.
|
|
var : Symbol
|
|
Complex variable of the Laplace transform used by the
|
|
polynomials of the transfer function.
|
|
|
|
Raises
|
|
======
|
|
|
|
TypeError
|
|
When ``var`` is not a Symbol or when ``num`` or ``den`` is not a
|
|
number or a polynomial.
|
|
ValueError
|
|
When ``den`` is zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction(s + a, s**2 + s + 1, s)
|
|
>>> tf1
|
|
TransferFunction(a + s, s**2 + s + 1, s)
|
|
>>> tf1.num
|
|
a + s
|
|
>>> tf1.den
|
|
s**2 + s + 1
|
|
>>> tf1.var
|
|
s
|
|
>>> tf1.args
|
|
(a + s, s**2 + s + 1, s)
|
|
|
|
Any complex variable can be used for ``var``.
|
|
|
|
>>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p)
|
|
>>> tf2
|
|
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
|
|
>>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
|
|
>>> tf3
|
|
TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p)
|
|
|
|
To negate a transfer function the ``-`` operator can be prepended:
|
|
|
|
>>> tf4 = TransferFunction(-a + s, p**2 + s, p)
|
|
>>> -tf4
|
|
TransferFunction(a - s, p**2 + s, p)
|
|
>>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s)
|
|
>>> -tf5
|
|
TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s)
|
|
|
|
You can use a float or an integer (or other constants) as numerator and denominator:
|
|
|
|
>>> tf6 = TransferFunction(1/2, 4, s)
|
|
>>> tf6.num
|
|
0.500000000000000
|
|
>>> tf6.den
|
|
4
|
|
>>> tf6.var
|
|
s
|
|
>>> tf6.args
|
|
(0.5, 4, s)
|
|
|
|
You can take the integer power of a transfer function using the ``**`` operator:
|
|
|
|
>>> tf7 = TransferFunction(s + a, s - a, s)
|
|
>>> tf7**3
|
|
TransferFunction((a + s)**3, (-a + s)**3, s)
|
|
>>> tf7**0
|
|
TransferFunction(1, 1, s)
|
|
>>> tf8 = TransferFunction(p + 4, p - 3, p)
|
|
>>> tf8**-1
|
|
TransferFunction(p - 3, p + 4, p)
|
|
|
|
Addition, subtraction, and multiplication of transfer functions can form
|
|
unevaluated ``Series`` or ``Parallel`` objects.
|
|
|
|
>>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s)
|
|
>>> tf10 = TransferFunction(s - p, s + 3, s)
|
|
>>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s)
|
|
>>> tf12 = TransferFunction(1 - s, s**2 + 4, s)
|
|
>>> tf9 + tf10
|
|
Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
|
|
>>> tf10 - tf11
|
|
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s))
|
|
>>> tf9 * tf10
|
|
Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s))
|
|
>>> tf10 - (tf9 + tf12)
|
|
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s))
|
|
>>> tf10 - (tf9 * tf12)
|
|
Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)))
|
|
>>> tf11 * tf10 * tf9
|
|
Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s))
|
|
>>> tf9 * tf11 + tf10 * tf12
|
|
Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s)))
|
|
>>> (tf9 + tf12) * (tf10 + tf11)
|
|
Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)))
|
|
|
|
These unevaluated ``Series`` or ``Parallel`` objects can convert into the
|
|
resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``.
|
|
|
|
>>> ((tf9 + tf10) * tf12).doit()
|
|
TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
|
|
>>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction)
|
|
TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s)
|
|
|
|
See Also
|
|
========
|
|
|
|
Feedback, Series, Parallel
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Transfer_function
|
|
.. [2] https://en.wikipedia.org/wiki/Laplace_transform
|
|
|
|
"""
|
|
def __new__(cls, num, den, var):
|
|
num, den = _sympify(num), _sympify(den)
|
|
|
|
if not isinstance(var, Symbol):
|
|
raise TypeError("Variable input must be a Symbol.")
|
|
|
|
if den == 0:
|
|
raise ValueError("TransferFunction cannot have a zero denominator.")
|
|
|
|
if (((isinstance(num, (Expr, TransferFunction, Series, Parallel)) and num.has(Symbol)) or num.is_number) and
|
|
((isinstance(den, (Expr, TransferFunction, Series, Parallel)) and den.has(Symbol)) or den.is_number)):
|
|
return super(TransferFunction, cls).__new__(cls, num, den, var)
|
|
|
|
else:
|
|
raise TypeError("Unsupported type for numerator or denominator of TransferFunction.")
|
|
|
|
@classmethod
|
|
def from_rational_expression(cls, expr, var=None):
|
|
r"""
|
|
Creates a new ``TransferFunction`` efficiently from a rational expression.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr : Expr, Number
|
|
The rational expression representing the ``TransferFunction``.
|
|
var : Symbol, optional
|
|
Complex variable of the Laplace transform used by the
|
|
polynomials of the transfer function.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When ``expr`` is of type ``Number`` and optional parameter ``var``
|
|
is not passed.
|
|
|
|
When ``expr`` has more than one variables and an optional parameter
|
|
``var`` is not passed.
|
|
ZeroDivisionError
|
|
When denominator of ``expr`` is zero or it has ``ComplexInfinity``
|
|
in its numerator.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> expr1 = (s + 5)/(3*s**2 + 2*s + 1)
|
|
>>> tf1 = TransferFunction.from_rational_expression(expr1)
|
|
>>> tf1
|
|
TransferFunction(s + 5, 3*s**2 + 2*s + 1, s)
|
|
>>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables
|
|
>>> tf2 = TransferFunction.from_rational_expression(expr2, p)
|
|
>>> tf2
|
|
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p)
|
|
|
|
In case of conflict between two or more variables in a expression, SymPy will
|
|
raise a ``ValueError``, if ``var`` is not passed by the user.
|
|
|
|
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1))
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually.
|
|
|
|
This can be corrected by specifying the ``var`` parameter manually.
|
|
|
|
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s)
|
|
>>> tf
|
|
TransferFunction(a*s + a, s**2 + s + 1, s)
|
|
|
|
``var`` also need to be specified when ``expr`` is a ``Number``
|
|
|
|
>>> tf3 = TransferFunction.from_rational_expression(10, s)
|
|
>>> tf3
|
|
TransferFunction(10, 1, s)
|
|
|
|
"""
|
|
expr = _sympify(expr)
|
|
if var is None:
|
|
_free_symbols = expr.free_symbols
|
|
_len_free_symbols = len(_free_symbols)
|
|
if _len_free_symbols == 1:
|
|
var = list(_free_symbols)[0]
|
|
elif _len_free_symbols == 0:
|
|
raise ValueError(filldedent("""
|
|
Positional argument `var` not found in the
|
|
TransferFunction defined. Specify it manually."""))
|
|
else:
|
|
raise ValueError(filldedent("""
|
|
Conflicting values found for positional argument `var` ({}).
|
|
Specify it manually.""".format(_free_symbols)))
|
|
|
|
_num, _den = expr.as_numer_denom()
|
|
if _den == 0 or _num.has(S.ComplexInfinity):
|
|
raise ZeroDivisionError("TransferFunction cannot have a zero denominator.")
|
|
return cls(_num, _den, var)
|
|
|
|
@classmethod
|
|
def from_coeff_lists(cls, num_list, den_list, var):
|
|
r"""
|
|
Creates a new ``TransferFunction`` efficiently from a list of coefficients.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
num_list : Sequence
|
|
Sequence comprising of numerator coefficients.
|
|
den_list : Sequence
|
|
Sequence comprising of denominator coefficients.
|
|
var : Symbol
|
|
Complex variable of the Laplace transform used by the
|
|
polynomials of the transfer function.
|
|
|
|
Raises
|
|
======
|
|
|
|
ZeroDivisionError
|
|
When the constructed denominator is zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> num = [1, 0, 2]
|
|
>>> den = [3, 2, 2, 1]
|
|
>>> tf = TransferFunction.from_coeff_lists(num, den, s)
|
|
>>> tf
|
|
TransferFunction(s**2 + 2, 3*s**3 + 2*s**2 + 2*s + 1, s)
|
|
|
|
# Create a Transfer Function with more than one variable
|
|
>>> tf1 = TransferFunction.from_coeff_lists([p, 1], [2*p, 0, 4], s)
|
|
>>> tf1
|
|
TransferFunction(p*s + 1, 2*p*s**2 + 4, s)
|
|
|
|
"""
|
|
num_list = num_list[::-1]
|
|
den_list = den_list[::-1]
|
|
num_var_powers = [var**i for i in range(len(num_list))]
|
|
den_var_powers = [var**i for i in range(len(den_list))]
|
|
|
|
_num = sum(coeff * var_power for coeff, var_power in zip(num_list, num_var_powers))
|
|
_den = sum(coeff * var_power for coeff, var_power in zip(den_list, den_var_powers))
|
|
|
|
if _den == 0:
|
|
raise ZeroDivisionError("TransferFunction cannot have a zero denominator.")
|
|
|
|
return cls(_num, _den, var)
|
|
|
|
@classmethod
|
|
def from_zpk(cls, zeros, poles, gain, var):
|
|
r"""
|
|
Creates a new ``TransferFunction`` from given zeros, poles and gain.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
zeros : Sequence
|
|
Sequence comprising of zeros of transfer function.
|
|
poles : Sequence
|
|
Sequence comprising of poles of transfer function.
|
|
gain : Number, Symbol, Expression
|
|
A scalar value specifying gain of the model.
|
|
var : Symbol
|
|
Complex variable of the Laplace transform used by the
|
|
polynomials of the transfer function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, k
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> zeros = [1, 2, 3]
|
|
>>> poles = [6, 5, 4]
|
|
>>> gain = 7
|
|
>>> tf = TransferFunction.from_zpk(zeros, poles, gain, s)
|
|
>>> tf
|
|
TransferFunction(7*(s - 3)*(s - 2)*(s - 1), (s - 6)*(s - 5)*(s - 4), s)
|
|
|
|
# Create a Transfer Function with variable poles and zeros
|
|
>>> tf1 = TransferFunction.from_zpk([p, k], [p + k, p - k], 2, s)
|
|
>>> tf1
|
|
TransferFunction(2*(-k + s)*(-p + s), (-k - p + s)*(k - p + s), s)
|
|
|
|
# Complex poles or zeros are acceptable
|
|
>>> tf2 = TransferFunction.from_zpk([0], [1-1j, 1+1j, 2], -2, s)
|
|
>>> tf2
|
|
TransferFunction(-2*s, (s - 2)*(s - 1.0 - 1.0*I)*(s - 1.0 + 1.0*I), s)
|
|
|
|
"""
|
|
num_poly = 1
|
|
den_poly = 1
|
|
for zero in zeros:
|
|
num_poly *= var - zero
|
|
for pole in poles:
|
|
den_poly *= var - pole
|
|
|
|
return cls(gain*num_poly, den_poly, var)
|
|
|
|
@property
|
|
def num(self):
|
|
"""
|
|
Returns the numerator polynomial of the transfer function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s)
|
|
>>> G1.num
|
|
p*s + s**2 + 3
|
|
>>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p)
|
|
>>> G2.num
|
|
(p - 3)*(p + 5)
|
|
|
|
"""
|
|
return self.args[0]
|
|
|
|
@property
|
|
def den(self):
|
|
"""
|
|
Returns the denominator polynomial of the transfer function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s)
|
|
>>> G1.den
|
|
p**3 - 2*p + 4
|
|
>>> G2 = TransferFunction(3, 4, s)
|
|
>>> G2.den
|
|
4
|
|
|
|
"""
|
|
return self.args[1]
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable of the Laplace transform used by the polynomials of
|
|
the transfer function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
|
|
>>> G1.var
|
|
p
|
|
>>> G2 = TransferFunction(0, s - 5, s)
|
|
>>> G2.var
|
|
s
|
|
|
|
"""
|
|
return self.args[2]
|
|
|
|
def _eval_subs(self, old, new):
|
|
arg_num = self.num.subs(old, new)
|
|
arg_den = self.den.subs(old, new)
|
|
argnew = TransferFunction(arg_num, arg_den, self.var)
|
|
return self if old == self.var else argnew
|
|
|
|
def _eval_evalf(self, prec):
|
|
return TransferFunction(
|
|
self.num._eval_evalf(prec),
|
|
self.den._eval_evalf(prec),
|
|
self.var)
|
|
|
|
def _eval_simplify(self, **kwargs):
|
|
tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom()
|
|
num_, den_ = tf[0], tf[1]
|
|
return TransferFunction(num_, den_, self.var)
|
|
|
|
def _eval_rewrite_as_StateSpace(self, *args):
|
|
"""
|
|
Returns the equivalent space space model of the transfer function model.
|
|
The state space model will be returned in the controllable cannonical form.
|
|
|
|
Unlike the space state to transfer function model conversion, the transfer function
|
|
to state space model conversion is not unique. There can be multiple state space
|
|
representations of a given transfer function model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control import TransferFunction, StateSpace
|
|
>>> tf = TransferFunction(s**2 + 1, s**3 + 2*s + 10, s)
|
|
>>> tf.rewrite(StateSpace)
|
|
StateSpace(Matrix([
|
|
[ 0, 1, 0],
|
|
[ 0, 0, 1],
|
|
[-10, -2, 0]]), Matrix([
|
|
[0],
|
|
[0],
|
|
[1]]), Matrix([[1, 0, 1]]), Matrix([[0]]))
|
|
|
|
"""
|
|
if not self.is_proper:
|
|
raise ValueError("Transfer Function must be proper.")
|
|
|
|
num_poly = Poly(self.num, self.var)
|
|
den_poly = Poly(self.den, self.var)
|
|
n = den_poly.degree()
|
|
|
|
num_coeffs = num_poly.all_coeffs()
|
|
den_coeffs = den_poly.all_coeffs()
|
|
diff = n - num_poly.degree()
|
|
num_coeffs = [0]*diff + num_coeffs
|
|
|
|
a = den_coeffs[1:]
|
|
a_mat = Matrix([[(-1)*coefficient/den_coeffs[0] for coefficient in reversed(a)]])
|
|
vert = zeros(n-1, 1)
|
|
mat = eye(n-1)
|
|
A = vert.row_join(mat)
|
|
A = A.col_join(a_mat)
|
|
|
|
B = zeros(n, 1)
|
|
B[n-1] = 1
|
|
|
|
i = n
|
|
C = []
|
|
while(i > 0):
|
|
C.append(num_coeffs[i] - den_coeffs[i]*num_coeffs[0])
|
|
i -= 1
|
|
C = Matrix([C])
|
|
|
|
D = Matrix([num_coeffs[0]])
|
|
|
|
return StateSpace(A, B, C, D)
|
|
|
|
def expand(self):
|
|
"""
|
|
Returns the transfer function with numerator and denominator
|
|
in expanded form.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s)
|
|
>>> G1.expand()
|
|
TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s)
|
|
>>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p)
|
|
>>> G2.expand()
|
|
TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p)
|
|
|
|
"""
|
|
return TransferFunction(expand(self.num), expand(self.den), self.var)
|
|
|
|
def dc_gain(self):
|
|
"""
|
|
Computes the gain of the response as the frequency approaches zero.
|
|
|
|
The DC gain is infinite for systems with pure integrators.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction(s + 3, s**2 - 9, s)
|
|
>>> tf1.dc_gain()
|
|
-1/3
|
|
>>> tf2 = TransferFunction(p**2, p - 3 + p**3, p)
|
|
>>> tf2.dc_gain()
|
|
0
|
|
>>> tf3 = TransferFunction(a*p**2 - b, s + b, s)
|
|
>>> tf3.dc_gain()
|
|
(a*p**2 - b)/b
|
|
>>> tf4 = TransferFunction(1, s, s)
|
|
>>> tf4.dc_gain()
|
|
oo
|
|
|
|
"""
|
|
m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False)
|
|
return limit(m, self.var, 0)
|
|
|
|
def poles(self):
|
|
"""
|
|
Returns the poles of a transfer function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
|
|
>>> tf1.poles()
|
|
[-5, 1]
|
|
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
|
>>> tf2.poles()
|
|
[I, I, -I, -I]
|
|
>>> tf3 = TransferFunction(s**2, a*s + p, s)
|
|
>>> tf3.poles()
|
|
[-p/a]
|
|
|
|
"""
|
|
return _roots(Poly(self.den, self.var), self.var)
|
|
|
|
def zeros(self):
|
|
"""
|
|
Returns the zeros of a transfer function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p)
|
|
>>> tf1.zeros()
|
|
[-3, 1]
|
|
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s)
|
|
>>> tf2.zeros()
|
|
[1, 1]
|
|
>>> tf3 = TransferFunction(s**2, a*s + p, s)
|
|
>>> tf3.zeros()
|
|
[0, 0]
|
|
|
|
"""
|
|
return _roots(Poly(self.num, self.var), self.var)
|
|
|
|
def eval_frequency(self, other):
|
|
"""
|
|
Returns the system response at any point in the real or complex plane.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> from sympy import I
|
|
>>> tf1 = TransferFunction(1, s**2 + 2*s + 1, s)
|
|
>>> omega = 0.1
|
|
>>> tf1.eval_frequency(I*omega)
|
|
1/(0.99 + 0.2*I)
|
|
>>> tf2 = TransferFunction(s**2, a*s + p, s)
|
|
>>> tf2.eval_frequency(2)
|
|
4/(2*a + p)
|
|
>>> tf2.eval_frequency(I*2)
|
|
-4/(2*I*a + p)
|
|
"""
|
|
arg_num = self.num.subs(self.var, other)
|
|
arg_den = self.den.subs(self.var, other)
|
|
argnew = TransferFunction(arg_num, arg_den, self.var).to_expr()
|
|
return argnew.expand()
|
|
|
|
def is_stable(self):
|
|
"""
|
|
Returns True if the transfer function is asymptotically stable; else False.
|
|
|
|
This would not check the marginal or conditional stability of the system.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy import symbols
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> q, r = symbols('q, r', negative=True)
|
|
>>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s)
|
|
>>> tf1.is_stable()
|
|
True
|
|
>>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s)
|
|
>>> tf2.is_stable()
|
|
False
|
|
>>> tf3 = TransferFunction(4, q*s - r, s)
|
|
>>> tf3.is_stable()
|
|
False
|
|
>>> tf4 = TransferFunction(p + 1, a*p - s**2, p)
|
|
>>> tf4.is_stable() is None # Not enough info about the symbols to determine stability
|
|
True
|
|
|
|
"""
|
|
return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles())
|
|
|
|
def __add__(self, other):
|
|
if isinstance(other, (TransferFunction, Series)):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
return Parallel(self, other)
|
|
elif isinstance(other, Parallel):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
arg_list = list(other.args)
|
|
return Parallel(self, *arg_list)
|
|
else:
|
|
raise ValueError("TransferFunction cannot be added with {}.".
|
|
format(type(other)))
|
|
|
|
def __radd__(self, other):
|
|
return self + other
|
|
|
|
def __sub__(self, other):
|
|
if isinstance(other, (TransferFunction, Series)):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
return Parallel(self, -other)
|
|
elif isinstance(other, Parallel):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
arg_list = [-i for i in list(other.args)]
|
|
return Parallel(self, *arg_list)
|
|
else:
|
|
raise ValueError("{} cannot be subtracted from a TransferFunction."
|
|
.format(type(other)))
|
|
|
|
def __rsub__(self, other):
|
|
return -self + other
|
|
|
|
def __mul__(self, other):
|
|
if isinstance(other, (TransferFunction, Parallel)):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
return Series(self, other)
|
|
elif isinstance(other, Series):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
arg_list = list(other.args)
|
|
return Series(self, *arg_list)
|
|
else:
|
|
raise ValueError("TransferFunction cannot be multiplied with {}."
|
|
.format(type(other)))
|
|
|
|
__rmul__ = __mul__
|
|
|
|
def __truediv__(self, other):
|
|
if isinstance(other, TransferFunction):
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
return Series(self, TransferFunction(other.den, other.num, self.var))
|
|
elif (isinstance(other, Parallel) and len(other.args
|
|
) == 2 and isinstance(other.args[0], TransferFunction)
|
|
and isinstance(other.args[1], (Series, TransferFunction))):
|
|
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
Both TransferFunction and Parallel should use the
|
|
same complex variable of the Laplace transform."""))
|
|
if other.args[1] == self:
|
|
# plant and controller with unit feedback.
|
|
return Feedback(self, other.args[0])
|
|
other_arg_list = list(other.args[1].args) if isinstance(
|
|
other.args[1], Series) else other.args[1]
|
|
if other_arg_list == other.args[1]:
|
|
return Feedback(self, other_arg_list)
|
|
elif self in other_arg_list:
|
|
other_arg_list.remove(self)
|
|
else:
|
|
return Feedback(self, Series(*other_arg_list))
|
|
|
|
if len(other_arg_list) == 1:
|
|
return Feedback(self, *other_arg_list)
|
|
else:
|
|
return Feedback(self, Series(*other_arg_list))
|
|
else:
|
|
raise ValueError("TransferFunction cannot be divided by {}.".
|
|
format(type(other)))
|
|
|
|
__rtruediv__ = __truediv__
|
|
|
|
def __pow__(self, p):
|
|
p = sympify(p)
|
|
if not p.is_Integer:
|
|
raise ValueError("Exponent must be an integer.")
|
|
if p is S.Zero:
|
|
return TransferFunction(1, 1, self.var)
|
|
elif p > 0:
|
|
num_, den_ = self.num**p, self.den**p
|
|
else:
|
|
p = abs(p)
|
|
num_, den_ = self.den**p, self.num**p
|
|
|
|
return TransferFunction(num_, den_, self.var)
|
|
|
|
def __neg__(self):
|
|
return TransferFunction(-self.num, self.den, self.var)
|
|
|
|
@property
|
|
def is_proper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial is less than
|
|
or equal to degree of the denominator polynomial, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
|
>>> tf1.is_proper
|
|
False
|
|
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p)
|
|
>>> tf2.is_proper
|
|
True
|
|
|
|
"""
|
|
return degree(self.num, self.var) <= degree(self.den, self.var)
|
|
|
|
@property
|
|
def is_strictly_proper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial is strictly less
|
|
than degree of the denominator polynomial, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf1.is_strictly_proper
|
|
False
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> tf2.is_strictly_proper
|
|
True
|
|
|
|
"""
|
|
return degree(self.num, self.var) < degree(self.den, self.var)
|
|
|
|
@property
|
|
def is_biproper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial is equal to
|
|
degree of the denominator polynomial, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf1.is_biproper
|
|
True
|
|
>>> tf2 = TransferFunction(p**2, p + a, p)
|
|
>>> tf2.is_biproper
|
|
False
|
|
|
|
"""
|
|
return degree(self.num, self.var) == degree(self.den, self.var)
|
|
|
|
def to_expr(self):
|
|
"""
|
|
Converts a ``TransferFunction`` object to SymPy Expr.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction
|
|
>>> from sympy import Expr
|
|
>>> tf1 = TransferFunction(s, a*s**2 + 1, s)
|
|
>>> tf1.to_expr()
|
|
s/(a*s**2 + 1)
|
|
>>> isinstance(_, Expr)
|
|
True
|
|
>>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p)
|
|
>>> tf2.to_expr()
|
|
1/((b - p)*(3*b + p))
|
|
>>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s)
|
|
>>> tf3.to_expr()
|
|
((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1)))
|
|
|
|
"""
|
|
|
|
if self.num != 1:
|
|
return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False)
|
|
else:
|
|
return Pow(self.den, -1, evaluate=False)
|
|
|
|
|
|
def _flatten_args(args, _cls):
|
|
temp_args = []
|
|
for arg in args:
|
|
if isinstance(arg, _cls):
|
|
temp_args.extend(arg.args)
|
|
else:
|
|
temp_args.append(arg)
|
|
return tuple(temp_args)
|
|
|
|
|
|
def _dummify_args(_arg, var):
|
|
dummy_dict = {}
|
|
dummy_arg_list = []
|
|
|
|
for arg in _arg:
|
|
_s = Dummy()
|
|
dummy_dict[_s] = var
|
|
dummy_arg = arg.subs({var: _s})
|
|
dummy_arg_list.append(dummy_arg)
|
|
|
|
return dummy_arg_list, dummy_dict
|
|
|
|
|
|
class Series(SISOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing a series configuration of SISO systems.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : SISOLinearTimeInvariant
|
|
SISO systems in a series configuration.
|
|
evaluate : Boolean, Keyword
|
|
When passed ``True``, returns the equivalent
|
|
``Series(*args).doit()``. Set to ``False`` by default.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When no argument is passed.
|
|
|
|
``var`` attribute is not same for every system.
|
|
TypeError
|
|
Any of the passed ``*args`` has unsupported type
|
|
|
|
A combination of SISO and MIMO systems is
|
|
passed. There should be homogeneity in the
|
|
type of systems passed, SISO in this case.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Series, Parallel
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> tf3 = TransferFunction(p**2, p + s, s)
|
|
>>> S1 = Series(tf1, tf2)
|
|
>>> S1
|
|
Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
|
|
>>> S1.var
|
|
s
|
|
>>> S2 = Series(tf2, Parallel(tf3, -tf1))
|
|
>>> S2
|
|
Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s)))
|
|
>>> S2.var
|
|
s
|
|
>>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3))
|
|
>>> S3
|
|
Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s)))
|
|
>>> S3.var
|
|
s
|
|
|
|
You can get the resultant transfer function by using ``.doit()`` method:
|
|
|
|
>>> S3 = Series(tf1, tf2, -tf3)
|
|
>>> S3.doit()
|
|
TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
|
|
>>> S4 = Series(tf2, Parallel(tf1, -tf3))
|
|
>>> S4.doit()
|
|
TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
|
|
|
|
Notes
|
|
=====
|
|
|
|
All the transfer functions should use the same complex variable
|
|
``var`` of the Laplace transform.
|
|
|
|
See Also
|
|
========
|
|
|
|
MIMOSeries, Parallel, TransferFunction, Feedback
|
|
|
|
"""
|
|
def __new__(cls, *args, evaluate=False):
|
|
|
|
args = _flatten_args(args, Series)
|
|
cls._check_args(args)
|
|
obj = super().__new__(cls, *args)
|
|
|
|
return obj.doit() if evaluate else obj
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable used by all the transfer functions.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, Series, Parallel
|
|
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
|
|
>>> G2 = TransferFunction(p, 4 - p, p)
|
|
>>> G3 = TransferFunction(0, p**4 - 1, p)
|
|
>>> Series(G1, G2).var
|
|
p
|
|
>>> Series(-G3, Parallel(G1, G2)).var
|
|
p
|
|
|
|
"""
|
|
return self.args[0].var
|
|
|
|
def doit(self, **hints):
|
|
"""
|
|
Returns the resultant transfer function obtained after evaluating
|
|
the transfer functions in series configuration.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Series
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> Series(tf2, tf1).doit()
|
|
TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)
|
|
>>> Series(-tf1, -tf2).doit()
|
|
TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s)
|
|
|
|
"""
|
|
|
|
_num_arg = (arg.doit().num for arg in self.args)
|
|
_den_arg = (arg.doit().den for arg in self.args)
|
|
res_num = Mul(*_num_arg, evaluate=True)
|
|
res_den = Mul(*_den_arg, evaluate=True)
|
|
return TransferFunction(res_num, res_den, self.var)
|
|
|
|
def _eval_rewrite_as_TransferFunction(self, *args, **kwargs):
|
|
return self.doit()
|
|
|
|
@_check_other_SISO
|
|
def __add__(self, other):
|
|
|
|
if isinstance(other, Parallel):
|
|
arg_list = list(other.args)
|
|
return Parallel(self, *arg_list)
|
|
|
|
return Parallel(self, other)
|
|
|
|
__radd__ = __add__
|
|
|
|
@_check_other_SISO
|
|
def __sub__(self, other):
|
|
return self + (-other)
|
|
|
|
def __rsub__(self, other):
|
|
return -self + other
|
|
|
|
@_check_other_SISO
|
|
def __mul__(self, other):
|
|
|
|
arg_list = list(self.args)
|
|
return Series(*arg_list, other)
|
|
|
|
def __truediv__(self, other):
|
|
if isinstance(other, TransferFunction):
|
|
return Series(*self.args, TransferFunction(other.den, other.num, other.var))
|
|
elif isinstance(other, Series):
|
|
tf_self = self.rewrite(TransferFunction)
|
|
tf_other = other.rewrite(TransferFunction)
|
|
return tf_self / tf_other
|
|
elif (isinstance(other, Parallel) and len(other.args) == 2
|
|
and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)):
|
|
|
|
if not self.var == other.var:
|
|
raise ValueError(filldedent("""
|
|
All the transfer functions should use the same complex variable
|
|
of the Laplace transform."""))
|
|
self_arg_list = set(self.args)
|
|
other_arg_list = set(other.args[1].args)
|
|
res = list(self_arg_list ^ other_arg_list)
|
|
if len(res) == 0:
|
|
return Feedback(self, other.args[0])
|
|
elif len(res) == 1:
|
|
return Feedback(self, *res)
|
|
else:
|
|
return Feedback(self, Series(*res))
|
|
else:
|
|
raise ValueError("This transfer function expression is invalid.")
|
|
|
|
def __neg__(self):
|
|
return Series(TransferFunction(-1, 1, self.var), self)
|
|
|
|
def to_expr(self):
|
|
"""Returns the equivalent ``Expr`` object."""
|
|
return Mul(*(arg.to_expr() for arg in self.args), evaluate=False)
|
|
|
|
@property
|
|
def is_proper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial of the resultant transfer
|
|
function is less than or equal to degree of the denominator polynomial of
|
|
the same, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Series
|
|
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
|
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
|
|
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
|
|
>>> S1 = Series(-tf2, tf1)
|
|
>>> S1.is_proper
|
|
False
|
|
>>> S2 = Series(tf1, tf2, tf3)
|
|
>>> S2.is_proper
|
|
True
|
|
|
|
"""
|
|
return self.doit().is_proper
|
|
|
|
@property
|
|
def is_strictly_proper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial of the resultant transfer
|
|
function is strictly less than degree of the denominator polynomial of
|
|
the same, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Series
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s)
|
|
>>> tf3 = TransferFunction(1, s**2 + s + 1, s)
|
|
>>> S1 = Series(tf1, tf2)
|
|
>>> S1.is_strictly_proper
|
|
False
|
|
>>> S2 = Series(tf1, tf2, tf3)
|
|
>>> S2.is_strictly_proper
|
|
True
|
|
|
|
"""
|
|
return self.doit().is_strictly_proper
|
|
|
|
@property
|
|
def is_biproper(self):
|
|
r"""
|
|
Returns True if degree of the numerator polynomial of the resultant transfer
|
|
function is equal to degree of the denominator polynomial of
|
|
the same, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Series
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(p, s**2, s)
|
|
>>> tf3 = TransferFunction(s**2, 1, s)
|
|
>>> S1 = Series(tf1, -tf2)
|
|
>>> S1.is_biproper
|
|
False
|
|
>>> S2 = Series(tf2, tf3)
|
|
>>> S2.is_biproper
|
|
True
|
|
|
|
"""
|
|
return self.doit().is_biproper
|
|
|
|
|
|
def _mat_mul_compatible(*args):
|
|
"""To check whether shapes are compatible for matrix mul."""
|
|
return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1))
|
|
|
|
|
|
class MIMOSeries(MIMOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing a series configuration of MIMO systems.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : MIMOLinearTimeInvariant
|
|
MIMO systems in a series configuration.
|
|
evaluate : Boolean, Keyword
|
|
When passed ``True``, returns the equivalent
|
|
``MIMOSeries(*args).doit()``. Set to ``False`` by default.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When no argument is passed.
|
|
|
|
``var`` attribute is not same for every system.
|
|
|
|
``num_outputs`` of the MIMO system is not equal to the
|
|
``num_inputs`` of its adjacent MIMO system. (Matrix
|
|
multiplication constraint, basically)
|
|
TypeError
|
|
Any of the passed ``*args`` has unsupported type
|
|
|
|
A combination of SISO and MIMO systems is
|
|
passed. There should be homogeneity in the
|
|
type of systems passed, MIMO in this case.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix
|
|
>>> from sympy import Matrix, pprint
|
|
>>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input
|
|
>>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs
|
|
>>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs
|
|
>>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s)
|
|
>>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s)
|
|
>>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s)
|
|
>>> MIMOSeries(tfm_c, tfm_b, tfm_a)
|
|
MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),))))
|
|
>>> pprint(_, use_unicode=False) # For Better Visualization
|
|
[5*s] [1 s]
|
|
[---] [5 1 ] [- -]
|
|
[ 1 ] [- ----] [1 1]
|
|
[ ] *[1 2] *[ ]
|
|
[ 5 ] [ 6*s ]{t} [5 1]
|
|
[ - ] [- -]
|
|
[ 1 ]{t} [s 1]{t}
|
|
>>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit()
|
|
TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s))))
|
|
>>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs).
|
|
[ 4 4 ]
|
|
[150*s + 25*s 150*s + 5*s]
|
|
[------------- ------------]
|
|
[ 3 2 ]
|
|
[ 6*s 6*s ]
|
|
[ ]
|
|
[ 3 3 ]
|
|
[ 150*s + 25 150*s + 5 ]
|
|
[ ----------- ---------- ]
|
|
[ 3 2 ]
|
|
[ 6*s 6*s ]{t}
|
|
|
|
Notes
|
|
=====
|
|
|
|
All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform.
|
|
|
|
``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``.
|
|
|
|
See Also
|
|
========
|
|
|
|
Series, MIMOParallel
|
|
|
|
"""
|
|
def __new__(cls, *args, evaluate=False):
|
|
|
|
cls._check_args(args)
|
|
|
|
if _mat_mul_compatible(*args):
|
|
obj = super().__new__(cls, *args)
|
|
|
|
else:
|
|
raise ValueError(filldedent("""
|
|
Number of input signals do not match the number
|
|
of output signals of adjacent systems for some args."""))
|
|
|
|
return obj.doit() if evaluate else obj
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable used by all the transfer functions.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
|
|
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
|
|
>>> G2 = TransferFunction(p, 4 - p, p)
|
|
>>> G3 = TransferFunction(0, p**4 - 1, p)
|
|
>>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]])
|
|
>>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]])
|
|
>>> MIMOSeries(tfm_2, tfm_1).var
|
|
p
|
|
|
|
"""
|
|
return self.args[0].var
|
|
|
|
@property
|
|
def num_inputs(self):
|
|
"""Returns the number of input signals of the series system."""
|
|
return self.args[0].num_inputs
|
|
|
|
@property
|
|
def num_outputs(self):
|
|
"""Returns the number of output signals of the series system."""
|
|
return self.args[-1].num_outputs
|
|
|
|
@property
|
|
def shape(self):
|
|
"""Returns the shape of the equivalent MIMO system."""
|
|
return self.num_outputs, self.num_inputs
|
|
|
|
def doit(self, cancel=False, **kwargs):
|
|
"""
|
|
Returns the resultant transfer function matrix obtained after evaluating
|
|
the MIMO systems arranged in a series configuration.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]])
|
|
>>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]])
|
|
>>> MIMOSeries(tfm2, tfm1).doit()
|
|
TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s))))
|
|
|
|
"""
|
|
_arg = (arg.doit()._expr_mat for arg in reversed(self.args))
|
|
|
|
if cancel:
|
|
res = MatMul(*_arg, evaluate=True)
|
|
return TransferFunctionMatrix.from_Matrix(res, self.var)
|
|
|
|
_dummy_args, _dummy_dict = _dummify_args(_arg, self.var)
|
|
res = MatMul(*_dummy_args, evaluate=True)
|
|
temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var)
|
|
return temp_tfm.subs(_dummy_dict)
|
|
|
|
def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs):
|
|
return self.doit()
|
|
|
|
@_check_other_MIMO
|
|
def __add__(self, other):
|
|
|
|
if isinstance(other, MIMOParallel):
|
|
arg_list = list(other.args)
|
|
return MIMOParallel(self, *arg_list)
|
|
|
|
return MIMOParallel(self, other)
|
|
|
|
__radd__ = __add__
|
|
|
|
@_check_other_MIMO
|
|
def __sub__(self, other):
|
|
return self + (-other)
|
|
|
|
def __rsub__(self, other):
|
|
return -self + other
|
|
|
|
@_check_other_MIMO
|
|
def __mul__(self, other):
|
|
|
|
if isinstance(other, MIMOSeries):
|
|
self_arg_list = list(self.args)
|
|
other_arg_list = list(other.args)
|
|
return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A)
|
|
|
|
arg_list = list(self.args)
|
|
return MIMOSeries(other, *arg_list)
|
|
|
|
def __neg__(self):
|
|
arg_list = list(self.args)
|
|
arg_list[0] = -arg_list[0]
|
|
return MIMOSeries(*arg_list)
|
|
|
|
|
|
class Parallel(SISOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing a parallel configuration of SISO systems.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : SISOLinearTimeInvariant
|
|
SISO systems in a parallel arrangement.
|
|
evaluate : Boolean, Keyword
|
|
When passed ``True``, returns the equivalent
|
|
``Parallel(*args).doit()``. Set to ``False`` by default.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When no argument is passed.
|
|
|
|
``var`` attribute is not same for every system.
|
|
TypeError
|
|
Any of the passed ``*args`` has unsupported type
|
|
|
|
A combination of SISO and MIMO systems is
|
|
passed. There should be homogeneity in the
|
|
type of systems passed.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Parallel, Series
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> tf3 = TransferFunction(p**2, p + s, s)
|
|
>>> P1 = Parallel(tf1, tf2)
|
|
>>> P1
|
|
Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s))
|
|
>>> P1.var
|
|
s
|
|
>>> P2 = Parallel(tf2, Series(tf3, -tf1))
|
|
>>> P2
|
|
Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s)))
|
|
>>> P2.var
|
|
s
|
|
>>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3))
|
|
>>> P3
|
|
Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s)))
|
|
>>> P3.var
|
|
s
|
|
|
|
You can get the resultant transfer function by using ``.doit()`` method:
|
|
|
|
>>> Parallel(tf1, tf2, -tf3).doit()
|
|
TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
|
|
>>> Parallel(tf2, Series(tf1, -tf3)).doit()
|
|
TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s)
|
|
|
|
Notes
|
|
=====
|
|
|
|
All the transfer functions should use the same complex variable
|
|
``var`` of the Laplace transform.
|
|
|
|
See Also
|
|
========
|
|
|
|
Series, TransferFunction, Feedback
|
|
|
|
"""
|
|
def __new__(cls, *args, evaluate=False):
|
|
|
|
args = _flatten_args(args, Parallel)
|
|
cls._check_args(args)
|
|
obj = super().__new__(cls, *args)
|
|
|
|
return obj.doit() if evaluate else obj
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable used by all the transfer functions.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, Parallel, Series
|
|
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
|
|
>>> G2 = TransferFunction(p, 4 - p, p)
|
|
>>> G3 = TransferFunction(0, p**4 - 1, p)
|
|
>>> Parallel(G1, G2).var
|
|
p
|
|
>>> Parallel(-G3, Series(G1, G2)).var
|
|
p
|
|
|
|
"""
|
|
return self.args[0].var
|
|
|
|
def doit(self, **hints):
|
|
"""
|
|
Returns the resultant transfer function obtained after evaluating
|
|
the transfer functions in parallel configuration.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Parallel
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> Parallel(tf2, tf1).doit()
|
|
TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
|
|
>>> Parallel(-tf1, -tf2).doit()
|
|
TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)
|
|
|
|
"""
|
|
|
|
_arg = (arg.doit().to_expr() for arg in self.args)
|
|
res = Add(*_arg).as_numer_denom()
|
|
return TransferFunction(*res, self.var)
|
|
|
|
def _eval_rewrite_as_TransferFunction(self, *args, **kwargs):
|
|
return self.doit()
|
|
|
|
@_check_other_SISO
|
|
def __add__(self, other):
|
|
|
|
self_arg_list = list(self.args)
|
|
return Parallel(*self_arg_list, other)
|
|
|
|
__radd__ = __add__
|
|
|
|
@_check_other_SISO
|
|
def __sub__(self, other):
|
|
return self + (-other)
|
|
|
|
def __rsub__(self, other):
|
|
return -self + other
|
|
|
|
@_check_other_SISO
|
|
def __mul__(self, other):
|
|
|
|
if isinstance(other, Series):
|
|
arg_list = list(other.args)
|
|
return Series(self, *arg_list)
|
|
|
|
return Series(self, other)
|
|
|
|
def __neg__(self):
|
|
return Series(TransferFunction(-1, 1, self.var), self)
|
|
|
|
def to_expr(self):
|
|
"""Returns the equivalent ``Expr`` object."""
|
|
return Add(*(arg.to_expr() for arg in self.args), evaluate=False)
|
|
|
|
@property
|
|
def is_proper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial of the resultant transfer
|
|
function is less than or equal to degree of the denominator polynomial of
|
|
the same, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Parallel
|
|
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s)
|
|
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s)
|
|
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
|
|
>>> P1 = Parallel(-tf2, tf1)
|
|
>>> P1.is_proper
|
|
False
|
|
>>> P2 = Parallel(tf2, tf3)
|
|
>>> P2.is_proper
|
|
True
|
|
|
|
"""
|
|
return self.doit().is_proper
|
|
|
|
@property
|
|
def is_strictly_proper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial of the resultant transfer
|
|
function is strictly less than degree of the denominator polynomial of
|
|
the same, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Parallel
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
|
|
>>> P1 = Parallel(tf1, tf2)
|
|
>>> P1.is_strictly_proper
|
|
False
|
|
>>> P2 = Parallel(tf2, tf3)
|
|
>>> P2.is_strictly_proper
|
|
True
|
|
|
|
"""
|
|
return self.doit().is_strictly_proper
|
|
|
|
@property
|
|
def is_biproper(self):
|
|
"""
|
|
Returns True if degree of the numerator polynomial of the resultant transfer
|
|
function is equal to degree of the denominator polynomial of
|
|
the same, else False.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Parallel
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(p**2, p + s, s)
|
|
>>> tf3 = TransferFunction(s, s**2 + s + 1, s)
|
|
>>> P1 = Parallel(tf1, -tf2)
|
|
>>> P1.is_biproper
|
|
True
|
|
>>> P2 = Parallel(tf2, tf3)
|
|
>>> P2.is_biproper
|
|
False
|
|
|
|
"""
|
|
return self.doit().is_biproper
|
|
|
|
|
|
class MIMOParallel(MIMOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing a parallel configuration of MIMO systems.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
args : MIMOLinearTimeInvariant
|
|
MIMO Systems in a parallel arrangement.
|
|
evaluate : Boolean, Keyword
|
|
When passed ``True``, returns the equivalent
|
|
``MIMOParallel(*args).doit()``. Set to ``False`` by default.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When no argument is passed.
|
|
|
|
``var`` attribute is not same for every system.
|
|
|
|
All MIMO systems passed do not have same shape.
|
|
TypeError
|
|
Any of the passed ``*args`` has unsupported type
|
|
|
|
A combination of SISO and MIMO systems is
|
|
passed. There should be homogeneity in the
|
|
type of systems passed, MIMO in this case.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel
|
|
>>> from sympy import Matrix, pprint
|
|
>>> expr_1 = 1/s
|
|
>>> expr_2 = s/(s**2-1)
|
|
>>> expr_3 = (2 + s)/(s**2 - 1)
|
|
>>> expr_4 = 5
|
|
>>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s)
|
|
>>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s)
|
|
>>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s)
|
|
>>> MIMOParallel(tfm_a, tfm_b, tfm_c)
|
|
MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)))))
|
|
>>> pprint(_, use_unicode=False) # For Better Visualization
|
|
[ 1 s ] [ s 1 ] [s + 2 5 ]
|
|
[ - ------] [------ - ] [------ - ]
|
|
[ s 2 ] [ 2 s ] [ 2 1 ]
|
|
[ s - 1] [s - 1 ] [s - 1 ]
|
|
[ ] + [ ] + [ ]
|
|
[s + 2 5 ] [ 5 s + 2 ] [ 1 s ]
|
|
[------ - ] [ - ------] [ - ------]
|
|
[ 2 1 ] [ 1 2 ] [ s 2 ]
|
|
[s - 1 ]{t} [ s - 1]{t} [ s - 1]{t}
|
|
>>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit()
|
|
TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 2 2 / 2 \ ]
|
|
[ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1]
|
|
[ -------------------- -----------------------]
|
|
[ / 2 \ / 2 \ ]
|
|
[ s*\s - 1/ s*\s - 1/ ]
|
|
[ ]
|
|
[ 2 / 2 \ 2 ]
|
|
[s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ]
|
|
[--------------------------------- -------------- ]
|
|
[ / 2 \ 2 ]
|
|
[ s*\s - 1/ s - 1 ]{t}
|
|
|
|
Notes
|
|
=====
|
|
|
|
All the transfer function matrices should use the same complex variable
|
|
``var`` of the Laplace transform.
|
|
|
|
See Also
|
|
========
|
|
|
|
Parallel, MIMOSeries
|
|
|
|
"""
|
|
def __new__(cls, *args, evaluate=False):
|
|
|
|
args = _flatten_args(args, MIMOParallel)
|
|
|
|
cls._check_args(args)
|
|
|
|
if any(arg.shape != args[0].shape for arg in args):
|
|
raise TypeError("Shape of all the args is not equal.")
|
|
|
|
obj = super().__new__(cls, *args)
|
|
|
|
return obj.doit() if evaluate else obj
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable used by all the systems.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel
|
|
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
|
|
>>> G2 = TransferFunction(p, 4 - p, p)
|
|
>>> G3 = TransferFunction(0, p**4 - 1, p)
|
|
>>> G4 = TransferFunction(p**2, p**2 - 1, p)
|
|
>>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]])
|
|
>>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]])
|
|
>>> MIMOParallel(tfm_a, tfm_b).var
|
|
p
|
|
|
|
"""
|
|
return self.args[0].var
|
|
|
|
@property
|
|
def num_inputs(self):
|
|
"""Returns the number of input signals of the parallel system."""
|
|
return self.args[0].num_inputs
|
|
|
|
@property
|
|
def num_outputs(self):
|
|
"""Returns the number of output signals of the parallel system."""
|
|
return self.args[0].num_outputs
|
|
|
|
@property
|
|
def shape(self):
|
|
"""Returns the shape of the equivalent MIMO system."""
|
|
return self.num_outputs, self.num_inputs
|
|
|
|
def doit(self, **hints):
|
|
"""
|
|
Returns the resultant transfer function matrix obtained after evaluating
|
|
the MIMO systems arranged in a parallel configuration.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix
|
|
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s)
|
|
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)
|
|
>>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
|
|
>>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
|
|
>>> MIMOParallel(tfm_1, tfm_2).doit()
|
|
TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s))))
|
|
|
|
"""
|
|
_arg = (arg.doit()._expr_mat for arg in self.args)
|
|
res = MatAdd(*_arg, evaluate=True)
|
|
return TransferFunctionMatrix.from_Matrix(res, self.var)
|
|
|
|
def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs):
|
|
return self.doit()
|
|
|
|
@_check_other_MIMO
|
|
def __add__(self, other):
|
|
|
|
self_arg_list = list(self.args)
|
|
return MIMOParallel(*self_arg_list, other)
|
|
|
|
__radd__ = __add__
|
|
|
|
@_check_other_MIMO
|
|
def __sub__(self, other):
|
|
return self + (-other)
|
|
|
|
def __rsub__(self, other):
|
|
return -self + other
|
|
|
|
@_check_other_MIMO
|
|
def __mul__(self, other):
|
|
|
|
if isinstance(other, MIMOSeries):
|
|
arg_list = list(other.args)
|
|
return MIMOSeries(*arg_list, self)
|
|
|
|
return MIMOSeries(other, self)
|
|
|
|
def __neg__(self):
|
|
arg_list = [-arg for arg in list(self.args)]
|
|
return MIMOParallel(*arg_list)
|
|
|
|
|
|
class Feedback(TransferFunction):
|
|
r"""
|
|
A class for representing closed-loop feedback interconnection between two
|
|
SISO input/output systems.
|
|
|
|
The first argument, ``sys1``, is the feedforward part of the closed-loop
|
|
system or in simple words, the dynamical model representing the process
|
|
to be controlled. The second argument, ``sys2``, is the feedback system
|
|
and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2``
|
|
can either be ``Series`` or ``TransferFunction`` objects.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
sys1 : Series, TransferFunction
|
|
The feedforward path system.
|
|
sys2 : Series, TransferFunction, optional
|
|
The feedback path system (often a feedback controller).
|
|
It is the model sitting on the feedback path.
|
|
|
|
If not specified explicitly, the sys2 is
|
|
assumed to be unit (1.0) transfer function.
|
|
sign : int, optional
|
|
The sign of feedback. Can either be ``1``
|
|
(for positive feedback) or ``-1`` (for negative feedback).
|
|
Default value is `-1`.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When ``sys1`` and ``sys2`` are not using the
|
|
same complex variable of the Laplace transform.
|
|
|
|
When a combination of ``sys1`` and ``sys2`` yields
|
|
zero denominator.
|
|
|
|
TypeError
|
|
When either ``sys1`` or ``sys2`` is not a ``Series`` or a
|
|
``TransferFunction`` object.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> controller = TransferFunction(5*s - 10, s + 7, s)
|
|
>>> F1 = Feedback(plant, controller)
|
|
>>> F1
|
|
Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
|
|
>>> F1.var
|
|
s
|
|
>>> F1.args
|
|
(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1)
|
|
|
|
You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively.
|
|
|
|
>>> F1.sys1
|
|
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> F1.sys2
|
|
TransferFunction(5*s - 10, s + 7, s)
|
|
|
|
You can get the resultant closed loop transfer function obtained by negative feedback
|
|
interconnection using ``.doit()`` method.
|
|
|
|
>>> F1.doit()
|
|
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
|
|
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
|
|
>>> C = TransferFunction(5*s + 10, s + 10, s)
|
|
>>> F2 = Feedback(G*C, TransferFunction(1, 1, s))
|
|
>>> F2.doit()
|
|
TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s)
|
|
|
|
To negate a ``Feedback`` object, the ``-`` operator can be prepended:
|
|
|
|
>>> -F1
|
|
Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1)
|
|
>>> -F2
|
|
Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1)
|
|
|
|
See Also
|
|
========
|
|
|
|
MIMOFeedback, Series, Parallel
|
|
|
|
"""
|
|
def __new__(cls, sys1, sys2=None, sign=-1):
|
|
if not sys2:
|
|
sys2 = TransferFunction(1, 1, sys1.var)
|
|
|
|
if not (isinstance(sys1, (TransferFunction, Series, Feedback))
|
|
and isinstance(sys2, (TransferFunction, Series, Feedback))):
|
|
raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.")
|
|
|
|
if sign not in [-1, 1]:
|
|
raise ValueError(filldedent("""
|
|
Unsupported type for feedback. `sign` arg should
|
|
either be 1 (positive feedback loop) or -1
|
|
(negative feedback loop)."""))
|
|
|
|
if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign:
|
|
raise ValueError("The equivalent system will have zero denominator.")
|
|
|
|
if sys1.var != sys2.var:
|
|
raise ValueError(filldedent("""
|
|
Both `sys1` and `sys2` should be using the
|
|
same complex variable."""))
|
|
|
|
return super(TransferFunction, cls).__new__(cls, sys1, sys2, _sympify(sign))
|
|
|
|
@property
|
|
def sys1(self):
|
|
"""
|
|
Returns the feedforward system of the feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> controller = TransferFunction(5*s - 10, s + 7, s)
|
|
>>> F1 = Feedback(plant, controller)
|
|
>>> F1.sys1
|
|
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
|
|
>>> C = TransferFunction(5*p + 10, p + 10, p)
|
|
>>> P = TransferFunction(1 - s, p + 2, p)
|
|
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
|
|
>>> F2.sys1
|
|
TransferFunction(1, 1, p)
|
|
|
|
"""
|
|
return self.args[0]
|
|
|
|
@property
|
|
def sys2(self):
|
|
"""
|
|
Returns the feedback controller of the feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> controller = TransferFunction(5*s - 10, s + 7, s)
|
|
>>> F1 = Feedback(plant, controller)
|
|
>>> F1.sys2
|
|
TransferFunction(5*s - 10, s + 7, s)
|
|
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
|
|
>>> C = TransferFunction(5*p + 10, p + 10, p)
|
|
>>> P = TransferFunction(1 - s, p + 2, p)
|
|
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
|
|
>>> F2.sys2
|
|
Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p))
|
|
|
|
"""
|
|
return self.args[1]
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable of the Laplace transform used by all
|
|
the transfer functions involved in the feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> controller = TransferFunction(5*s - 10, s + 7, s)
|
|
>>> F1 = Feedback(plant, controller)
|
|
>>> F1.var
|
|
s
|
|
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p)
|
|
>>> C = TransferFunction(5*p + 10, p + 10, p)
|
|
>>> P = TransferFunction(1 - s, p + 2, p)
|
|
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P)
|
|
>>> F2.var
|
|
p
|
|
|
|
"""
|
|
return self.sys1.var
|
|
|
|
@property
|
|
def sign(self):
|
|
"""
|
|
Returns the type of MIMO Feedback model. ``1``
|
|
for Positive and ``-1`` for Negative.
|
|
"""
|
|
return self.args[2]
|
|
|
|
@property
|
|
def num(self):
|
|
"""
|
|
Returns the numerator of the closed loop feedback system.
|
|
"""
|
|
return self.sys1
|
|
|
|
@property
|
|
def den(self):
|
|
"""
|
|
Returns the denominator of the closed loop feedback model.
|
|
"""
|
|
unit = TransferFunction(1, 1, self.var)
|
|
arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1]
|
|
if self.sign == 1:
|
|
return Parallel(unit, -Series(self.sys2, *arg_list))
|
|
return Parallel(unit, Series(self.sys2, *arg_list))
|
|
|
|
@property
|
|
def sensitivity(self):
|
|
"""
|
|
Returns the sensitivity function of the feedback loop.
|
|
|
|
Sensitivity of a Feedback system is the ratio
|
|
of change in the open loop gain to the change in
|
|
the closed loop gain.
|
|
|
|
.. note::
|
|
This method would not return the complementary
|
|
sensitivity function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> C = TransferFunction(5*p + 10, p + 10, p)
|
|
>>> P = TransferFunction(1 - p, p + 2, p)
|
|
>>> F_1 = Feedback(P, C)
|
|
>>> F_1.sensitivity
|
|
1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1)
|
|
|
|
"""
|
|
|
|
return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr())
|
|
|
|
def doit(self, cancel=False, expand=False, **hints):
|
|
"""
|
|
Returns the resultant transfer function obtained by the
|
|
feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
|
|
>>> controller = TransferFunction(5*s - 10, s + 7, s)
|
|
>>> F1 = Feedback(plant, controller)
|
|
>>> F1.doit()
|
|
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
|
|
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
|
|
>>> F2 = Feedback(G, TransferFunction(1, 1, s))
|
|
>>> F2.doit()
|
|
TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s)
|
|
|
|
Use kwarg ``expand=True`` to expand the resultant transfer function.
|
|
Use ``cancel=True`` to cancel out the common terms in numerator and
|
|
denominator.
|
|
|
|
>>> F2.doit(cancel=True, expand=True)
|
|
TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s)
|
|
>>> F2.doit(expand=True)
|
|
TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s)
|
|
|
|
"""
|
|
arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1]
|
|
# F_n and F_d are resultant TFs of num and den of Feedback.
|
|
F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var)
|
|
if self.sign == -1:
|
|
F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit()
|
|
else:
|
|
F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit()
|
|
|
|
_resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var)
|
|
|
|
if cancel:
|
|
_resultant_tf = _resultant_tf.simplify()
|
|
|
|
if expand:
|
|
_resultant_tf = _resultant_tf.expand()
|
|
|
|
return _resultant_tf
|
|
|
|
def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs):
|
|
return self.doit()
|
|
|
|
def to_expr(self):
|
|
"""
|
|
Converts a ``Feedback`` object to SymPy Expr.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, a, b
|
|
>>> from sympy.physics.control.lti import TransferFunction, Feedback
|
|
>>> from sympy import Expr
|
|
>>> tf1 = TransferFunction(a+s, 1, s)
|
|
>>> tf2 = TransferFunction(b+s, 1, s)
|
|
>>> fd1 = Feedback(tf1, tf2)
|
|
>>> fd1.to_expr()
|
|
(a + s)/((a + s)*(b + s) + 1)
|
|
>>> isinstance(_, Expr)
|
|
True
|
|
"""
|
|
|
|
return self.doit().to_expr()
|
|
|
|
def __neg__(self):
|
|
return Feedback(-self.sys1, -self.sys2, self.sign)
|
|
|
|
|
|
def _is_invertible(a, b, sign):
|
|
"""
|
|
Checks whether a given pair of MIMO
|
|
systems passed is invertible or not.
|
|
"""
|
|
_mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat)
|
|
_det = _mat.det()
|
|
|
|
return _det != 0
|
|
|
|
|
|
class MIMOFeedback(MIMOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing closed-loop feedback interconnection between two
|
|
MIMO input/output systems.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
sys1 : MIMOSeries, TransferFunctionMatrix
|
|
The MIMO system placed on the feedforward path.
|
|
sys2 : MIMOSeries, TransferFunctionMatrix
|
|
The system placed on the feedback path
|
|
(often a feedback controller).
|
|
sign : int, optional
|
|
The sign of feedback. Can either be ``1``
|
|
(for positive feedback) or ``-1`` (for negative feedback).
|
|
Default value is `-1`.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
When ``sys1`` and ``sys2`` are not using the
|
|
same complex variable of the Laplace transform.
|
|
|
|
Forward path model should have an equal number of inputs/outputs
|
|
to the feedback path outputs/inputs.
|
|
|
|
When product of ``sys1`` and ``sys2`` is not a square matrix.
|
|
|
|
When the equivalent MIMO system is not invertible.
|
|
|
|
TypeError
|
|
When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a
|
|
``TransferFunctionMatrix`` object.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, pprint
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback
|
|
>>> plant_mat = Matrix([[1, 1/s], [0, 1]])
|
|
>>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain
|
|
>>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s)
|
|
>>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s)
|
|
>>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default)
|
|
>>> pprint(feedback, use_unicode=False)
|
|
/ [1 1] [10 0 ] \-1 [1 1]
|
|
| [- -] [-- - ] | [- -]
|
|
| [1 s] [1 1 ] | [1 s]
|
|
|I + [ ] *[ ] | * [ ]
|
|
| [0 1] [0 10] | [0 1]
|
|
| [- -] [- --] | [- -]
|
|
\ [1 1]{t} [1 1 ]{t}/ [1 1]{t}
|
|
|
|
To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method.
|
|
|
|
>>> pprint(feedback.doit(), use_unicode=False)
|
|
[1 1 ]
|
|
[-- -----]
|
|
[11 121*s]
|
|
[ ]
|
|
[0 1 ]
|
|
[- -- ]
|
|
[1 11 ]{t}
|
|
|
|
To negate the ``MIMOFeedback`` object, use ``-`` operator.
|
|
|
|
>>> neg_feedback = -feedback
|
|
>>> pprint(neg_feedback.doit(), use_unicode=False)
|
|
[-1 -1 ]
|
|
[--- -----]
|
|
[11 121*s]
|
|
[ ]
|
|
[ 0 -1 ]
|
|
[ - --- ]
|
|
[ 1 11 ]{t}
|
|
|
|
See Also
|
|
========
|
|
|
|
Feedback, MIMOSeries, MIMOParallel
|
|
|
|
"""
|
|
def __new__(cls, sys1, sys2, sign=-1):
|
|
if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries))
|
|
and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))):
|
|
raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.")
|
|
|
|
if sys1.num_inputs != sys2.num_outputs or \
|
|
sys1.num_outputs != sys2.num_inputs:
|
|
raise ValueError(filldedent("""
|
|
Product of `sys1` and `sys2` must
|
|
yield a square matrix."""))
|
|
|
|
if sign not in (-1, 1):
|
|
raise ValueError(filldedent("""
|
|
Unsupported type for feedback. `sign` arg should
|
|
either be 1 (positive feedback loop) or -1
|
|
(negative feedback loop)."""))
|
|
|
|
if not _is_invertible(sys1, sys2, sign):
|
|
raise ValueError("Non-Invertible system inputted.")
|
|
if sys1.var != sys2.var:
|
|
raise ValueError(filldedent("""
|
|
Both `sys1` and `sys2` should be using the
|
|
same complex variable."""))
|
|
|
|
return super().__new__(cls, sys1, sys2, _sympify(sign))
|
|
|
|
@property
|
|
def sys1(self):
|
|
r"""
|
|
Returns the system placed on the feedforward path of the MIMO feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import pprint
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
|
|
>>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s)
|
|
>>> tf2 = TransferFunction(1, s, s)
|
|
>>> tf3 = TransferFunction(1, 1, s)
|
|
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
|
|
>>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]])
|
|
>>> F_1 = MIMOFeedback(sys1, sys2, 1)
|
|
>>> F_1.sys1
|
|
TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 2 ]
|
|
[s + s + 1 1 ]
|
|
[---------- - ]
|
|
[ 2 s ]
|
|
[s - s + 1 ]
|
|
[ ]
|
|
[ 2 ]
|
|
[ 1 s + s + 1]
|
|
[ - ----------]
|
|
[ s 2 ]
|
|
[ s - s + 1]{t}
|
|
|
|
"""
|
|
return self.args[0]
|
|
|
|
@property
|
|
def sys2(self):
|
|
r"""
|
|
Returns the feedback controller of the MIMO feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import pprint
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
|
|
>>> tf1 = TransferFunction(s**2, s**3 - s + 1, s)
|
|
>>> tf2 = TransferFunction(1, s, s)
|
|
>>> tf3 = TransferFunction(1, 1, s)
|
|
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
|
|
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
|
|
>>> F_1 = MIMOFeedback(sys1, sys2)
|
|
>>> F_1.sys2
|
|
TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 2 ]
|
|
[ s 1]
|
|
[---------- -]
|
|
[ 3 1]
|
|
[s - s + 1 ]
|
|
[ ]
|
|
[ 1 1]
|
|
[ - -]
|
|
[ 1 s]{t}
|
|
|
|
"""
|
|
return self.args[1]
|
|
|
|
@property
|
|
def var(self):
|
|
r"""
|
|
Returns the complex variable of the Laplace transform used by all
|
|
the transfer functions involved in the MIMO feedback loop.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
|
|
>>> tf1 = TransferFunction(p, 1 - p, p)
|
|
>>> tf2 = TransferFunction(1, p, p)
|
|
>>> tf3 = TransferFunction(1, 1, p)
|
|
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
|
|
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
|
|
>>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback
|
|
>>> F_1.var
|
|
p
|
|
|
|
"""
|
|
return self.sys1.var
|
|
|
|
@property
|
|
def sign(self):
|
|
r"""
|
|
Returns the type of feedback interconnection of two models. ``1``
|
|
for Positive and ``-1`` for Negative.
|
|
"""
|
|
return self.args[2]
|
|
|
|
@property
|
|
def sensitivity(self):
|
|
r"""
|
|
Returns the sensitivity function matrix of the feedback loop.
|
|
|
|
Sensitivity of a closed-loop system is the ratio of change
|
|
in the open loop gain to the change in the closed loop gain.
|
|
|
|
.. note::
|
|
This method would not return the complementary
|
|
sensitivity function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import pprint
|
|
>>> from sympy.abc import p
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
|
|
>>> tf1 = TransferFunction(p, 1 - p, p)
|
|
>>> tf2 = TransferFunction(1, p, p)
|
|
>>> tf3 = TransferFunction(1, 1, p)
|
|
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
|
|
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]])
|
|
>>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback
|
|
>>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback
|
|
>>> pprint(F_1.sensitivity, use_unicode=False)
|
|
[ 4 3 2 5 4 2 ]
|
|
[- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ]
|
|
[---------------------------- -----------------------------]
|
|
[ 4 3 2 5 4 3 2 ]
|
|
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p]
|
|
[ ]
|
|
[ 4 3 2 3 2 ]
|
|
[ p - p - p + p 3*p - 6*p + 4*p - 1 ]
|
|
[ -------------------------- -------------------------- ]
|
|
[ 4 3 2 4 3 2 ]
|
|
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ]
|
|
>>> pprint(F_2.sensitivity, use_unicode=False)
|
|
[ 4 3 2 5 4 2 ]
|
|
[p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1]
|
|
[------------------------ --------------------------]
|
|
[ 4 3 5 4 2 ]
|
|
[ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ]
|
|
[ ]
|
|
[ 4 3 2 4 3 ]
|
|
[ p - p - p + p 2*p - 3*p + 2*p - 1 ]
|
|
[ ------------------- --------------------- ]
|
|
[ 4 3 4 3 ]
|
|
[ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ]
|
|
|
|
"""
|
|
_sys1_mat = self.sys1.doit()._expr_mat
|
|
_sys2_mat = self.sys2.doit()._expr_mat
|
|
|
|
return (eye(self.sys1.num_inputs) - \
|
|
self.sign*_sys1_mat*_sys2_mat).inv()
|
|
|
|
def doit(self, cancel=True, expand=False, **hints):
|
|
r"""
|
|
Returns the resultant transfer function matrix obtained by the
|
|
feedback interconnection.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import pprint
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback
|
|
>>> tf1 = TransferFunction(s, 1 - s, s)
|
|
>>> tf2 = TransferFunction(1, s, s)
|
|
>>> tf3 = TransferFunction(5, 1, s)
|
|
>>> tf4 = TransferFunction(s - 1, s, s)
|
|
>>> tf5 = TransferFunction(0, 1, s)
|
|
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
|
|
>>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]])
|
|
>>> F_1 = MIMOFeedback(sys1, sys2, 1)
|
|
>>> pprint(F_1, use_unicode=False)
|
|
/ [ s 1 ] [5 0] \-1 [ s 1 ]
|
|
| [----- - ] [- -] | [----- - ]
|
|
| [1 - s s ] [1 1] | [1 - s s ]
|
|
|I - [ ] *[ ] | * [ ]
|
|
| [ 5 s - 1] [0 0] | [ 5 s - 1]
|
|
| [ - -----] [- -] | [ - -----]
|
|
\ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t}
|
|
>>> pprint(F_1.doit(), use_unicode=False)
|
|
[ -s s - 1 ]
|
|
[------- ----------- ]
|
|
[6*s - 1 s*(6*s - 1) ]
|
|
[ ]
|
|
[5*s - 5 (s - 1)*(6*s + 24)]
|
|
[------- ------------------]
|
|
[6*s - 1 s*(6*s - 1) ]{t}
|
|
|
|
If the user wants the resultant ``TransferFunctionMatrix`` object without
|
|
canceling the common factors then the ``cancel`` kwarg should be passed ``False``.
|
|
|
|
>>> pprint(F_1.doit(cancel=False), use_unicode=False)
|
|
[ s*(s - 1) s - 1 ]
|
|
[ ----------------- ----------- ]
|
|
[ (1 - s)*(6*s - 1) s*(6*s - 1) ]
|
|
[ ]
|
|
[s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)]
|
|
[----------------------------------- -----------------------------------]
|
|
[ (1 - s)*(6*s - 1) 2 ]
|
|
[ s *(6*s - 1) ]{t}
|
|
|
|
If the user wants the expanded form of the resultant transfer function matrix,
|
|
the ``expand`` kwarg should be passed as ``True``.
|
|
|
|
>>> pprint(F_1.doit(expand=True), use_unicode=False)
|
|
[ -s s - 1 ]
|
|
[------- -------- ]
|
|
[6*s - 1 2 ]
|
|
[ 6*s - s ]
|
|
[ ]
|
|
[ 2 ]
|
|
[5*s - 5 6*s + 18*s - 24]
|
|
[------- ----------------]
|
|
[6*s - 1 2 ]
|
|
[ 6*s - s ]{t}
|
|
|
|
"""
|
|
_mat = self.sensitivity * self.sys1.doit()._expr_mat
|
|
|
|
_resultant_tfm = _to_TFM(_mat, self.var)
|
|
|
|
if cancel:
|
|
_resultant_tfm = _resultant_tfm.simplify()
|
|
|
|
if expand:
|
|
_resultant_tfm = _resultant_tfm.expand()
|
|
|
|
return _resultant_tfm
|
|
|
|
def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs):
|
|
return self.doit()
|
|
|
|
def __neg__(self):
|
|
return MIMOFeedback(-self.sys1, -self.sys2, self.sign)
|
|
|
|
|
|
def _to_TFM(mat, var):
|
|
"""Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently"""
|
|
to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var)
|
|
arg = [[to_tf(expr) for expr in row] for row in mat.tolist()]
|
|
return TransferFunctionMatrix(arg)
|
|
|
|
|
|
class TransferFunctionMatrix(MIMOLinearTimeInvariant):
|
|
r"""
|
|
A class for representing the MIMO (multiple-input and multiple-output)
|
|
generalization of the SISO (single-input and single-output) transfer function.
|
|
|
|
It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``).
|
|
There is only one argument, ``arg`` which is also the compulsory argument.
|
|
``arg`` is expected to be strictly of the type list of lists
|
|
which holds the transfer functions or reducible to transfer functions.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
arg : Nested ``List`` (strictly).
|
|
Users are expected to input a nested list of ``TransferFunction``, ``Series``
|
|
and/or ``Parallel`` objects.
|
|
|
|
Examples
|
|
========
|
|
|
|
.. note::
|
|
``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects.
|
|
|
|
>>> from sympy.abc import s, p, a
|
|
>>> from sympy import pprint
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel
|
|
>>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s)
|
|
>>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s)
|
|
>>> tf_3 = TransferFunction(3, s + 2, s)
|
|
>>> tf_4 = TransferFunction(-a + p, 9*s - 9, s)
|
|
>>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]])
|
|
>>> tfm_1
|
|
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)))
|
|
>>> tfm_1.var
|
|
s
|
|
>>> tfm_1.num_inputs
|
|
1
|
|
>>> tfm_1.num_outputs
|
|
3
|
|
>>> tfm_1.shape
|
|
(3, 1)
|
|
>>> tfm_1.args
|
|
(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),)
|
|
>>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]])
|
|
>>> tfm_2
|
|
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
|
|
>>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization
|
|
[ a + s -3 ]
|
|
[ ---------- ----- ]
|
|
[ 2 s + 2 ]
|
|
[ s + s + 1 ]
|
|
[ ]
|
|
[ 4 ]
|
|
[p - 3*p + 2 -a - s ]
|
|
[------------ ---------- ]
|
|
[ p + s 2 ]
|
|
[ s + s + 1 ]
|
|
[ ]
|
|
[ 4 ]
|
|
[ 3 - p + 3*p - 2]
|
|
[ ----- --------------]
|
|
[ s + 2 p + s ]{t}
|
|
|
|
TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions
|
|
|
|
>>> tfm_2.transpose()
|
|
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 4 ]
|
|
[ a + s p - 3*p + 2 3 ]
|
|
[---------- ------------ ----- ]
|
|
[ 2 p + s s + 2 ]
|
|
[s + s + 1 ]
|
|
[ ]
|
|
[ 4 ]
|
|
[ -3 -a - s - p + 3*p - 2]
|
|
[ ----- ---------- --------------]
|
|
[ s + 2 2 p + s ]
|
|
[ s + s + 1 ]{t}
|
|
|
|
>>> tf_5 = TransferFunction(5, s, s)
|
|
>>> tf_6 = TransferFunction(5*s, (2 + s**2), s)
|
|
>>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s)
|
|
>>> tf_8 = TransferFunction(5, 1, s)
|
|
>>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]])
|
|
>>> tfm_3
|
|
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))))
|
|
>>> pprint(tfm_3, use_unicode=False)
|
|
[ 5 5*s ]
|
|
[ - ------]
|
|
[ s 2 ]
|
|
[ s + 2]
|
|
[ ]
|
|
[ 5 5 ]
|
|
[---------- - ]
|
|
[ / 2 \ 1 ]
|
|
[s*\s + 2/ ]{t}
|
|
>>> tfm_3.var
|
|
s
|
|
>>> tfm_3.shape
|
|
(2, 2)
|
|
>>> tfm_3.num_outputs
|
|
2
|
|
>>> tfm_3.num_inputs
|
|
2
|
|
>>> tfm_3.args
|
|
(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),)
|
|
|
|
To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation.
|
|
|
|
>>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes
|
|
TransferFunction(5, s*(s**2 + 2), s)
|
|
>>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col.
|
|
TransferFunction(5, s, s)
|
|
>>> tfm_3[:, 0] # gives the first column
|
|
TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),)))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 5 ]
|
|
[ - ]
|
|
[ s ]
|
|
[ ]
|
|
[ 5 ]
|
|
[----------]
|
|
[ / 2 \]
|
|
[s*\s + 2/]{t}
|
|
>>> tfm_3[0, :] # gives the first row
|
|
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),))
|
|
>>> pprint(_, use_unicode=False)
|
|
[5 5*s ]
|
|
[- ------]
|
|
[s 2 ]
|
|
[ s + 2]{t}
|
|
|
|
To negate a transfer function matrix, ``-`` operator can be prepended:
|
|
|
|
>>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]])
|
|
>>> -tfm_4
|
|
TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),)))
|
|
>>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]])
|
|
>>> -tfm_5
|
|
TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s))))
|
|
|
|
``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not
|
|
mutate your original ``TransferFunctionMatrix``.
|
|
|
|
>>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2.
|
|
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ a + s -3 ]
|
|
[---------- ----- ]
|
|
[ 2 s + 2 ]
|
|
[s + s + 1 ]
|
|
[ ]
|
|
[ 12 -a - s ]
|
|
[ ----- ----------]
|
|
[ s + 2 2 ]
|
|
[ s + s + 1]
|
|
[ ]
|
|
[ 3 -12 ]
|
|
[ ----- ----- ]
|
|
[ s + 2 s + 2 ]{t}
|
|
>>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution
|
|
[ a + s -3 ]
|
|
[ ---------- ----- ]
|
|
[ 2 s + 2 ]
|
|
[ s + s + 1 ]
|
|
[ ]
|
|
[ 4 ]
|
|
[p - 3*p + 2 -a - s ]
|
|
[------------ ---------- ]
|
|
[ p + s 2 ]
|
|
[ s + s + 1 ]
|
|
[ ]
|
|
[ 4 ]
|
|
[ 3 - p + 3*p - 2]
|
|
[ ----- --------------]
|
|
[ s + 2 p + s ]{t}
|
|
|
|
``subs()`` also supports multiple substitutions.
|
|
|
|
>>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1
|
|
TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ s + 1 -3 ]
|
|
[---------- ----- ]
|
|
[ 2 s + 2 ]
|
|
[s + s + 1 ]
|
|
[ ]
|
|
[ 12 -s - 1 ]
|
|
[ ----- ----------]
|
|
[ s + 2 2 ]
|
|
[ s + s + 1]
|
|
[ ]
|
|
[ 3 -12 ]
|
|
[ ----- ----- ]
|
|
[ s + 2 s + 2 ]{t}
|
|
|
|
Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using
|
|
``doit()``.
|
|
|
|
>>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]])
|
|
>>> tfm_6
|
|
TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),))
|
|
>>> pprint(tfm_6, use_unicode=False)
|
|
[-a + p 3 -a + p 3 ]
|
|
[-------*----- ------- + -----]
|
|
[9*s - 9 s + 2 9*s - 9 s + 2]{t}
|
|
>>> tfm_6.doit()
|
|
TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27]
|
|
[----------------- ----------------------------]
|
|
[(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t}
|
|
>>> tf_9 = TransferFunction(1, s, s)
|
|
>>> tf_10 = TransferFunction(1, s**2, s)
|
|
>>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]])
|
|
>>> tfm_7
|
|
TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s)))))
|
|
>>> pprint(tfm_7, use_unicode=False)
|
|
[ 1 1 ]
|
|
[---- - ]
|
|
[ 2 s ]
|
|
[s*s ]
|
|
[ ]
|
|
[ 1 1 1]
|
|
[ -- -- + -]
|
|
[ 2 2 s]
|
|
[ s s ]{t}
|
|
>>> tfm_7.doit()
|
|
TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[1 1 ]
|
|
[-- - ]
|
|
[ 3 s ]
|
|
[s ]
|
|
[ ]
|
|
[ 2 ]
|
|
[1 s + s]
|
|
[-- ------]
|
|
[ 2 3 ]
|
|
[s s ]{t}
|
|
|
|
Addition, subtraction, and multiplication of transfer function matrices can form
|
|
unevaluated ``Series`` or ``Parallel`` objects.
|
|
|
|
- For addition and subtraction:
|
|
All the transfer function matrices must have the same shape.
|
|
|
|
- For multiplication (C = A * B):
|
|
The number of inputs of the first transfer function matrix (A) must be equal to the
|
|
number of outputs of the second transfer function matrix (B).
|
|
|
|
Also, use pretty-printing (``pprint``) to analyse better.
|
|
|
|
>>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]])
|
|
>>> tfm_9 = TransferFunctionMatrix([[-tf_3]])
|
|
>>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]])
|
|
>>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]])
|
|
>>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]])
|
|
>>> tfm_8 + tfm_10
|
|
MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 3 ] [ a + s ]
|
|
[ ----- ] [ ---------- ]
|
|
[ s + 2 ] [ 2 ]
|
|
[ ] [ s + s + 1 ]
|
|
[ 4 ] [ ]
|
|
[p - 3*p + 2] [ 4 ]
|
|
[------------] + [p - 3*p + 2]
|
|
[ p + s ] [------------]
|
|
[ ] [ p + s ]
|
|
[ -a - s ] [ ]
|
|
[ ---------- ] [ -a + p ]
|
|
[ 2 ] [ ------- ]
|
|
[ s + s + 1 ]{t} [ 9*s - 9 ]{t}
|
|
>>> -tfm_10 - tfm_8
|
|
MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ -a - s ] [ -3 ]
|
|
[ ---------- ] [ ----- ]
|
|
[ 2 ] [ s + 2 ]
|
|
[ s + s + 1 ] [ ]
|
|
[ ] [ 4 ]
|
|
[ 4 ] [- p + 3*p - 2]
|
|
[- p + 3*p - 2] + [--------------]
|
|
[--------------] [ p + s ]
|
|
[ p + s ] [ ]
|
|
[ ] [ a + s ]
|
|
[ a - p ] [ ---------- ]
|
|
[ ------- ] [ 2 ]
|
|
[ 9*s - 9 ]{t} [ s + s + 1 ]{t}
|
|
>>> tfm_12 * tfm_8
|
|
MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s)))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 3 ]
|
|
[ ----- ]
|
|
[ -a + p -a - s 3 ] [ s + 2 ]
|
|
[ ------- ---------- -----] [ ]
|
|
[ 9*s - 9 2 s + 2] [ 4 ]
|
|
[ s + s + 1 ] [p - 3*p + 2]
|
|
[ ] *[------------]
|
|
[ 4 ] [ p + s ]
|
|
[- p + 3*p - 2 a - p -3 ] [ ]
|
|
[-------------- ------- -----] [ -a - s ]
|
|
[ p + s 9*s - 9 s + 2]{t} [ ---------- ]
|
|
[ 2 ]
|
|
[ s + s + 1 ]{t}
|
|
>>> tfm_12 * tfm_8 * tfm_9
|
|
MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s)))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ 3 ]
|
|
[ ----- ]
|
|
[ -a + p -a - s 3 ] [ s + 2 ]
|
|
[ ------- ---------- -----] [ ]
|
|
[ 9*s - 9 2 s + 2] [ 4 ]
|
|
[ s + s + 1 ] [p - 3*p + 2] [ -3 ]
|
|
[ ] *[------------] *[-----]
|
|
[ 4 ] [ p + s ] [s + 2]{t}
|
|
[- p + 3*p - 2 a - p -3 ] [ ]
|
|
[-------------- ------- -----] [ -a - s ]
|
|
[ p + s 9*s - 9 s + 2]{t} [ ---------- ]
|
|
[ 2 ]
|
|
[ s + s + 1 ]{t}
|
|
>>> tfm_10 + tfm_8*tfm_9
|
|
MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),)))))
|
|
>>> pprint(_, use_unicode=False)
|
|
[ a + s ] [ 3 ]
|
|
[ ---------- ] [ ----- ]
|
|
[ 2 ] [ s + 2 ]
|
|
[ s + s + 1 ] [ ]
|
|
[ ] [ 4 ]
|
|
[ 4 ] [p - 3*p + 2] [ -3 ]
|
|
[p - 3*p + 2] + [------------] *[-----]
|
|
[------------] [ p + s ] [s + 2]{t}
|
|
[ p + s ] [ ]
|
|
[ ] [ -a - s ]
|
|
[ -a + p ] [ ---------- ]
|
|
[ ------- ] [ 2 ]
|
|
[ 9*s - 9 ]{t} [ s + s + 1 ]{t}
|
|
|
|
These unevaluated ``Series`` or ``Parallel`` objects can convert into the
|
|
resultant transfer function matrix using ``.doit()`` method or by
|
|
``.rewrite(TransferFunctionMatrix)``.
|
|
|
|
>>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit()
|
|
TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),)))
|
|
>>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix)
|
|
TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),)))
|
|
|
|
See Also
|
|
========
|
|
|
|
TransferFunction, MIMOSeries, MIMOParallel, Feedback
|
|
|
|
"""
|
|
def __new__(cls, arg):
|
|
|
|
expr_mat_arg = []
|
|
try:
|
|
var = arg[0][0].var
|
|
except TypeError:
|
|
raise ValueError(filldedent("""
|
|
`arg` param in TransferFunctionMatrix should
|
|
strictly be a nested list containing TransferFunction
|
|
objects."""))
|
|
for row in arg:
|
|
temp = []
|
|
for element in row:
|
|
if not isinstance(element, SISOLinearTimeInvariant):
|
|
raise TypeError(filldedent("""
|
|
Each element is expected to be of
|
|
type `SISOLinearTimeInvariant`."""))
|
|
|
|
if var != element.var:
|
|
raise ValueError(filldedent("""
|
|
Conflicting value(s) found for `var`. All TransferFunction
|
|
instances in TransferFunctionMatrix should use the same
|
|
complex variable in Laplace domain."""))
|
|
|
|
temp.append(element.to_expr())
|
|
expr_mat_arg.append(temp)
|
|
|
|
if isinstance(arg, (tuple, list, Tuple)):
|
|
# Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple
|
|
arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False)
|
|
|
|
obj = super(TransferFunctionMatrix, cls).__new__(cls, arg)
|
|
obj._expr_mat = ImmutableMatrix(expr_mat_arg)
|
|
return obj
|
|
|
|
@classmethod
|
|
def from_Matrix(cls, matrix, var):
|
|
"""
|
|
Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements.
|
|
var : Symbol
|
|
Complex variable of the Laplace transform which will be used by the
|
|
all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunctionMatrix
|
|
>>> from sympy import Matrix, pprint
|
|
>>> M = Matrix([[s, 1/s], [1/(s+1), s]])
|
|
>>> M_tf = TransferFunctionMatrix.from_Matrix(M, s)
|
|
>>> pprint(M_tf, use_unicode=False)
|
|
[ s 1]
|
|
[ - -]
|
|
[ 1 s]
|
|
[ ]
|
|
[ 1 s]
|
|
[----- -]
|
|
[s + 1 1]{t}
|
|
>>> M_tf.elem_poles()
|
|
[[[], [0]], [[-1], []]]
|
|
>>> M_tf.elem_zeros()
|
|
[[[0], []], [[], [0]]]
|
|
|
|
"""
|
|
return _to_TFM(matrix, var)
|
|
|
|
@property
|
|
def var(self):
|
|
"""
|
|
Returns the complex variable used by all the transfer functions or
|
|
``Series``/``Parallel`` objects in a transfer function matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import p, s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel
|
|
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p)
|
|
>>> G2 = TransferFunction(p, 4 - p, p)
|
|
>>> G3 = TransferFunction(0, p**4 - 1, p)
|
|
>>> G4 = TransferFunction(s + 1, s**2 + s + 1, s)
|
|
>>> S1 = Series(G1, G2)
|
|
>>> S2 = Series(-G3, Parallel(G2, -G1))
|
|
>>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]])
|
|
>>> tfm1.var
|
|
p
|
|
>>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]])
|
|
>>> tfm2.var
|
|
p
|
|
>>> tfm3 = TransferFunctionMatrix([[G4]])
|
|
>>> tfm3.var
|
|
s
|
|
|
|
"""
|
|
return self.args[0][0][0].var
|
|
|
|
@property
|
|
def num_inputs(self):
|
|
"""
|
|
Returns the number of inputs of the system.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
|
|
>>> G1 = TransferFunction(s + 3, s**2 - 3, s)
|
|
>>> G2 = TransferFunction(4, s**2, s)
|
|
>>> G3 = TransferFunction(p**2 + s**2, p - 3, s)
|
|
>>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]])
|
|
>>> tfm_1.num_inputs
|
|
3
|
|
|
|
See Also
|
|
========
|
|
|
|
num_outputs
|
|
|
|
"""
|
|
return self._expr_mat.shape[1]
|
|
|
|
@property
|
|
def num_outputs(self):
|
|
"""
|
|
Returns the number of outputs of the system.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunctionMatrix
|
|
>>> from sympy import Matrix
|
|
>>> M_1 = Matrix([[s], [1/s]])
|
|
>>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s)
|
|
>>> print(TFM)
|
|
TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),)))
|
|
>>> TFM.num_outputs
|
|
2
|
|
|
|
See Also
|
|
========
|
|
|
|
num_inputs
|
|
|
|
"""
|
|
return self._expr_mat.shape[0]
|
|
|
|
@property
|
|
def shape(self):
|
|
"""
|
|
Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s, p
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
|
|
>>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p)
|
|
>>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p)
|
|
>>> tf3 = TransferFunction(3, 4, p)
|
|
>>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]])
|
|
>>> tfm1.shape
|
|
(1, 2)
|
|
>>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]])
|
|
>>> tfm2.shape
|
|
(2, 2)
|
|
|
|
"""
|
|
return self._expr_mat.shape
|
|
|
|
def __neg__(self):
|
|
neg = -self._expr_mat
|
|
return _to_TFM(neg, self.var)
|
|
|
|
@_check_other_MIMO
|
|
def __add__(self, other):
|
|
|
|
if not isinstance(other, MIMOParallel):
|
|
return MIMOParallel(self, other)
|
|
other_arg_list = list(other.args)
|
|
return MIMOParallel(self, *other_arg_list)
|
|
|
|
@_check_other_MIMO
|
|
def __sub__(self, other):
|
|
return self + (-other)
|
|
|
|
@_check_other_MIMO
|
|
def __mul__(self, other):
|
|
|
|
if not isinstance(other, MIMOSeries):
|
|
return MIMOSeries(other, self)
|
|
other_arg_list = list(other.args)
|
|
return MIMOSeries(*other_arg_list, self)
|
|
|
|
def __getitem__(self, key):
|
|
trunc = self._expr_mat.__getitem__(key)
|
|
if isinstance(trunc, ImmutableMatrix):
|
|
return _to_TFM(trunc, self.var)
|
|
return TransferFunction.from_rational_expression(trunc, self.var)
|
|
|
|
def transpose(self):
|
|
"""Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers)."""
|
|
transposed_mat = self._expr_mat.transpose()
|
|
return _to_TFM(transposed_mat, self.var)
|
|
|
|
def elem_poles(self):
|
|
"""
|
|
Returns the poles of each element of the ``TransferFunctionMatrix``.
|
|
|
|
.. note::
|
|
Actual poles of a MIMO system are NOT the poles of individual elements.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
|
|
>>> tf_1 = TransferFunction(3, (s + 1), s)
|
|
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
|
|
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
|
|
>>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s)
|
|
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
|
|
>>> tfm_1
|
|
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s))))
|
|
>>> tfm_1.elem_poles()
|
|
[[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]]
|
|
|
|
See Also
|
|
========
|
|
|
|
elem_zeros
|
|
|
|
"""
|
|
return [[element.poles() for element in row] for row in self.doit().args[0]]
|
|
|
|
def elem_zeros(self):
|
|
"""
|
|
Returns the zeros of each element of the ``TransferFunctionMatrix``.
|
|
|
|
.. note::
|
|
Actual zeros of a MIMO system are NOT the zeros of individual elements.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
|
|
>>> tf_1 = TransferFunction(3, (s + 1), s)
|
|
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
|
|
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
|
|
>>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)
|
|
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
|
|
>>> tfm_1
|
|
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s))))
|
|
>>> tfm_1.elem_zeros()
|
|
[[[], [-6]], [[-3], [4, 5]]]
|
|
|
|
See Also
|
|
========
|
|
|
|
elem_poles
|
|
|
|
"""
|
|
return [[element.zeros() for element in row] for row in self.doit().args[0]]
|
|
|
|
def eval_frequency(self, other):
|
|
"""
|
|
Evaluates system response of each transfer function in the ``TransferFunctionMatrix`` at any point in the real or complex plane.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import s
|
|
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix
|
|
>>> from sympy import I
|
|
>>> tf_1 = TransferFunction(3, (s + 1), s)
|
|
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s)
|
|
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s)
|
|
>>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)
|
|
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]])
|
|
>>> tfm_1
|
|
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s))))
|
|
>>> tfm_1.eval_frequency(2)
|
|
Matrix([
|
|
[ 1, 2/3],
|
|
[5/12, 3/2]])
|
|
>>> tfm_1.eval_frequency(I*2)
|
|
Matrix([
|
|
[ 3/5 - 6*I/5, -I],
|
|
[3/20 - 11*I/20, -101/74 + 23*I/74]])
|
|
"""
|
|
mat = self._expr_mat.subs(self.var, other)
|
|
return mat.expand()
|
|
|
|
def _flat(self):
|
|
"""Returns flattened list of args in TransferFunctionMatrix"""
|
|
return [elem for tup in self.args[0] for elem in tup]
|
|
|
|
def _eval_evalf(self, prec):
|
|
"""Calls evalf() on each transfer function in the transfer function matrix"""
|
|
dps = prec_to_dps(prec)
|
|
mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps))
|
|
return _to_TFM(mat, self.var)
|
|
|
|
def _eval_simplify(self, **kwargs):
|
|
"""Simplifies the transfer function matrix"""
|
|
simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False))
|
|
return _to_TFM(simp_mat, self.var)
|
|
|
|
def expand(self, **hints):
|
|
"""Expands the transfer function matrix"""
|
|
expand_mat = self._expr_mat.expand(**hints)
|
|
return _to_TFM(expand_mat, self.var)
|
|
|
|
class StateSpace(LinearTimeInvariant):
|
|
r"""
|
|
State space model (ssm) of a linear, time invariant control system.
|
|
|
|
Represents the standard state-space model with A, B, C, D as state-space matrices.
|
|
This makes the linear control system:
|
|
(1) x'(t) = A * x(t) + B * u(t); x in R^n , u in R^k
|
|
(2) y(t) = C * x(t) + D * u(t); y in R^m
|
|
where u(t) is any input signal, y(t) the corresponding output, and x(t) the system's state.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
A : Matrix
|
|
The State matrix of the state space model.
|
|
B : Matrix
|
|
The Input-to-State matrix of the state space model.
|
|
C : Matrix
|
|
The State-to-Output matrix of the state space model.
|
|
D : Matrix
|
|
The Feedthrough matrix of the state space model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
|
|
The easiest way to create a StateSpaceModel is via four matrices:
|
|
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> StateSpace(A, B, C, D)
|
|
StateSpace(Matrix([
|
|
[1, 2],
|
|
[1, 0]]), Matrix([
|
|
[1],
|
|
[1]]), Matrix([[0, 1]]), Matrix([[0]]))
|
|
|
|
|
|
One can use less matrices. The rest will be filled with a minimum of zeros:
|
|
|
|
>>> StateSpace(A, B)
|
|
StateSpace(Matrix([
|
|
[1, 2],
|
|
[1, 0]]), Matrix([
|
|
[1],
|
|
[1]]), Matrix([[0, 0]]), Matrix([[0]]))
|
|
|
|
|
|
See Also
|
|
========
|
|
|
|
TransferFunction, TransferFunctionMatrix
|
|
|
|
References
|
|
==========
|
|
.. [1] https://en.wikipedia.org/wiki/State-space_representation
|
|
.. [2] https://in.mathworks.com/help/control/ref/ss.html
|
|
|
|
"""
|
|
def __new__(cls, A=None, B=None, C=None, D=None):
|
|
if A is None:
|
|
A = zeros(1)
|
|
if B is None:
|
|
B = zeros(A.rows, 1)
|
|
if C is None:
|
|
C = zeros(1, A.cols)
|
|
if D is None:
|
|
D = zeros(C.rows, B.cols)
|
|
|
|
A = _sympify(A)
|
|
B = _sympify(B)
|
|
C = _sympify(C)
|
|
D = _sympify(D)
|
|
|
|
if (isinstance(A, ImmutableDenseMatrix) and isinstance(B, ImmutableDenseMatrix) and
|
|
isinstance(C, ImmutableDenseMatrix) and isinstance(D, ImmutableDenseMatrix)):
|
|
# Check State Matrix is square
|
|
if A.rows != A.cols:
|
|
raise ShapeError("Matrix A must be a square matrix.")
|
|
|
|
# Check State and Input matrices have same rows
|
|
if A.rows != B.rows:
|
|
raise ShapeError("Matrices A and B must have the same number of rows.")
|
|
|
|
# Check Ouput and Feedthrough matrices have same rows
|
|
if C.rows != D.rows:
|
|
raise ShapeError("Matrices C and D must have the same number of rows.")
|
|
|
|
# Check State and Ouput matrices have same columns
|
|
if A.cols != C.cols:
|
|
raise ShapeError("Matrices A and C must have the same number of columns.")
|
|
|
|
# Check Input and Feedthrough matrices have same columns
|
|
if B.cols != D.cols:
|
|
raise ShapeError("Matrices B and D must have the same number of columns.")
|
|
|
|
obj = super(StateSpace, cls).__new__(cls, A, B, C, D)
|
|
obj._A = A
|
|
obj._B = B
|
|
obj._C = C
|
|
obj._D = D
|
|
|
|
# Determine if the system is SISO or MIMO
|
|
num_outputs = D.rows
|
|
num_inputs = D.cols
|
|
if num_inputs == 1 and num_outputs == 1:
|
|
obj._is_SISO = True
|
|
obj._clstype = SISOLinearTimeInvariant
|
|
else:
|
|
obj._is_SISO = False
|
|
obj._clstype = MIMOLinearTimeInvariant
|
|
|
|
return obj
|
|
|
|
else:
|
|
raise TypeError("A, B, C and D inputs must all be sympy Matrices.")
|
|
|
|
@property
|
|
def state_matrix(self):
|
|
"""
|
|
Returns the state matrix of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.state_matrix
|
|
Matrix([
|
|
[1, 2],
|
|
[1, 0]])
|
|
|
|
"""
|
|
return self._A
|
|
|
|
@property
|
|
def input_matrix(self):
|
|
"""
|
|
Returns the input matrix of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.input_matrix
|
|
Matrix([
|
|
[1],
|
|
[1]])
|
|
|
|
"""
|
|
return self._B
|
|
|
|
@property
|
|
def output_matrix(self):
|
|
"""
|
|
Returns the output matrix of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.output_matrix
|
|
Matrix([[0, 1]])
|
|
|
|
"""
|
|
return self._C
|
|
|
|
@property
|
|
def feedforward_matrix(self):
|
|
"""
|
|
Returns the feedforward matrix of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.feedforward_matrix
|
|
Matrix([[0]])
|
|
|
|
"""
|
|
return self._D
|
|
|
|
@property
|
|
def num_states(self):
|
|
"""
|
|
Returns the number of states of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.num_states
|
|
2
|
|
|
|
"""
|
|
return self._A.rows
|
|
|
|
@property
|
|
def num_inputs(self):
|
|
"""
|
|
Returns the number of inputs of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.num_inputs
|
|
1
|
|
|
|
"""
|
|
return self._D.cols
|
|
|
|
@property
|
|
def num_outputs(self):
|
|
"""
|
|
Returns the number of outputs of the model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[1, 2], [1, 0]])
|
|
>>> B = Matrix([1, 1])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.num_outputs
|
|
1
|
|
|
|
"""
|
|
return self._D.rows
|
|
|
|
def _eval_evalf(self, prec):
|
|
"""
|
|
Returns state space model where numerical expressions are evaluated into floating point numbers.
|
|
"""
|
|
dps = prec_to_dps(prec)
|
|
return StateSpace(
|
|
self._A.evalf(n = dps),
|
|
self._B.evalf(n = dps),
|
|
self._C.evalf(n = dps),
|
|
self._D.evalf(n = dps))
|
|
|
|
def _eval_rewrite_as_TransferFunction(self, *args):
|
|
"""
|
|
Returns the equivalent Transfer Function of the state space model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import TransferFunction, StateSpace
|
|
>>> A = Matrix([[-5, -1], [3, -1]])
|
|
>>> B = Matrix([2, 5])
|
|
>>> C = Matrix([[1, 2]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.rewrite(TransferFunction)
|
|
[[TransferFunction(12*s + 59, s**2 + 6*s + 8, s)]]
|
|
|
|
"""
|
|
s = Symbol('s')
|
|
n = self._A.shape[0]
|
|
I = eye(n)
|
|
G = self._C*(s*I - self._A).solve(self._B) + self._D
|
|
G = G.simplify()
|
|
to_tf = lambda expr: TransferFunction.from_rational_expression(expr, s)
|
|
tf_mat = [[to_tf(expr) for expr in sublist] for sublist in G.tolist()]
|
|
return tf_mat
|
|
|
|
def __add__(self, other):
|
|
"""
|
|
Add two State Space systems (parallel connection).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A1 = Matrix([[1]])
|
|
>>> B1 = Matrix([[2]])
|
|
>>> C1 = Matrix([[-1]])
|
|
>>> D1 = Matrix([[-2]])
|
|
>>> A2 = Matrix([[-1]])
|
|
>>> B2 = Matrix([[-2]])
|
|
>>> C2 = Matrix([[1]])
|
|
>>> D2 = Matrix([[2]])
|
|
>>> ss1 = StateSpace(A1, B1, C1, D1)
|
|
>>> ss2 = StateSpace(A2, B2, C2, D2)
|
|
>>> ss1 + ss2
|
|
StateSpace(Matrix([
|
|
[1, 0],
|
|
[0, -1]]), Matrix([
|
|
[ 2],
|
|
[-2]]), Matrix([[-1, 1]]), Matrix([[0]]))
|
|
|
|
"""
|
|
# Check for scalars
|
|
if isinstance(other, (int, float, complex, Symbol)):
|
|
A = self._A
|
|
B = self._B
|
|
C = self._C
|
|
D = self._D.applyfunc(lambda element: element + other)
|
|
|
|
else:
|
|
# Check nature of system
|
|
if not isinstance(other, StateSpace):
|
|
raise ValueError("Addition is only supported for 2 State Space models.")
|
|
# Check dimensions of system
|
|
elif ((self.num_inputs != other.num_inputs) or (self.num_outputs != other.num_outputs)):
|
|
raise ShapeError("Systems with incompatible inputs and outputs cannot be added.")
|
|
|
|
m1 = (self._A).row_join(zeros(self._A.shape[0], other._A.shape[-1]))
|
|
m2 = zeros(other._A.shape[0], self._A.shape[-1]).row_join(other._A)
|
|
|
|
A = m1.col_join(m2)
|
|
B = self._B.col_join(other._B)
|
|
C = self._C.row_join(other._C)
|
|
D = self._D + other._D
|
|
|
|
return StateSpace(A, B, C, D)
|
|
|
|
def __radd__(self, other):
|
|
"""
|
|
Right add two State Space systems.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> s = StateSpace()
|
|
>>> 5 + s
|
|
StateSpace(Matrix([[0]]), Matrix([[0]]), Matrix([[0]]), Matrix([[5]]))
|
|
|
|
"""
|
|
return self + other
|
|
|
|
def __sub__(self, other):
|
|
"""
|
|
Subtract two State Space systems.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A1 = Matrix([[1]])
|
|
>>> B1 = Matrix([[2]])
|
|
>>> C1 = Matrix([[-1]])
|
|
>>> D1 = Matrix([[-2]])
|
|
>>> A2 = Matrix([[-1]])
|
|
>>> B2 = Matrix([[-2]])
|
|
>>> C2 = Matrix([[1]])
|
|
>>> D2 = Matrix([[2]])
|
|
>>> ss1 = StateSpace(A1, B1, C1, D1)
|
|
>>> ss2 = StateSpace(A2, B2, C2, D2)
|
|
>>> ss1 - ss2
|
|
StateSpace(Matrix([
|
|
[1, 0],
|
|
[0, -1]]), Matrix([
|
|
[ 2],
|
|
[-2]]), Matrix([[-1, -1]]), Matrix([[-4]]))
|
|
|
|
"""
|
|
return self + (-other)
|
|
|
|
def __rsub__(self, other):
|
|
"""
|
|
Right subtract two tate Space systems.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> s = StateSpace()
|
|
>>> 5 - s
|
|
StateSpace(Matrix([[0]]), Matrix([[0]]), Matrix([[0]]), Matrix([[5]]))
|
|
|
|
"""
|
|
return other + (-self)
|
|
|
|
def __neg__(self):
|
|
"""
|
|
Returns the negation of the state space model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-5, -1], [3, -1]])
|
|
>>> B = Matrix([2, 5])
|
|
>>> C = Matrix([[1, 2]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> -ss
|
|
StateSpace(Matrix([
|
|
[-5, -1],
|
|
[ 3, -1]]), Matrix([
|
|
[2],
|
|
[5]]), Matrix([[-1, -2]]), Matrix([[0]]))
|
|
|
|
"""
|
|
return StateSpace(self._A, self._B, -self._C, -self._D)
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
Multiplication of two State Space systems (serial connection).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-5, -1], [3, -1]])
|
|
>>> B = Matrix([2, 5])
|
|
>>> C = Matrix([[1, 2]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss*5
|
|
StateSpace(Matrix([
|
|
[-5, -1],
|
|
[ 3, -1]]), Matrix([
|
|
[2],
|
|
[5]]), Matrix([[5, 10]]), Matrix([[0]]))
|
|
|
|
"""
|
|
# Check for scalars
|
|
if isinstance(other, (int, float, complex, Symbol)):
|
|
A = self._A
|
|
B = self._B
|
|
C = self._C.applyfunc(lambda element: element*other)
|
|
D = self._D.applyfunc(lambda element: element*other)
|
|
|
|
else:
|
|
# Check nature of system
|
|
if not isinstance(other, StateSpace):
|
|
raise ValueError("Multiplication is only supported for 2 State Space models.")
|
|
# Check dimensions of system
|
|
elif self.num_inputs != other.num_outputs:
|
|
raise ShapeError("Systems with incompatible inputs and outputs cannot be multiplied.")
|
|
|
|
m1 = (other._A).row_join(zeros(other._A.shape[0], self._A.shape[1]))
|
|
m2 = (self._B * other._C).row_join(self._A)
|
|
|
|
A = m1.col_join(m2)
|
|
B = (other._B).col_join(self._B * other._D)
|
|
C = (self._D * other._C).row_join(self._C)
|
|
D = self._D * other._D
|
|
|
|
return StateSpace(A, B, C, D)
|
|
|
|
def __rmul__(self, other):
|
|
"""
|
|
Right multiply two tate Space systems.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-5, -1], [3, -1]])
|
|
>>> B = Matrix([2, 5])
|
|
>>> C = Matrix([[1, 2]])
|
|
>>> D = Matrix([0])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> 5*ss
|
|
StateSpace(Matrix([
|
|
[-5, -1],
|
|
[ 3, -1]]), Matrix([
|
|
[10],
|
|
[25]]), Matrix([[1, 2]]), Matrix([[0]]))
|
|
|
|
"""
|
|
if isinstance(other, (int, float, complex, Symbol)):
|
|
A = self._A
|
|
C = self._C
|
|
B = self._B.applyfunc(lambda element: element*other)
|
|
D = self._D.applyfunc(lambda element: element*other)
|
|
return StateSpace(A, B, C, D)
|
|
else:
|
|
return self*other
|
|
|
|
def __repr__(self):
|
|
A_str = self._A.__repr__()
|
|
B_str = self._B.__repr__()
|
|
C_str = self._C.__repr__()
|
|
D_str = self._D.__repr__()
|
|
|
|
return f"StateSpace(\n{A_str},\n\n{B_str},\n\n{C_str},\n\n{D_str})"
|
|
|
|
|
|
def append(self, other):
|
|
"""
|
|
Returns the first model appended with the second model. The order is preserved.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A1 = Matrix([[1]])
|
|
>>> B1 = Matrix([[2]])
|
|
>>> C1 = Matrix([[-1]])
|
|
>>> D1 = Matrix([[-2]])
|
|
>>> A2 = Matrix([[-1]])
|
|
>>> B2 = Matrix([[-2]])
|
|
>>> C2 = Matrix([[1]])
|
|
>>> D2 = Matrix([[2]])
|
|
>>> ss1 = StateSpace(A1, B1, C1, D1)
|
|
>>> ss2 = StateSpace(A2, B2, C2, D2)
|
|
>>> ss1.append(ss2)
|
|
StateSpace(Matrix([
|
|
[1, 0],
|
|
[0, -1]]), Matrix([
|
|
[2, 0],
|
|
[0, -2]]), Matrix([
|
|
[-1, 0],
|
|
[ 0, 1]]), Matrix([
|
|
[-2, 0],
|
|
[ 0, 2]]))
|
|
|
|
"""
|
|
n = self.num_states + other.num_states
|
|
m = self.num_inputs + other.num_inputs
|
|
p = self.num_outputs + other.num_outputs
|
|
|
|
A = zeros(n, n)
|
|
B = zeros(n, m)
|
|
C = zeros(p, n)
|
|
D = zeros(p, m)
|
|
|
|
A[:self.num_states, :self.num_states] = self._A
|
|
A[self.num_states:, self.num_states:] = other._A
|
|
B[:self.num_states, :self.num_inputs] = self._B
|
|
B[self.num_states:, self.num_inputs:] = other._B
|
|
C[:self.num_outputs, :self.num_states] = self._C
|
|
C[self.num_outputs:, self.num_states:] = other._C
|
|
D[:self.num_outputs, :self.num_inputs] = self._D
|
|
D[self.num_outputs:, self.num_inputs:] = other._D
|
|
return StateSpace(A, B, C, D)
|
|
|
|
def observability_matrix(self):
|
|
"""
|
|
Returns the observability matrix of the state space model:
|
|
[C, C * A^1, C * A^2, .. , C * A^(n-1)]; A in R^(n x n), C in R^(m x k)
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-1.5, -2], [1, 0]])
|
|
>>> B = Matrix([0.5, 0])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([1])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ob = ss.observability_matrix()
|
|
>>> ob
|
|
Matrix([
|
|
[0, 1],
|
|
[1, 0]])
|
|
|
|
References
|
|
==========
|
|
.. [1] https://in.mathworks.com/help/control/ref/statespacemodel.obsv.html
|
|
|
|
"""
|
|
n = self.num_states
|
|
ob = self._C
|
|
for i in range(1,n):
|
|
ob = ob.col_join(self._C * self._A**i)
|
|
|
|
return ob
|
|
|
|
def observable_subspace(self):
|
|
"""
|
|
Returns the observable subspace of the state space model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-1.5, -2], [1, 0]])
|
|
>>> B = Matrix([0.5, 0])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([1])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ob_subspace = ss.observable_subspace()
|
|
>>> ob_subspace
|
|
[Matrix([
|
|
[0],
|
|
[1]]), Matrix([
|
|
[1],
|
|
[0]])]
|
|
|
|
"""
|
|
return self.observability_matrix().columnspace()
|
|
|
|
def is_observable(self):
|
|
"""
|
|
Returns if the state space model is observable.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-1.5, -2], [1, 0]])
|
|
>>> B = Matrix([0.5, 0])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([1])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.is_observable()
|
|
True
|
|
|
|
"""
|
|
return self.observability_matrix().rank() == self.num_states
|
|
|
|
def controllability_matrix(self):
|
|
"""
|
|
Returns the controllability matrix of the system:
|
|
[B, A * B, A^2 * B, .. , A^(n-1) * B]; A in R^(n x n), B in R^(n x m)
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-1.5, -2], [1, 0]])
|
|
>>> B = Matrix([0.5, 0])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([1])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.controllability_matrix()
|
|
Matrix([
|
|
[0.5, -0.75],
|
|
[ 0, 0.5]])
|
|
|
|
References
|
|
==========
|
|
.. [1] https://in.mathworks.com/help/control/ref/statespacemodel.ctrb.html
|
|
|
|
"""
|
|
co = self._B
|
|
n = self._A.shape[0]
|
|
for i in range(1, n):
|
|
co = co.row_join(((self._A)**i) * self._B)
|
|
|
|
return co
|
|
|
|
def controllable_subspace(self):
|
|
"""
|
|
Returns the controllable subspace of the state space model.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-1.5, -2], [1, 0]])
|
|
>>> B = Matrix([0.5, 0])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([1])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> co_subspace = ss.controllable_subspace()
|
|
>>> co_subspace
|
|
[Matrix([
|
|
[0.5],
|
|
[ 0]]), Matrix([
|
|
[-0.75],
|
|
[ 0.5]])]
|
|
|
|
"""
|
|
return self.controllability_matrix().columnspace()
|
|
|
|
def is_controllable(self):
|
|
"""
|
|
Returns if the state space model is controllable.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.physics.control import StateSpace
|
|
>>> A = Matrix([[-1.5, -2], [1, 0]])
|
|
>>> B = Matrix([0.5, 0])
|
|
>>> C = Matrix([[0, 1]])
|
|
>>> D = Matrix([1])
|
|
>>> ss = StateSpace(A, B, C, D)
|
|
>>> ss.is_controllable()
|
|
True
|
|
|
|
"""
|
|
return self.controllability_matrix().rank() == self.num_states
|