5425 lines
161 KiB
Python
5425 lines
161 KiB
Python
from collections import defaultdict
|
|
from collections.abc import Iterable
|
|
from inspect import isfunction
|
|
from functools import reduce
|
|
|
|
from sympy.assumptions.refine import refine
|
|
from sympy.core import SympifyError, Add
|
|
from sympy.core.basic import Atom, Basic
|
|
from sympy.core.kind import UndefinedKind
|
|
from sympy.core.numbers import Integer
|
|
from sympy.core.mod import Mod
|
|
from sympy.core.symbol import Symbol, Dummy
|
|
from sympy.core.sympify import sympify, _sympify
|
|
from sympy.core.function import diff
|
|
from sympy.polys import cancel
|
|
from sympy.functions.elementary.complexes import Abs, re, im
|
|
from sympy.printing import sstr
|
|
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta, LeviCivita
|
|
from sympy.core.singleton import S
|
|
from sympy.printing.defaults import Printable
|
|
from sympy.printing.str import StrPrinter
|
|
from sympy.functions.elementary.exponential import exp, log
|
|
from sympy.functions.combinatorial.factorials import binomial, factorial
|
|
|
|
import mpmath as mp
|
|
from collections.abc import Callable
|
|
from sympy.utilities.iterables import reshape
|
|
from sympy.core.expr import Expr
|
|
from sympy.core.power import Pow
|
|
from sympy.core.symbol import uniquely_named_symbol
|
|
|
|
from .utilities import _dotprodsimp, _simplify as _utilities_simplify
|
|
from sympy.polys.polytools import Poly
|
|
from sympy.utilities.iterables import flatten, is_sequence
|
|
from sympy.utilities.misc import as_int, filldedent
|
|
from sympy.core.decorators import call_highest_priority
|
|
from sympy.core.logic import fuzzy_and, FuzzyBool
|
|
from sympy.tensor.array import NDimArray
|
|
from sympy.utilities.iterables import NotIterable
|
|
|
|
from .utilities import _get_intermediate_simp_bool
|
|
|
|
from .kind import MatrixKind
|
|
|
|
from .exceptions import (
|
|
MatrixError, ShapeError, NonSquareMatrixError, NonInvertibleMatrixError,
|
|
)
|
|
|
|
from .utilities import _iszero, _is_zero_after_expand_mul
|
|
|
|
from .determinant import (
|
|
_find_reasonable_pivot, _find_reasonable_pivot_naive,
|
|
_adjugate, _charpoly, _cofactor, _cofactor_matrix, _per,
|
|
_det, _det_bareiss, _det_berkowitz, _det_bird, _det_laplace, _det_LU,
|
|
_minor, _minor_submatrix)
|
|
|
|
from .reductions import _is_echelon, _echelon_form, _rank, _rref
|
|
|
|
from .solvers import (
|
|
_diagonal_solve, _lower_triangular_solve, _upper_triangular_solve,
|
|
_cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve,
|
|
_pinv_solve, _cramer_solve, _solve, _solve_least_squares)
|
|
|
|
from .inverse import (
|
|
_pinv, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR,
|
|
_inv, _inv_block)
|
|
|
|
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize
|
|
|
|
from .eigen import (
|
|
_eigenvals, _eigenvects,
|
|
_bidiagonalize, _bidiagonal_decomposition,
|
|
_is_diagonalizable, _diagonalize,
|
|
_is_positive_definite, _is_positive_semidefinite,
|
|
_is_negative_definite, _is_negative_semidefinite, _is_indefinite,
|
|
_jordan_form, _left_eigenvects, _singular_values)
|
|
|
|
from .decompositions import (
|
|
_rank_decomposition, _cholesky, _LDLdecomposition,
|
|
_LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF,
|
|
_singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition)
|
|
|
|
from .graph import (
|
|
_connected_components, _connected_components_decomposition,
|
|
_strongly_connected_components, _strongly_connected_components_decomposition)
|
|
|
|
|
|
__doctest_requires__ = {
|
|
('MatrixBase.is_indefinite',
|
|
'MatrixBase.is_positive_definite',
|
|
'MatrixBase.is_positive_semidefinite',
|
|
'MatrixBase.is_negative_definite',
|
|
'MatrixBase.is_negative_semidefinite'): ['matplotlib'],
|
|
}
|
|
|
|
|
|
class MatrixBase(Printable):
|
|
"""All common matrix operations including basic arithmetic, shaping,
|
|
and special matrices like `zeros`, and `eye`."""
|
|
|
|
_op_priority = 10.01
|
|
|
|
# Added just for numpy compatibility
|
|
__array_priority__ = 11
|
|
|
|
is_Matrix = True
|
|
_class_priority = 3
|
|
_sympify = staticmethod(sympify)
|
|
zero = S.Zero
|
|
one = S.One
|
|
|
|
_diff_wrt = True # type: bool
|
|
rows = None # type: int
|
|
cols = None # type: int
|
|
_simplify = None
|
|
|
|
@classmethod
|
|
def _new(cls, *args, **kwargs):
|
|
"""`_new` must, at minimum, be callable as
|
|
`_new(rows, cols, mat) where mat is a flat list of the
|
|
elements of the matrix."""
|
|
raise NotImplementedError("Subclasses must implement this.")
|
|
|
|
def __eq__(self, other):
|
|
raise NotImplementedError("Subclasses must implement this.")
|
|
|
|
def __getitem__(self, key):
|
|
"""Implementations of __getitem__ should accept ints, in which
|
|
case the matrix is indexed as a flat list, tuples (i,j) in which
|
|
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
|
|
where a and b are any combination of slices and integers."""
|
|
raise NotImplementedError("Subclasses must implement this.")
|
|
|
|
@property
|
|
def shape(self):
|
|
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import zeros
|
|
>>> M = zeros(2, 3)
|
|
>>> M.shape
|
|
(2, 3)
|
|
>>> M.rows
|
|
2
|
|
>>> M.cols
|
|
3
|
|
"""
|
|
return (self.rows, self.cols)
|
|
|
|
def _eval_col_del(self, col):
|
|
def entry(i, j):
|
|
return self[i, j] if j < col else self[i, j + 1]
|
|
return self._new(self.rows, self.cols - 1, entry)
|
|
|
|
def _eval_col_insert(self, pos, other):
|
|
|
|
def entry(i, j):
|
|
if j < pos:
|
|
return self[i, j]
|
|
elif pos <= j < pos + other.cols:
|
|
return other[i, j - pos]
|
|
return self[i, j - other.cols]
|
|
|
|
return self._new(self.rows, self.cols + other.cols, entry)
|
|
|
|
def _eval_col_join(self, other):
|
|
rows = self.rows
|
|
|
|
def entry(i, j):
|
|
if i < rows:
|
|
return self[i, j]
|
|
return other[i - rows, j]
|
|
|
|
return classof(self, other)._new(self.rows + other.rows, self.cols,
|
|
entry)
|
|
|
|
def _eval_extract(self, rowsList, colsList):
|
|
mat = list(self)
|
|
cols = self.cols
|
|
indices = (i * cols + j for i in rowsList for j in colsList)
|
|
return self._new(len(rowsList), len(colsList),
|
|
[mat[i] for i in indices])
|
|
|
|
def _eval_get_diag_blocks(self):
|
|
sub_blocks = []
|
|
|
|
def recurse_sub_blocks(M):
|
|
i = 1
|
|
while i <= M.shape[0]:
|
|
if i == 1:
|
|
to_the_right = M[0, i:]
|
|
to_the_bottom = M[i:, 0]
|
|
else:
|
|
to_the_right = M[:i, i:]
|
|
to_the_bottom = M[i:, :i]
|
|
if any(to_the_right) or any(to_the_bottom):
|
|
i += 1
|
|
continue
|
|
else:
|
|
sub_blocks.append(M[:i, :i])
|
|
if M.shape == M[:i, :i].shape:
|
|
return
|
|
else:
|
|
recurse_sub_blocks(M[i:, i:])
|
|
return
|
|
|
|
recurse_sub_blocks(self)
|
|
return sub_blocks
|
|
|
|
def _eval_row_del(self, row):
|
|
def entry(i, j):
|
|
return self[i, j] if i < row else self[i + 1, j]
|
|
return self._new(self.rows - 1, self.cols, entry)
|
|
|
|
def _eval_row_insert(self, pos, other):
|
|
entries = list(self)
|
|
insert_pos = pos * self.cols
|
|
entries[insert_pos:insert_pos] = list(other)
|
|
return self._new(self.rows + other.rows, self.cols, entries)
|
|
|
|
def _eval_row_join(self, other):
|
|
cols = self.cols
|
|
|
|
def entry(i, j):
|
|
if j < cols:
|
|
return self[i, j]
|
|
return other[i, j - cols]
|
|
|
|
return classof(self, other)._new(self.rows, self.cols + other.cols,
|
|
entry)
|
|
|
|
def _eval_tolist(self):
|
|
return [list(self[i,:]) for i in range(self.rows)]
|
|
|
|
def _eval_todok(self):
|
|
dok = {}
|
|
rows, cols = self.shape
|
|
for i in range(rows):
|
|
for j in range(cols):
|
|
val = self[i, j]
|
|
if val != self.zero:
|
|
dok[i, j] = val
|
|
return dok
|
|
|
|
@classmethod
|
|
def _eval_from_dok(cls, rows, cols, dok):
|
|
out_flat = [cls.zero] * (rows * cols)
|
|
for (i, j), val in dok.items():
|
|
out_flat[i * cols + j] = val
|
|
return cls._new(rows, cols, out_flat)
|
|
|
|
def _eval_vec(self):
|
|
rows = self.rows
|
|
|
|
def entry(n, _):
|
|
# we want to read off the columns first
|
|
j = n // rows
|
|
i = n - j * rows
|
|
return self[i, j]
|
|
|
|
return self._new(len(self), 1, entry)
|
|
|
|
def _eval_vech(self, diagonal):
|
|
c = self.cols
|
|
v = []
|
|
if diagonal:
|
|
for j in range(c):
|
|
for i in range(j, c):
|
|
v.append(self[i, j])
|
|
else:
|
|
for j in range(c):
|
|
for i in range(j + 1, c):
|
|
v.append(self[i, j])
|
|
return self._new(len(v), 1, v)
|
|
|
|
def col_del(self, col):
|
|
"""Delete the specified column."""
|
|
if col < 0:
|
|
col += self.cols
|
|
if not 0 <= col < self.cols:
|
|
raise IndexError("Column {} is out of range.".format(col))
|
|
return self._eval_col_del(col)
|
|
|
|
def col_insert(self, pos, other):
|
|
"""Insert one or more columns at the given column position.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import zeros, ones
|
|
>>> M = zeros(3)
|
|
>>> V = ones(3, 1)
|
|
>>> M.col_insert(1, V)
|
|
Matrix([
|
|
[0, 1, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 1, 0, 0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
col
|
|
row_insert
|
|
"""
|
|
# Allows you to build a matrix even if it is null matrix
|
|
if not self:
|
|
return type(self)(other)
|
|
|
|
pos = as_int(pos)
|
|
|
|
if pos < 0:
|
|
pos = self.cols + pos
|
|
if pos < 0:
|
|
pos = 0
|
|
elif pos > self.cols:
|
|
pos = self.cols
|
|
|
|
if self.rows != other.rows:
|
|
raise ShapeError(
|
|
"The matrices have incompatible number of rows ({} and {})"
|
|
.format(self.rows, other.rows))
|
|
|
|
return self._eval_col_insert(pos, other)
|
|
|
|
def col_join(self, other):
|
|
"""Concatenates two matrices along self's last and other's first row.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import zeros, ones
|
|
>>> M = zeros(3)
|
|
>>> V = ones(1, 3)
|
|
>>> M.col_join(V)
|
|
Matrix([
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
[1, 1, 1]])
|
|
|
|
See Also
|
|
========
|
|
|
|
col
|
|
row_join
|
|
"""
|
|
# A null matrix can always be stacked (see #10770)
|
|
if self.rows == 0 and self.cols != other.cols:
|
|
return self._new(0, other.cols, []).col_join(other)
|
|
|
|
if self.cols != other.cols:
|
|
raise ShapeError(
|
|
"The matrices have incompatible number of columns ({} and {})"
|
|
.format(self.cols, other.cols))
|
|
return self._eval_col_join(other)
|
|
|
|
def col(self, j):
|
|
"""Elementary column selector.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import eye
|
|
>>> eye(2).col(0)
|
|
Matrix([
|
|
[1],
|
|
[0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
row
|
|
col_del
|
|
col_join
|
|
col_insert
|
|
"""
|
|
return self[:, j]
|
|
|
|
def extract(self, rowsList, colsList):
|
|
r"""Return a submatrix by specifying a list of rows and columns.
|
|
Negative indices can be given. All indices must be in the range
|
|
$-n \le i < n$ where $n$ is the number of rows or columns.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(4, 3, range(12))
|
|
>>> m
|
|
Matrix([
|
|
[0, 1, 2],
|
|
[3, 4, 5],
|
|
[6, 7, 8],
|
|
[9, 10, 11]])
|
|
>>> m.extract([0, 1, 3], [0, 1])
|
|
Matrix([
|
|
[0, 1],
|
|
[3, 4],
|
|
[9, 10]])
|
|
|
|
Rows or columns can be repeated:
|
|
|
|
>>> m.extract([0, 0, 1], [-1])
|
|
Matrix([
|
|
[2],
|
|
[2],
|
|
[5]])
|
|
|
|
Every other row can be taken by using range to provide the indices:
|
|
|
|
>>> m.extract(range(0, m.rows, 2), [-1])
|
|
Matrix([
|
|
[2],
|
|
[8]])
|
|
|
|
RowsList or colsList can also be a list of booleans, in which case
|
|
the rows or columns corresponding to the True values will be selected:
|
|
|
|
>>> m.extract([0, 1, 2, 3], [True, False, True])
|
|
Matrix([
|
|
[0, 2],
|
|
[3, 5],
|
|
[6, 8],
|
|
[9, 11]])
|
|
"""
|
|
|
|
if not is_sequence(rowsList) or not is_sequence(colsList):
|
|
raise TypeError("rowsList and colsList must be iterable")
|
|
# ensure rowsList and colsList are lists of integers
|
|
if rowsList and all(isinstance(i, bool) for i in rowsList):
|
|
rowsList = [index for index, item in enumerate(rowsList) if item]
|
|
if colsList and all(isinstance(i, bool) for i in colsList):
|
|
colsList = [index for index, item in enumerate(colsList) if item]
|
|
|
|
# ensure everything is in range
|
|
rowsList = [a2idx(k, self.rows) for k in rowsList]
|
|
colsList = [a2idx(k, self.cols) for k in colsList]
|
|
|
|
return self._eval_extract(rowsList, colsList)
|
|
|
|
def get_diag_blocks(self):
|
|
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
|
|
|
|
Useful for inverting symbolic matrices or solving systems of
|
|
linear equations which may be decoupled by having a block diagonal
|
|
structure.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x, y, z
|
|
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
|
|
>>> a1, a2, a3 = A.get_diag_blocks()
|
|
>>> a1
|
|
Matrix([
|
|
[1, 3],
|
|
[y, z**2]])
|
|
>>> a2
|
|
Matrix([[x]])
|
|
>>> a3
|
|
Matrix([[0]])
|
|
|
|
"""
|
|
return self._eval_get_diag_blocks()
|
|
|
|
@classmethod
|
|
def hstack(cls, *args):
|
|
"""Return a matrix formed by joining args horizontally (i.e.
|
|
by repeated application of row_join).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, eye
|
|
>>> Matrix.hstack(eye(2), 2*eye(2))
|
|
Matrix([
|
|
[1, 0, 2, 0],
|
|
[0, 1, 0, 2]])
|
|
"""
|
|
if len(args) == 0:
|
|
return cls._new()
|
|
|
|
kls = type(args[0])
|
|
return reduce(kls.row_join, args)
|
|
|
|
def reshape(self, rows, cols):
|
|
"""Reshape the matrix. Total number of elements must remain the same.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(2, 3, lambda i, j: 1)
|
|
>>> m
|
|
Matrix([
|
|
[1, 1, 1],
|
|
[1, 1, 1]])
|
|
>>> m.reshape(1, 6)
|
|
Matrix([[1, 1, 1, 1, 1, 1]])
|
|
>>> m.reshape(3, 2)
|
|
Matrix([
|
|
[1, 1],
|
|
[1, 1],
|
|
[1, 1]])
|
|
|
|
"""
|
|
if self.rows * self.cols != rows * cols:
|
|
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
|
|
return self._new(rows, cols, lambda i, j: self[i * cols + j])
|
|
|
|
def row_del(self, row):
|
|
"""Delete the specified row."""
|
|
if row < 0:
|
|
row += self.rows
|
|
if not 0 <= row < self.rows:
|
|
raise IndexError("Row {} is out of range.".format(row))
|
|
|
|
return self._eval_row_del(row)
|
|
|
|
def row_insert(self, pos, other):
|
|
"""Insert one or more rows at the given row position.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import zeros, ones
|
|
>>> M = zeros(3)
|
|
>>> V = ones(1, 3)
|
|
>>> M.row_insert(1, V)
|
|
Matrix([
|
|
[0, 0, 0],
|
|
[1, 1, 1],
|
|
[0, 0, 0],
|
|
[0, 0, 0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
row
|
|
col_insert
|
|
"""
|
|
# Allows you to build a matrix even if it is null matrix
|
|
if not self:
|
|
return self._new(other)
|
|
|
|
pos = as_int(pos)
|
|
|
|
if pos < 0:
|
|
pos = self.rows + pos
|
|
if pos < 0:
|
|
pos = 0
|
|
elif pos > self.rows:
|
|
pos = self.rows
|
|
|
|
if self.cols != other.cols:
|
|
raise ShapeError(
|
|
"The matrices have incompatible number of columns ({} and {})"
|
|
.format(self.cols, other.cols))
|
|
|
|
return self._eval_row_insert(pos, other)
|
|
|
|
def row_join(self, other):
|
|
"""Concatenates two matrices along self's last and rhs's first column
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import zeros, ones
|
|
>>> M = zeros(3)
|
|
>>> V = ones(3, 1)
|
|
>>> M.row_join(V)
|
|
Matrix([
|
|
[0, 0, 0, 1],
|
|
[0, 0, 0, 1],
|
|
[0, 0, 0, 1]])
|
|
|
|
See Also
|
|
========
|
|
|
|
row
|
|
col_join
|
|
"""
|
|
# A null matrix can always be stacked (see #10770)
|
|
if self.cols == 0 and self.rows != other.rows:
|
|
return self._new(other.rows, 0, []).row_join(other)
|
|
|
|
if self.rows != other.rows:
|
|
raise ShapeError(
|
|
"The matrices have incompatible number of rows ({} and {})"
|
|
.format(self.rows, other.rows))
|
|
return self._eval_row_join(other)
|
|
|
|
def diagonal(self, k=0):
|
|
"""Returns the kth diagonal of self. The main diagonal
|
|
corresponds to `k=0`; diagonals above and below correspond to
|
|
`k > 0` and `k < 0`, respectively. The values of `self[i, j]`
|
|
for which `j - i = k`, are returned in order of increasing
|
|
`i + j`, starting with `i + j = |k|`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(3, 3, lambda i, j: j - i); m
|
|
Matrix([
|
|
[ 0, 1, 2],
|
|
[-1, 0, 1],
|
|
[-2, -1, 0]])
|
|
>>> _.diagonal()
|
|
Matrix([[0, 0, 0]])
|
|
>>> m.diagonal(1)
|
|
Matrix([[1, 1]])
|
|
>>> m.diagonal(-2)
|
|
Matrix([[-2]])
|
|
|
|
Even though the diagonal is returned as a Matrix, the element
|
|
retrieval can be done with a single index:
|
|
|
|
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
|
|
2
|
|
|
|
See Also
|
|
========
|
|
|
|
diag
|
|
"""
|
|
rv = []
|
|
k = as_int(k)
|
|
r = 0 if k > 0 else -k
|
|
c = 0 if r else k
|
|
while True:
|
|
if r == self.rows or c == self.cols:
|
|
break
|
|
rv.append(self[r, c])
|
|
r += 1
|
|
c += 1
|
|
if not rv:
|
|
raise ValueError(filldedent('''
|
|
The %s diagonal is out of range [%s, %s]''' % (
|
|
k, 1 - self.rows, self.cols - 1)))
|
|
return self._new(1, len(rv), rv)
|
|
|
|
def row(self, i):
|
|
"""Elementary row selector.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import eye
|
|
>>> eye(2).row(0)
|
|
Matrix([[1, 0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
col
|
|
row_del
|
|
row_join
|
|
row_insert
|
|
"""
|
|
return self[i, :]
|
|
|
|
def todok(self):
|
|
"""Return the matrix as dictionary of keys.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> M = Matrix.eye(3)
|
|
>>> M.todok()
|
|
{(0, 0): 1, (1, 1): 1, (2, 2): 1}
|
|
"""
|
|
return self._eval_todok()
|
|
|
|
@classmethod
|
|
def from_dok(cls, rows, cols, dok):
|
|
"""Create a matrix from a dictionary of keys.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> d = {(0, 0): 1, (1, 2): 3, (2, 1): 4}
|
|
>>> Matrix.from_dok(3, 3, d)
|
|
Matrix([
|
|
[1, 0, 0],
|
|
[0, 0, 3],
|
|
[0, 4, 0]])
|
|
"""
|
|
dok = {ij: cls._sympify(val) for ij, val in dok.items()}
|
|
return cls._eval_from_dok(rows, cols, dok)
|
|
|
|
def tolist(self):
|
|
"""Return the Matrix as a nested Python list.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, ones
|
|
>>> m = Matrix(3, 3, range(9))
|
|
>>> m
|
|
Matrix([
|
|
[0, 1, 2],
|
|
[3, 4, 5],
|
|
[6, 7, 8]])
|
|
>>> m.tolist()
|
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
|
>>> ones(3, 0).tolist()
|
|
[[], [], []]
|
|
|
|
When there are no rows then it will not be possible to tell how
|
|
many columns were in the original matrix:
|
|
|
|
>>> ones(0, 3).tolist()
|
|
[]
|
|
|
|
"""
|
|
if not self.rows:
|
|
return []
|
|
if not self.cols:
|
|
return [[] for i in range(self.rows)]
|
|
return self._eval_tolist()
|
|
|
|
def todod(M):
|
|
"""Returns matrix as dict of dicts containing non-zero elements of the Matrix
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix([[0, 1],[0, 3]])
|
|
>>> A
|
|
Matrix([
|
|
[0, 1],
|
|
[0, 3]])
|
|
>>> A.todod()
|
|
{0: {1: 1}, 1: {1: 3}}
|
|
|
|
|
|
"""
|
|
rowsdict = {}
|
|
Mlol = M.tolist()
|
|
for i, Mi in enumerate(Mlol):
|
|
row = {j: Mij for j, Mij in enumerate(Mi) if Mij}
|
|
if row:
|
|
rowsdict[i] = row
|
|
return rowsdict
|
|
|
|
def vec(self):
|
|
"""Return the Matrix converted into a one column matrix by stacking columns
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m=Matrix([[1, 3], [2, 4]])
|
|
>>> m
|
|
Matrix([
|
|
[1, 3],
|
|
[2, 4]])
|
|
>>> m.vec()
|
|
Matrix([
|
|
[1],
|
|
[2],
|
|
[3],
|
|
[4]])
|
|
|
|
See Also
|
|
========
|
|
|
|
vech
|
|
"""
|
|
return self._eval_vec()
|
|
|
|
def vech(self, diagonal=True, check_symmetry=True):
|
|
"""Reshapes the matrix into a column vector by stacking the
|
|
elements in the lower triangle.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
diagonal : bool, optional
|
|
If ``True``, it includes the diagonal elements.
|
|
|
|
check_symmetry : bool, optional
|
|
If ``True``, it checks whether the matrix is symmetric.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m=Matrix([[1, 2], [2, 3]])
|
|
>>> m
|
|
Matrix([
|
|
[1, 2],
|
|
[2, 3]])
|
|
>>> m.vech()
|
|
Matrix([
|
|
[1],
|
|
[2],
|
|
[3]])
|
|
>>> m.vech(diagonal=False)
|
|
Matrix([[2]])
|
|
|
|
Notes
|
|
=====
|
|
|
|
This should work for symmetric matrices and ``vech`` can
|
|
represent symmetric matrices in vector form with less size than
|
|
``vec``.
|
|
|
|
See Also
|
|
========
|
|
|
|
vec
|
|
"""
|
|
if not self.is_square:
|
|
raise NonSquareMatrixError
|
|
|
|
if check_symmetry and not self.is_symmetric():
|
|
raise ValueError("The matrix is not symmetric.")
|
|
|
|
return self._eval_vech(diagonal)
|
|
|
|
@classmethod
|
|
def vstack(cls, *args):
|
|
"""Return a matrix formed by joining args vertically (i.e.
|
|
by repeated application of col_join).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, eye
|
|
>>> Matrix.vstack(eye(2), 2*eye(2))
|
|
Matrix([
|
|
[1, 0],
|
|
[0, 1],
|
|
[2, 0],
|
|
[0, 2]])
|
|
"""
|
|
if len(args) == 0:
|
|
return cls._new()
|
|
|
|
kls = type(args[0])
|
|
return reduce(kls.col_join, args)
|
|
|
|
@classmethod
|
|
def _eval_diag(cls, rows, cols, diag_dict):
|
|
"""diag_dict is a defaultdict containing
|
|
all the entries of the diagonal matrix."""
|
|
def entry(i, j):
|
|
return diag_dict[(i, j)]
|
|
return cls._new(rows, cols, entry)
|
|
|
|
@classmethod
|
|
def _eval_eye(cls, rows, cols):
|
|
vals = [cls.zero]*(rows*cols)
|
|
vals[::cols+1] = [cls.one]*min(rows, cols)
|
|
return cls._new(rows, cols, vals, copy=False)
|
|
|
|
@classmethod
|
|
def _eval_jordan_block(cls, size: int, eigenvalue, band='upper'):
|
|
if band == 'lower':
|
|
def entry(i, j):
|
|
if i == j:
|
|
return eigenvalue
|
|
elif j + 1 == i:
|
|
return cls.one
|
|
return cls.zero
|
|
else:
|
|
def entry(i, j):
|
|
if i == j:
|
|
return eigenvalue
|
|
elif i + 1 == j:
|
|
return cls.one
|
|
return cls.zero
|
|
return cls._new(size, size, entry)
|
|
|
|
@classmethod
|
|
def _eval_ones(cls, rows, cols):
|
|
def entry(i, j):
|
|
return cls.one
|
|
return cls._new(rows, cols, entry)
|
|
|
|
@classmethod
|
|
def _eval_zeros(cls, rows, cols):
|
|
return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False)
|
|
|
|
@classmethod
|
|
def _eval_wilkinson(cls, n):
|
|
def entry(i, j):
|
|
return cls.one if i + 1 == j else cls.zero
|
|
|
|
D = cls._new(2*n + 1, 2*n + 1, entry)
|
|
|
|
wminus = cls.diag(list(range(-n, n + 1)), unpack=True) + D + D.T
|
|
wplus = abs(cls.diag(list(range(-n, n + 1)), unpack=True)) + D + D.T
|
|
|
|
return wminus, wplus
|
|
|
|
@classmethod
|
|
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
|
|
"""Returns a matrix with the specified diagonal.
|
|
If matrices are passed, a block-diagonal matrix
|
|
is created (i.e. the "direct sum" of the matrices).
|
|
|
|
kwargs
|
|
======
|
|
|
|
rows : rows of the resulting matrix; computed if
|
|
not given.
|
|
|
|
cols : columns of the resulting matrix; computed if
|
|
not given.
|
|
|
|
cls : class for the resulting matrix
|
|
|
|
unpack : bool which, when True (default), unpacks a single
|
|
sequence rather than interpreting it as a Matrix.
|
|
|
|
strict : bool which, when False (default), allows Matrices to
|
|
have variable-length rows.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> Matrix.diag(1, 2, 3)
|
|
Matrix([
|
|
[1, 0, 0],
|
|
[0, 2, 0],
|
|
[0, 0, 3]])
|
|
|
|
The current default is to unpack a single sequence. If this is
|
|
not desired, set `unpack=False` and it will be interpreted as
|
|
a matrix.
|
|
|
|
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
|
|
True
|
|
|
|
When more than one element is passed, each is interpreted as
|
|
something to put on the diagonal. Lists are converted to
|
|
matrices. Filling of the diagonal always continues from
|
|
the bottom right hand corner of the previous item: this
|
|
will create a block-diagonal matrix whether the matrices
|
|
are square or not.
|
|
|
|
>>> col = [1, 2, 3]
|
|
>>> row = [[4, 5]]
|
|
>>> Matrix.diag(col, row)
|
|
Matrix([
|
|
[1, 0, 0],
|
|
[2, 0, 0],
|
|
[3, 0, 0],
|
|
[0, 4, 5]])
|
|
|
|
When `unpack` is False, elements within a list need not all be
|
|
of the same length. Setting `strict` to True would raise a
|
|
ValueError for the following:
|
|
|
|
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
|
|
Matrix([
|
|
[1, 2, 3],
|
|
[4, 5, 0],
|
|
[6, 0, 0]])
|
|
|
|
The type of the returned matrix can be set with the ``cls``
|
|
keyword.
|
|
|
|
>>> from sympy import ImmutableMatrix
|
|
>>> from sympy.utilities.misc import func_name
|
|
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
|
|
'ImmutableDenseMatrix'
|
|
|
|
A zero dimension matrix can be used to position the start of
|
|
the filling at the start of an arbitrary row or column:
|
|
|
|
>>> from sympy import ones
|
|
>>> r2 = ones(0, 2)
|
|
>>> Matrix.diag(r2, 1, 2)
|
|
Matrix([
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 2]])
|
|
|
|
See Also
|
|
========
|
|
eye
|
|
diagonal
|
|
.dense.diag
|
|
.expressions.blockmatrix.BlockMatrix
|
|
.sparsetools.banded
|
|
"""
|
|
from sympy.matrices.matrixbase import MatrixBase
|
|
from sympy.matrices.dense import Matrix
|
|
from sympy.matrices import SparseMatrix
|
|
klass = kwargs.get('cls', kls)
|
|
if unpack and len(args) == 1 and is_sequence(args[0]) and \
|
|
not isinstance(args[0], MatrixBase):
|
|
args = args[0]
|
|
|
|
# fill a default dict with the diagonal entries
|
|
diag_entries = defaultdict(int)
|
|
rmax = cmax = 0 # keep track of the biggest index seen
|
|
for m in args:
|
|
if isinstance(m, list):
|
|
if strict:
|
|
# if malformed, Matrix will raise an error
|
|
_ = Matrix(m)
|
|
r, c = _.shape
|
|
m = _.tolist()
|
|
else:
|
|
r, c, smat = SparseMatrix._handle_creation_inputs(m)
|
|
for (i, j), _ in smat.items():
|
|
diag_entries[(i + rmax, j + cmax)] = _
|
|
m = [] # to skip process below
|
|
elif hasattr(m, 'shape'): # a Matrix
|
|
# convert to list of lists
|
|
r, c = m.shape
|
|
m = m.tolist()
|
|
else: # in this case, we're a single value
|
|
diag_entries[(rmax, cmax)] = m
|
|
rmax += 1
|
|
cmax += 1
|
|
continue
|
|
# process list of lists
|
|
for i, mi in enumerate(m):
|
|
for j, _ in enumerate(mi):
|
|
diag_entries[(i + rmax, j + cmax)] = _
|
|
rmax += r
|
|
cmax += c
|
|
if rows is None:
|
|
rows, cols = cols, rows
|
|
if rows is None:
|
|
rows, cols = rmax, cmax
|
|
else:
|
|
cols = rows if cols is None else cols
|
|
if rows < rmax or cols < cmax:
|
|
raise ValueError(filldedent('''
|
|
The constructed matrix is {} x {} but a size of {} x {}
|
|
was specified.'''.format(rmax, cmax, rows, cols)))
|
|
return klass._eval_diag(rows, cols, diag_entries)
|
|
|
|
@classmethod
|
|
def eye(kls, rows, cols=None, **kwargs):
|
|
"""Returns an identity matrix.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
rows : rows of the matrix
|
|
cols : cols of the matrix (if None, cols=rows)
|
|
|
|
kwargs
|
|
======
|
|
cls : class of the returned matrix
|
|
"""
|
|
if cols is None:
|
|
cols = rows
|
|
if rows < 0 or cols < 0:
|
|
raise ValueError("Cannot create a {} x {} matrix. "
|
|
"Both dimensions must be positive".format(rows, cols))
|
|
klass = kwargs.get('cls', kls)
|
|
rows, cols = as_int(rows), as_int(cols)
|
|
|
|
return klass._eval_eye(rows, cols)
|
|
|
|
@classmethod
|
|
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
|
|
"""Returns a Jordan block
|
|
|
|
Parameters
|
|
==========
|
|
|
|
size : Integer, optional
|
|
Specifies the shape of the Jordan block matrix.
|
|
|
|
eigenvalue : Number or Symbol
|
|
Specifies the value for the main diagonal of the matrix.
|
|
|
|
.. note::
|
|
The keyword ``eigenval`` is also specified as an alias
|
|
of this keyword, but it is not recommended to use.
|
|
|
|
We may deprecate the alias in later release.
|
|
|
|
band : 'upper' or 'lower', optional
|
|
Specifies the position of the off-diagonal to put `1` s on.
|
|
|
|
cls : Matrix, optional
|
|
Specifies the matrix class of the output form.
|
|
|
|
If it is not specified, the class type where the method is
|
|
being executed on will be returned.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Matrix
|
|
A Jordan block matrix.
|
|
|
|
Raises
|
|
======
|
|
|
|
ValueError
|
|
If insufficient arguments are given for matrix size
|
|
specification, or no eigenvalue is given.
|
|
|
|
Examples
|
|
========
|
|
|
|
Creating a default Jordan block:
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x
|
|
>>> Matrix.jordan_block(4, x)
|
|
Matrix([
|
|
[x, 1, 0, 0],
|
|
[0, x, 1, 0],
|
|
[0, 0, x, 1],
|
|
[0, 0, 0, x]])
|
|
|
|
Creating an alternative Jordan block matrix where `1` is on
|
|
lower off-diagonal:
|
|
|
|
>>> Matrix.jordan_block(4, x, band='lower')
|
|
Matrix([
|
|
[x, 0, 0, 0],
|
|
[1, x, 0, 0],
|
|
[0, 1, x, 0],
|
|
[0, 0, 1, x]])
|
|
|
|
Creating a Jordan block with keyword arguments
|
|
|
|
>>> Matrix.jordan_block(size=4, eigenvalue=x)
|
|
Matrix([
|
|
[x, 1, 0, 0],
|
|
[0, x, 1, 0],
|
|
[0, 0, x, 1],
|
|
[0, 0, 0, x]])
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
|
|
"""
|
|
klass = kwargs.pop('cls', kls)
|
|
|
|
eigenval = kwargs.get('eigenval', None)
|
|
if eigenvalue is None and eigenval is None:
|
|
raise ValueError("Must supply an eigenvalue")
|
|
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
|
|
raise ValueError(
|
|
"Inconsistent values are given: 'eigenval'={}, "
|
|
"'eigenvalue'={}".format(eigenval, eigenvalue))
|
|
else:
|
|
if eigenval is not None:
|
|
eigenvalue = eigenval
|
|
|
|
if size is None:
|
|
raise ValueError("Must supply a matrix size")
|
|
|
|
size = as_int(size)
|
|
return klass._eval_jordan_block(size, eigenvalue, band)
|
|
|
|
@classmethod
|
|
def ones(kls, rows, cols=None, **kwargs):
|
|
"""Returns a matrix of ones.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
rows : rows of the matrix
|
|
cols : cols of the matrix (if None, cols=rows)
|
|
|
|
kwargs
|
|
======
|
|
cls : class of the returned matrix
|
|
"""
|
|
if cols is None:
|
|
cols = rows
|
|
klass = kwargs.get('cls', kls)
|
|
rows, cols = as_int(rows), as_int(cols)
|
|
|
|
return klass._eval_ones(rows, cols)
|
|
|
|
@classmethod
|
|
def zeros(kls, rows, cols=None, **kwargs):
|
|
"""Returns a matrix of zeros.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
rows : rows of the matrix
|
|
cols : cols of the matrix (if None, cols=rows)
|
|
|
|
kwargs
|
|
======
|
|
cls : class of the returned matrix
|
|
"""
|
|
if cols is None:
|
|
cols = rows
|
|
if rows < 0 or cols < 0:
|
|
raise ValueError("Cannot create a {} x {} matrix. "
|
|
"Both dimensions must be positive".format(rows, cols))
|
|
klass = kwargs.get('cls', kls)
|
|
rows, cols = as_int(rows), as_int(cols)
|
|
|
|
return klass._eval_zeros(rows, cols)
|
|
|
|
@classmethod
|
|
def companion(kls, poly):
|
|
"""Returns a companion matrix of a polynomial.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, Poly, Symbol, symbols
|
|
>>> x = Symbol('x')
|
|
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
|
|
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
|
|
>>> Matrix.companion(p)
|
|
Matrix([
|
|
[0, 0, 0, 0, -c0],
|
|
[1, 0, 0, 0, -c1],
|
|
[0, 1, 0, 0, -c2],
|
|
[0, 0, 1, 0, -c3],
|
|
[0, 0, 0, 1, -c4]])
|
|
"""
|
|
poly = kls._sympify(poly)
|
|
if not isinstance(poly, Poly):
|
|
raise ValueError("{} must be a Poly instance.".format(poly))
|
|
if not poly.is_monic:
|
|
raise ValueError("{} must be a monic polynomial.".format(poly))
|
|
if not poly.is_univariate:
|
|
raise ValueError(
|
|
"{} must be a univariate polynomial.".format(poly))
|
|
|
|
size = poly.degree()
|
|
if not size >= 1:
|
|
raise ValueError(
|
|
"{} must have degree not less than 1.".format(poly))
|
|
|
|
coeffs = poly.all_coeffs()
|
|
def entry(i, j):
|
|
if j == size - 1:
|
|
return -coeffs[-1 - i]
|
|
elif i == j + 1:
|
|
return kls.one
|
|
return kls.zero
|
|
return kls._new(size, size, entry)
|
|
|
|
|
|
@classmethod
|
|
def wilkinson(kls, n, **kwargs):
|
|
"""Returns two square Wilkinson Matrix of size 2*n + 1
|
|
$W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n)
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> wminus, wplus = Matrix.wilkinson(3)
|
|
>>> wminus
|
|
Matrix([
|
|
[-3, 1, 0, 0, 0, 0, 0],
|
|
[ 1, -2, 1, 0, 0, 0, 0],
|
|
[ 0, 1, -1, 1, 0, 0, 0],
|
|
[ 0, 0, 1, 0, 1, 0, 0],
|
|
[ 0, 0, 0, 1, 1, 1, 0],
|
|
[ 0, 0, 0, 0, 1, 2, 1],
|
|
[ 0, 0, 0, 0, 0, 1, 3]])
|
|
>>> wplus
|
|
Matrix([
|
|
[3, 1, 0, 0, 0, 0, 0],
|
|
[1, 2, 1, 0, 0, 0, 0],
|
|
[0, 1, 1, 1, 0, 0, 0],
|
|
[0, 0, 1, 0, 1, 0, 0],
|
|
[0, 0, 0, 1, 1, 1, 0],
|
|
[0, 0, 0, 0, 1, 2, 1],
|
|
[0, 0, 0, 0, 0, 1, 3]])
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/
|
|
.. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp.
|
|
|
|
"""
|
|
klass = kwargs.get('cls', kls)
|
|
n = as_int(n)
|
|
return klass._eval_wilkinson(n)
|
|
|
|
# The RepMatrix subclass uses more efficient sparse implementations of
|
|
# _eval_iter_values and other things.
|
|
|
|
def _eval_iter_values(self):
|
|
return (i for i in self if i is not S.Zero)
|
|
|
|
def _eval_values(self):
|
|
return list(self.iter_values())
|
|
|
|
def _eval_iter_items(self):
|
|
for i in range(self.rows):
|
|
for j in range(self.cols):
|
|
if self[i, j]:
|
|
yield (i, j), self[i, j]
|
|
|
|
def _eval_atoms(self, *types):
|
|
values = self.values()
|
|
if len(values) < self.rows * self.cols and isinstance(S.Zero, types):
|
|
s = {S.Zero}
|
|
else:
|
|
s = set()
|
|
return s.union(*[v.atoms(*types) for v in values])
|
|
|
|
def _eval_free_symbols(self):
|
|
return set().union(*(i.free_symbols for i in set(self.values())))
|
|
|
|
def _eval_has(self, *patterns):
|
|
return any(a.has(*patterns) for a in self.iter_values())
|
|
|
|
def _eval_is_symbolic(self):
|
|
return self.has(Symbol)
|
|
|
|
# _eval_is_hermitian is called by some general SymPy
|
|
# routines and has a different *args signature. Make
|
|
# sure the names don't clash by adding `_matrix_` in name.
|
|
def _eval_is_matrix_hermitian(self, simpfunc):
|
|
herm = lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()).is_zero
|
|
return fuzzy_and(herm(i, j) for (i, j), v in self.iter_items())
|
|
|
|
def _eval_is_zero_matrix(self):
|
|
return fuzzy_and(v.is_zero for v in self.iter_values())
|
|
|
|
def _eval_is_Identity(self) -> FuzzyBool:
|
|
one = self.one
|
|
zero = self.zero
|
|
ident = lambda i, j, v: v is one if i == j else v is zero
|
|
return all(ident(i, j, v) for (i, j), v in self.iter_items())
|
|
|
|
def _eval_is_diagonal(self):
|
|
return fuzzy_and(v.is_zero for (i, j), v in self.iter_items() if i != j)
|
|
|
|
def _eval_is_lower(self):
|
|
return all(v.is_zero for (i, j), v in self.iter_items() if i < j)
|
|
|
|
def _eval_is_upper(self):
|
|
return all(v.is_zero for (i, j), v in self.iter_items() if i > j)
|
|
|
|
def _eval_is_lower_hessenberg(self):
|
|
return all(v.is_zero for (i, j), v in self.iter_items() if i + 1 < j)
|
|
|
|
def _eval_is_upper_hessenberg(self):
|
|
return all(v.is_zero for (i, j), v in self.iter_items() if i > j + 1)
|
|
|
|
def _eval_is_symmetric(self, simpfunc):
|
|
sym = lambda i, j: simpfunc(self[i, j] - self[j, i]).is_zero
|
|
return fuzzy_and(sym(i, j) for (i, j), v in self.iter_items())
|
|
|
|
def _eval_is_anti_symmetric(self, simpfunc):
|
|
anti = lambda i, j: simpfunc(self[i, j] + self[j, i]).is_zero
|
|
return fuzzy_and(anti(i, j) for (i, j), v in self.iter_items())
|
|
|
|
def _has_positive_diagonals(self):
|
|
diagonal_entries = (self[i, i] for i in range(self.rows))
|
|
return fuzzy_and(x.is_positive for x in diagonal_entries)
|
|
|
|
def _has_nonnegative_diagonals(self):
|
|
diagonal_entries = (self[i, i] for i in range(self.rows))
|
|
return fuzzy_and(x.is_nonnegative for x in diagonal_entries)
|
|
|
|
def atoms(self, *types):
|
|
"""Returns the atoms that form the current object.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import Matrix
|
|
>>> Matrix([[x]])
|
|
Matrix([[x]])
|
|
>>> _.atoms()
|
|
{x}
|
|
>>> Matrix([[x, y], [y, x]])
|
|
Matrix([
|
|
[x, y],
|
|
[y, x]])
|
|
>>> _.atoms()
|
|
{x, y}
|
|
"""
|
|
|
|
types = tuple(t if isinstance(t, type) else type(t) for t in types)
|
|
if not types:
|
|
types = (Atom,)
|
|
return self._eval_atoms(*types)
|
|
|
|
@property
|
|
def free_symbols(self):
|
|
"""Returns the free symbols within the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import Matrix
|
|
>>> Matrix([[x], [1]]).free_symbols
|
|
{x}
|
|
"""
|
|
return self._eval_free_symbols()
|
|
|
|
def has(self, *patterns):
|
|
"""Test whether any subexpression matches any of the patterns.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, SparseMatrix, Float
|
|
>>> from sympy.abc import x, y
|
|
>>> A = Matrix(((1, x), (0.2, 3)))
|
|
>>> B = SparseMatrix(((1, x), (0.2, 3)))
|
|
>>> A.has(x)
|
|
True
|
|
>>> A.has(y)
|
|
False
|
|
>>> A.has(Float)
|
|
True
|
|
>>> B.has(x)
|
|
True
|
|
>>> B.has(y)
|
|
False
|
|
>>> B.has(Float)
|
|
True
|
|
"""
|
|
return self._eval_has(*patterns)
|
|
|
|
def is_anti_symmetric(self, simplify=True):
|
|
"""Check if matrix M is an antisymmetric matrix,
|
|
that is, M is a square matrix with all M[i, j] == -M[j, i].
|
|
|
|
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
|
|
simplified before testing to see if it is zero. By default,
|
|
the SymPy simplify function is used. To use a custom function
|
|
set simplify to a function that accepts a single argument which
|
|
returns a simplified expression. To skip simplification, set
|
|
simplify to False but note that although this will be faster,
|
|
it may induce false negatives.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, symbols
|
|
>>> m = Matrix(2, 2, [0, 1, -1, 0])
|
|
>>> m
|
|
Matrix([
|
|
[ 0, 1],
|
|
[-1, 0]])
|
|
>>> m.is_anti_symmetric()
|
|
True
|
|
>>> x, y = symbols('x y')
|
|
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
|
|
>>> m
|
|
Matrix([
|
|
[ 0, 0, x],
|
|
[-y, 0, 0]])
|
|
>>> m.is_anti_symmetric()
|
|
False
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
|
|
... -(x + 1)**2, 0, x*y,
|
|
... -y, -x*y, 0])
|
|
|
|
Simplification of matrix elements is done by default so even
|
|
though two elements which should be equal and opposite would not
|
|
pass an equality test, the matrix is still reported as
|
|
anti-symmetric:
|
|
|
|
>>> m[0, 1] == -m[1, 0]
|
|
False
|
|
>>> m.is_anti_symmetric()
|
|
True
|
|
|
|
If ``simplify=False`` is used for the case when a Matrix is already
|
|
simplified, this will speed things up. Here, we see that without
|
|
simplification the matrix does not appear anti-symmetric:
|
|
|
|
>>> print(m.is_anti_symmetric(simplify=False))
|
|
None
|
|
|
|
But if the matrix were already expanded, then it would appear
|
|
anti-symmetric and simplification in the is_anti_symmetric routine
|
|
is not needed:
|
|
|
|
>>> m = m.expand()
|
|
>>> m.is_anti_symmetric(simplify=False)
|
|
True
|
|
"""
|
|
# accept custom simplification
|
|
simpfunc = simplify
|
|
if not isfunction(simplify):
|
|
simpfunc = _utilities_simplify if simplify else lambda x: x
|
|
|
|
if not self.is_square:
|
|
return False
|
|
return self._eval_is_anti_symmetric(simpfunc)
|
|
|
|
def is_diagonal(self):
|
|
"""Check if matrix is diagonal,
|
|
that is matrix in which the entries outside the main diagonal are all zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, diag
|
|
>>> m = Matrix(2, 2, [1, 0, 0, 2])
|
|
>>> m
|
|
Matrix([
|
|
[1, 0],
|
|
[0, 2]])
|
|
>>> m.is_diagonal()
|
|
True
|
|
|
|
>>> m = Matrix(2, 2, [1, 1, 0, 2])
|
|
>>> m
|
|
Matrix([
|
|
[1, 1],
|
|
[0, 2]])
|
|
>>> m.is_diagonal()
|
|
False
|
|
|
|
>>> m = diag(1, 2, 3)
|
|
>>> m
|
|
Matrix([
|
|
[1, 0, 0],
|
|
[0, 2, 0],
|
|
[0, 0, 3]])
|
|
>>> m.is_diagonal()
|
|
True
|
|
|
|
See Also
|
|
========
|
|
|
|
is_lower
|
|
is_upper
|
|
sympy.matrices.matrixbase.MatrixBase.is_diagonalizable
|
|
diagonalize
|
|
"""
|
|
return self._eval_is_diagonal()
|
|
|
|
@property
|
|
def is_weakly_diagonally_dominant(self):
|
|
r"""Tests if the matrix is row weakly diagonally dominant.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
A $n, n$ matrix $A$ is row weakly diagonally dominant if
|
|
|
|
.. math::
|
|
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
|
|
\left|A_{i, j}\right| \quad {\text{for all }}
|
|
i \in \{ 0, ..., n-1 \}
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
|
|
>>> A.is_weakly_diagonally_dominant
|
|
True
|
|
|
|
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
|
|
>>> A.is_weakly_diagonally_dominant
|
|
False
|
|
|
|
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
|
|
>>> A.is_weakly_diagonally_dominant
|
|
True
|
|
|
|
Notes
|
|
=====
|
|
|
|
If you want to test whether a matrix is column diagonally
|
|
dominant, you can apply the test after transposing the matrix.
|
|
"""
|
|
if not self.is_square:
|
|
return False
|
|
|
|
rows, cols = self.shape
|
|
|
|
def test_row(i):
|
|
summation = self.zero
|
|
for j in range(cols):
|
|
if i != j:
|
|
summation += Abs(self[i, j])
|
|
return (Abs(self[i, i]) - summation).is_nonnegative
|
|
|
|
return fuzzy_and(test_row(i) for i in range(rows))
|
|
|
|
@property
|
|
def is_strongly_diagonally_dominant(self):
|
|
r"""Tests if the matrix is row strongly diagonally dominant.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
A $n, n$ matrix $A$ is row strongly diagonally dominant if
|
|
|
|
.. math::
|
|
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
|
|
\left|A_{i, j}\right| \quad {\text{for all }}
|
|
i \in \{ 0, ..., n-1 \}
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
|
|
>>> A.is_strongly_diagonally_dominant
|
|
False
|
|
|
|
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
|
|
>>> A.is_strongly_diagonally_dominant
|
|
False
|
|
|
|
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
|
|
>>> A.is_strongly_diagonally_dominant
|
|
True
|
|
|
|
Notes
|
|
=====
|
|
|
|
If you want to test whether a matrix is column diagonally
|
|
dominant, you can apply the test after transposing the matrix.
|
|
"""
|
|
if not self.is_square:
|
|
return False
|
|
|
|
rows, cols = self.shape
|
|
|
|
def test_row(i):
|
|
summation = self.zero
|
|
for j in range(cols):
|
|
if i != j:
|
|
summation += Abs(self[i, j])
|
|
return (Abs(self[i, i]) - summation).is_positive
|
|
|
|
return fuzzy_and(test_row(i) for i in range(rows))
|
|
|
|
@property
|
|
def is_hermitian(self):
|
|
"""Checks if the matrix is Hermitian.
|
|
|
|
In a Hermitian matrix element i,j is the complex conjugate of
|
|
element j,i.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy import I
|
|
>>> from sympy.abc import x
|
|
>>> a = Matrix([[1, I], [-I, 1]])
|
|
>>> a
|
|
Matrix([
|
|
[ 1, I],
|
|
[-I, 1]])
|
|
>>> a.is_hermitian
|
|
True
|
|
>>> a[0, 0] = 2*I
|
|
>>> a.is_hermitian
|
|
False
|
|
>>> a[0, 0] = x
|
|
>>> a.is_hermitian
|
|
>>> a[0, 1] = a[1, 0]*I
|
|
>>> a.is_hermitian
|
|
False
|
|
"""
|
|
if not self.is_square:
|
|
return False
|
|
|
|
return self._eval_is_matrix_hermitian(_utilities_simplify)
|
|
|
|
@property
|
|
def is_Identity(self) -> FuzzyBool:
|
|
if not self.is_square:
|
|
return False
|
|
return self._eval_is_Identity()
|
|
|
|
@property
|
|
def is_lower_hessenberg(self):
|
|
r"""Checks if the matrix is in the lower-Hessenberg form.
|
|
|
|
The lower hessenberg matrix has zero entries
|
|
above the first superdiagonal.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
|
|
>>> a
|
|
Matrix([
|
|
[1, 2, 0, 0],
|
|
[5, 2, 3, 0],
|
|
[3, 4, 3, 7],
|
|
[5, 6, 1, 1]])
|
|
>>> a.is_lower_hessenberg
|
|
True
|
|
|
|
See Also
|
|
========
|
|
|
|
is_upper_hessenberg
|
|
is_lower
|
|
"""
|
|
return self._eval_is_lower_hessenberg()
|
|
|
|
@property
|
|
def is_lower(self):
|
|
"""Check if matrix is a lower triangular matrix. True can be returned
|
|
even if the matrix is not square.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(2, 2, [1, 0, 0, 1])
|
|
>>> m
|
|
Matrix([
|
|
[1, 0],
|
|
[0, 1]])
|
|
>>> m.is_lower
|
|
True
|
|
|
|
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
|
|
>>> m
|
|
Matrix([
|
|
[0, 0, 0],
|
|
[2, 0, 0],
|
|
[1, 4, 0],
|
|
[6, 6, 5]])
|
|
>>> m.is_lower
|
|
True
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
|
|
>>> m
|
|
Matrix([
|
|
[x**2 + y, x + y**2],
|
|
[ 0, x + y]])
|
|
>>> m.is_lower
|
|
False
|
|
|
|
See Also
|
|
========
|
|
|
|
is_upper
|
|
is_diagonal
|
|
is_lower_hessenberg
|
|
"""
|
|
return self._eval_is_lower()
|
|
|
|
@property
|
|
def is_square(self):
|
|
"""Checks if a matrix is square.
|
|
|
|
A matrix is square if the number of rows equals the number of columns.
|
|
The empty matrix is square by definition, since the number of rows and
|
|
the number of columns are both zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
|
|
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> c = Matrix([])
|
|
>>> a.is_square
|
|
False
|
|
>>> b.is_square
|
|
True
|
|
>>> c.is_square
|
|
True
|
|
"""
|
|
return self.rows == self.cols
|
|
|
|
def is_symbolic(self):
|
|
"""Checks if any elements contain Symbols.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x, y
|
|
>>> M = Matrix([[x, y], [1, 0]])
|
|
>>> M.is_symbolic()
|
|
True
|
|
|
|
"""
|
|
return self._eval_is_symbolic()
|
|
|
|
def is_symmetric(self, simplify=True):
|
|
"""Check if matrix is symmetric matrix,
|
|
that is square matrix and is equal to its transpose.
|
|
|
|
By default, simplifications occur before testing symmetry.
|
|
They can be skipped using 'simplify=False'; while speeding things a bit,
|
|
this may however induce false negatives.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(2, 2, [0, 1, 1, 2])
|
|
>>> m
|
|
Matrix([
|
|
[0, 1],
|
|
[1, 2]])
|
|
>>> m.is_symmetric()
|
|
True
|
|
|
|
>>> m = Matrix(2, 2, [0, 1, 2, 0])
|
|
>>> m
|
|
Matrix([
|
|
[0, 1],
|
|
[2, 0]])
|
|
>>> m.is_symmetric()
|
|
False
|
|
|
|
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
|
|
>>> m
|
|
Matrix([
|
|
[0, 0, 0],
|
|
[0, 0, 0]])
|
|
>>> m.is_symmetric()
|
|
False
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
|
|
>>> m
|
|
Matrix([
|
|
[ 1, x**2 + 2*x + 1, y],
|
|
[(x + 1)**2, 2, 0],
|
|
[ y, 0, 3]])
|
|
>>> m.is_symmetric()
|
|
True
|
|
|
|
If the matrix is already simplified, you may speed-up is_symmetric()
|
|
test by using 'simplify=False'.
|
|
|
|
>>> bool(m.is_symmetric(simplify=False))
|
|
False
|
|
>>> m1 = m.expand()
|
|
>>> m1.is_symmetric(simplify=False)
|
|
True
|
|
"""
|
|
simpfunc = simplify
|
|
if not isfunction(simplify):
|
|
simpfunc = _utilities_simplify if simplify else lambda x: x
|
|
|
|
if not self.is_square:
|
|
return False
|
|
|
|
return self._eval_is_symmetric(simpfunc)
|
|
|
|
@property
|
|
def is_upper_hessenberg(self):
|
|
"""Checks if the matrix is the upper-Hessenberg form.
|
|
|
|
The upper hessenberg matrix has zero entries
|
|
below the first subdiagonal.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
|
|
>>> a
|
|
Matrix([
|
|
[1, 4, 2, 3],
|
|
[3, 4, 1, 7],
|
|
[0, 2, 3, 4],
|
|
[0, 0, 1, 3]])
|
|
>>> a.is_upper_hessenberg
|
|
True
|
|
|
|
See Also
|
|
========
|
|
|
|
is_lower_hessenberg
|
|
is_upper
|
|
"""
|
|
return self._eval_is_upper_hessenberg()
|
|
|
|
@property
|
|
def is_upper(self):
|
|
"""Check if matrix is an upper triangular matrix. True can be returned
|
|
even if the matrix is not square.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(2, 2, [1, 0, 0, 1])
|
|
>>> m
|
|
Matrix([
|
|
[1, 0],
|
|
[0, 1]])
|
|
>>> m.is_upper
|
|
True
|
|
|
|
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
|
|
>>> m
|
|
Matrix([
|
|
[5, 1, 9],
|
|
[0, 4, 6],
|
|
[0, 0, 5],
|
|
[0, 0, 0]])
|
|
>>> m.is_upper
|
|
True
|
|
|
|
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
|
|
>>> m
|
|
Matrix([
|
|
[4, 2, 5],
|
|
[6, 1, 1]])
|
|
>>> m.is_upper
|
|
False
|
|
|
|
See Also
|
|
========
|
|
|
|
is_lower
|
|
is_diagonal
|
|
is_upper_hessenberg
|
|
"""
|
|
return self._eval_is_upper()
|
|
|
|
@property
|
|
def is_zero_matrix(self):
|
|
"""Checks if a matrix is a zero matrix.
|
|
|
|
A matrix is zero if every element is zero. A matrix need not be square
|
|
to be considered zero. The empty matrix is zero by the principle of
|
|
vacuous truth. For a matrix that may or may not be zero (e.g.
|
|
contains a symbol), this will be None
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, zeros
|
|
>>> from sympy.abc import x
|
|
>>> a = Matrix([[0, 0], [0, 0]])
|
|
>>> b = zeros(3, 4)
|
|
>>> c = Matrix([[0, 1], [0, 0]])
|
|
>>> d = Matrix([])
|
|
>>> e = Matrix([[x, 0], [0, 0]])
|
|
>>> a.is_zero_matrix
|
|
True
|
|
>>> b.is_zero_matrix
|
|
True
|
|
>>> c.is_zero_matrix
|
|
False
|
|
>>> d.is_zero_matrix
|
|
True
|
|
>>> e.is_zero_matrix
|
|
"""
|
|
return self._eval_is_zero_matrix()
|
|
|
|
def values(self):
|
|
"""Return non-zero values of self.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix([[0, 1], [2, 3]])
|
|
>>> m.values()
|
|
[1, 2, 3]
|
|
|
|
See Also
|
|
========
|
|
|
|
iter_values
|
|
tolist
|
|
flat
|
|
"""
|
|
return self._eval_values()
|
|
|
|
def iter_values(self):
|
|
"""
|
|
Iterate over non-zero values of self.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix([[0, 1], [2, 3]])
|
|
>>> list(m.iter_values())
|
|
[1, 2, 3]
|
|
|
|
See Also
|
|
========
|
|
|
|
values
|
|
"""
|
|
return self._eval_iter_values()
|
|
|
|
def iter_items(self):
|
|
"""Iterate over indices and values of nonzero items.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix([[0, 1], [2, 3]])
|
|
>>> list(m.iter_items())
|
|
[((0, 1), 1), ((1, 0), 2), ((1, 1), 3)]
|
|
|
|
See Also
|
|
========
|
|
|
|
iter_values
|
|
todok
|
|
"""
|
|
return self._eval_iter_items()
|
|
|
|
def _eval_adjoint(self):
|
|
return self.transpose().conjugate()
|
|
|
|
def _eval_applyfunc(self, f):
|
|
cols = self.cols
|
|
size = self.rows*self.cols
|
|
|
|
dok = self.todok()
|
|
valmap = {v: f(v) for v in dok.values()}
|
|
|
|
if len(dok) < size and ((fzero := f(S.Zero)) is not S.Zero):
|
|
out_flat = [fzero]*size
|
|
for (i, j), v in dok.items():
|
|
out_flat[i*cols + j] = valmap[v]
|
|
out = self._new(self.rows, self.cols, out_flat)
|
|
else:
|
|
fdok = {ij: valmap[v] for ij, v in dok.items()}
|
|
out = self.from_dok(self.rows, self.cols, fdok)
|
|
|
|
return out
|
|
|
|
def _eval_as_real_imag(self): # type: ignore
|
|
return (self.applyfunc(re), self.applyfunc(im))
|
|
|
|
def _eval_conjugate(self):
|
|
return self.applyfunc(lambda x: x.conjugate())
|
|
|
|
def _eval_permute_cols(self, perm):
|
|
# apply the permutation to a list
|
|
mapping = list(perm)
|
|
|
|
def entry(i, j):
|
|
return self[i, mapping[j]]
|
|
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_permute_rows(self, perm):
|
|
# apply the permutation to a list
|
|
mapping = list(perm)
|
|
|
|
def entry(i, j):
|
|
return self[mapping[i], j]
|
|
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_trace(self):
|
|
return sum(self[i, i] for i in range(self.rows))
|
|
|
|
def _eval_transpose(self):
|
|
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
|
|
|
|
def adjoint(self):
|
|
"""Conjugate transpose or Hermitian conjugation."""
|
|
return self._eval_adjoint()
|
|
|
|
def applyfunc(self, f):
|
|
"""Apply a function to each element of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
|
|
>>> m
|
|
Matrix([
|
|
[0, 1],
|
|
[2, 3]])
|
|
>>> m.applyfunc(lambda i: 2*i)
|
|
Matrix([
|
|
[0, 2],
|
|
[4, 6]])
|
|
|
|
"""
|
|
if not callable(f):
|
|
raise TypeError("`f` must be callable.")
|
|
|
|
return self._eval_applyfunc(f)
|
|
|
|
def as_real_imag(self, deep=True, **hints):
|
|
"""Returns a tuple containing the (real, imaginary) part of matrix."""
|
|
# XXX: Ignoring deep and hints...
|
|
return self._eval_as_real_imag()
|
|
|
|
def conjugate(self):
|
|
"""Return the by-element conjugation.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import SparseMatrix, I
|
|
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
|
|
>>> a
|
|
Matrix([
|
|
[1, 2 + I],
|
|
[3, 4],
|
|
[I, -I]])
|
|
>>> a.C
|
|
Matrix([
|
|
[ 1, 2 - I],
|
|
[ 3, 4],
|
|
[-I, I]])
|
|
|
|
See Also
|
|
========
|
|
|
|
transpose: Matrix transposition
|
|
H: Hermite conjugation
|
|
sympy.matrices.matrixbase.MatrixBase.D: Dirac conjugation
|
|
"""
|
|
return self._eval_conjugate()
|
|
|
|
def doit(self, **hints):
|
|
return self.applyfunc(lambda x: x.doit(**hints))
|
|
|
|
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
|
|
"""Apply evalf() to each element of self."""
|
|
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
|
|
'quad':quad, 'verbose':verbose}
|
|
return self.applyfunc(lambda i: i.evalf(n, **options))
|
|
|
|
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
|
|
mul=True, log=True, multinomial=True, basic=True, **hints):
|
|
"""Apply core.function.expand to each entry of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x
|
|
>>> from sympy import Matrix
|
|
>>> Matrix(1, 1, [x*(x+1)])
|
|
Matrix([[x*(x + 1)]])
|
|
>>> _.expand()
|
|
Matrix([[x**2 + x]])
|
|
|
|
"""
|
|
return self.applyfunc(lambda x: x.expand(
|
|
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
|
|
**hints))
|
|
|
|
@property
|
|
def H(self):
|
|
"""Return Hermite conjugate.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, I
|
|
>>> m = Matrix((0, 1 + I, 2, 3))
|
|
>>> m
|
|
Matrix([
|
|
[ 0],
|
|
[1 + I],
|
|
[ 2],
|
|
[ 3]])
|
|
>>> m.H
|
|
Matrix([[0, 1 - I, 2, 3]])
|
|
|
|
See Also
|
|
========
|
|
|
|
conjugate: By-element conjugation
|
|
sympy.matrices.matrixbase.MatrixBase.D: Dirac conjugation
|
|
"""
|
|
return self.T.C
|
|
|
|
def permute(self, perm, orientation='rows', direction='forward'):
|
|
r"""Permute the rows or columns of a matrix by the given list of
|
|
swaps.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
perm : Permutation, list, or list of lists
|
|
A representation for the permutation.
|
|
|
|
If it is ``Permutation``, it is used directly with some
|
|
resizing with respect to the matrix size.
|
|
|
|
If it is specified as list of lists,
|
|
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
|
|
from applying the product of cycles. The direction how the
|
|
cyclic product is applied is described in below.
|
|
|
|
If it is specified as a list, the list should represent
|
|
an array form of a permutation. (e.g., ``[1, 2, 0]``) which
|
|
would would form the swapping function
|
|
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
|
|
|
|
orientation : 'rows', 'cols'
|
|
A flag to control whether to permute the rows or the columns
|
|
|
|
direction : 'forward', 'backward'
|
|
A flag to control whether to apply the permutations from
|
|
the start of the list first, or from the back of the list
|
|
first.
|
|
|
|
For example, if the permutation specification is
|
|
``[[0, 1], [0, 2]]``,
|
|
|
|
If the flag is set to ``'forward'``, the cycle would be
|
|
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
|
|
|
|
If the flag is set to ``'backward'``, the cycle would be
|
|
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
|
|
|
|
If the argument ``perm`` is not in a form of list of lists,
|
|
this flag takes no effect.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import eye
|
|
>>> M = eye(3)
|
|
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
|
|
Matrix([
|
|
[0, 0, 1],
|
|
[1, 0, 0],
|
|
[0, 1, 0]])
|
|
|
|
>>> from sympy import eye
|
|
>>> M = eye(3)
|
|
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
|
|
Matrix([
|
|
[0, 1, 0],
|
|
[0, 0, 1],
|
|
[1, 0, 0]])
|
|
|
|
Notes
|
|
=====
|
|
|
|
If a bijective function
|
|
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
|
|
permutation.
|
|
|
|
If the matrix `A` is the matrix to permute, represented as
|
|
a horizontal or a vertical stack of vectors:
|
|
|
|
.. math::
|
|
A =
|
|
\begin{bmatrix}
|
|
a_0 \\ a_1 \\ \vdots \\ a_{n-1}
|
|
\end{bmatrix} =
|
|
\begin{bmatrix}
|
|
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
|
|
\end{bmatrix}
|
|
|
|
If the matrix `B` is the result, the permutation of matrix rows
|
|
is defined as:
|
|
|
|
.. math::
|
|
B := \begin{bmatrix}
|
|
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
|
|
\end{bmatrix}
|
|
|
|
And the permutation of matrix columns is defined as:
|
|
|
|
.. math::
|
|
B := \begin{bmatrix}
|
|
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
|
|
\cdots & \alpha_{\sigma(n-1)}
|
|
\end{bmatrix}
|
|
"""
|
|
from sympy.combinatorics import Permutation
|
|
|
|
# allow british variants and `columns`
|
|
if direction == 'forwards':
|
|
direction = 'forward'
|
|
if direction == 'backwards':
|
|
direction = 'backward'
|
|
if orientation == 'columns':
|
|
orientation = 'cols'
|
|
|
|
if direction not in ('forward', 'backward'):
|
|
raise TypeError("direction='{}' is an invalid kwarg. "
|
|
"Try 'forward' or 'backward'".format(direction))
|
|
if orientation not in ('rows', 'cols'):
|
|
raise TypeError("orientation='{}' is an invalid kwarg. "
|
|
"Try 'rows' or 'cols'".format(orientation))
|
|
|
|
if not isinstance(perm, (Permutation, Iterable)):
|
|
raise ValueError(
|
|
"{} must be a list, a list of lists, "
|
|
"or a SymPy permutation object.".format(perm))
|
|
|
|
# ensure all swaps are in range
|
|
max_index = self.rows if orientation == 'rows' else self.cols
|
|
if not all(0 <= t <= max_index for t in flatten(list(perm))):
|
|
raise IndexError("`swap` indices out of range.")
|
|
|
|
if perm and not isinstance(perm, Permutation) and \
|
|
isinstance(perm[0], Iterable):
|
|
if direction == 'forward':
|
|
perm = list(reversed(perm))
|
|
perm = Permutation(perm, size=max_index+1)
|
|
else:
|
|
perm = Permutation(perm, size=max_index+1)
|
|
|
|
if orientation == 'rows':
|
|
return self._eval_permute_rows(perm)
|
|
if orientation == 'cols':
|
|
return self._eval_permute_cols(perm)
|
|
|
|
def permute_cols(self, swaps, direction='forward'):
|
|
"""Alias for
|
|
``self.permute(swaps, orientation='cols', direction=direction)``
|
|
|
|
See Also
|
|
========
|
|
|
|
permute
|
|
"""
|
|
return self.permute(swaps, orientation='cols', direction=direction)
|
|
|
|
def permute_rows(self, swaps, direction='forward'):
|
|
"""Alias for
|
|
``self.permute(swaps, orientation='rows', direction=direction)``
|
|
|
|
See Also
|
|
========
|
|
|
|
permute
|
|
"""
|
|
return self.permute(swaps, orientation='rows', direction=direction)
|
|
|
|
def refine(self, assumptions=True):
|
|
"""Apply refine to each element of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
|
|
>>> x = Symbol('x')
|
|
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
|
|
Matrix([
|
|
[ Abs(x)**2, sqrt(x**2)],
|
|
[sqrt(x**2), Abs(x)**2]])
|
|
>>> _.refine(Q.real(x))
|
|
Matrix([
|
|
[ x**2, Abs(x)],
|
|
[Abs(x), x**2]])
|
|
|
|
"""
|
|
return self.applyfunc(lambda x: refine(x, assumptions))
|
|
|
|
def replace(self, F, G, map=False, simultaneous=True, exact=None):
|
|
"""Replaces Function F in Matrix entries with Function G.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import symbols, Function, Matrix
|
|
>>> F, G = symbols('F, G', cls=Function)
|
|
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
|
|
Matrix([
|
|
[F(0), F(1)],
|
|
[F(1), F(2)]])
|
|
>>> N = M.replace(F,G)
|
|
>>> N
|
|
Matrix([
|
|
[G(0), G(1)],
|
|
[G(1), G(2)]])
|
|
"""
|
|
kwargs = {'map': map, 'simultaneous': simultaneous, 'exact': exact}
|
|
|
|
if map:
|
|
|
|
d = {}
|
|
def func(eij):
|
|
eij, dij = eij.replace(F, G, **kwargs)
|
|
d.update(dij)
|
|
return eij
|
|
|
|
M = self.applyfunc(func)
|
|
return M, d
|
|
|
|
else:
|
|
return self.applyfunc(lambda i: i.replace(F, G, **kwargs))
|
|
|
|
def rot90(self, k=1):
|
|
"""Rotates Matrix by 90 degrees
|
|
|
|
Parameters
|
|
==========
|
|
|
|
k : int
|
|
Specifies how many times the matrix is rotated by 90 degrees
|
|
(clockwise when positive, counter-clockwise when negative).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, symbols
|
|
>>> A = Matrix(2, 2, symbols('a:d'))
|
|
>>> A
|
|
Matrix([
|
|
[a, b],
|
|
[c, d]])
|
|
|
|
Rotating the matrix clockwise one time:
|
|
|
|
>>> A.rot90(1)
|
|
Matrix([
|
|
[c, a],
|
|
[d, b]])
|
|
|
|
Rotating the matrix anticlockwise two times:
|
|
|
|
>>> A.rot90(-2)
|
|
Matrix([
|
|
[d, c],
|
|
[b, a]])
|
|
"""
|
|
|
|
mod = k%4
|
|
if mod == 0:
|
|
return self
|
|
if mod == 1:
|
|
return self[::-1, ::].T
|
|
if mod == 2:
|
|
return self[::-1, ::-1]
|
|
if mod == 3:
|
|
return self[::, ::-1].T
|
|
|
|
def simplify(self, **kwargs):
|
|
"""Apply simplify to each element of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import SparseMatrix, sin, cos
|
|
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
|
|
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
|
|
>>> _.simplify()
|
|
Matrix([[x]])
|
|
"""
|
|
return self.applyfunc(lambda x: x.simplify(**kwargs))
|
|
|
|
def subs(self, *args, **kwargs): # should mirror core.basic.subs
|
|
"""Return a new matrix with subs applied to each entry.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import SparseMatrix, Matrix
|
|
>>> SparseMatrix(1, 1, [x])
|
|
Matrix([[x]])
|
|
>>> _.subs(x, y)
|
|
Matrix([[y]])
|
|
>>> Matrix(_).subs(y, x)
|
|
Matrix([[x]])
|
|
"""
|
|
|
|
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
|
|
args = (list(args[0]),)
|
|
|
|
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
|
|
|
|
def trace(self):
|
|
"""
|
|
Returns the trace of a square matrix i.e. the sum of the
|
|
diagonal elements.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix(2, 2, [1, 2, 3, 4])
|
|
>>> A.trace()
|
|
5
|
|
|
|
"""
|
|
if self.rows != self.cols:
|
|
raise NonSquareMatrixError()
|
|
return self._eval_trace()
|
|
|
|
def transpose(self):
|
|
"""
|
|
Returns the transpose of the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix(2, 2, [1, 2, 3, 4])
|
|
>>> A.transpose()
|
|
Matrix([
|
|
[1, 3],
|
|
[2, 4]])
|
|
|
|
>>> from sympy import Matrix, I
|
|
>>> m=Matrix(((1, 2+I), (3, 4)))
|
|
>>> m
|
|
Matrix([
|
|
[1, 2 + I],
|
|
[3, 4]])
|
|
>>> m.transpose()
|
|
Matrix([
|
|
[ 1, 3],
|
|
[2 + I, 4]])
|
|
>>> m.T == m.transpose()
|
|
True
|
|
|
|
See Also
|
|
========
|
|
|
|
conjugate: By-element conjugation
|
|
|
|
"""
|
|
return self._eval_transpose()
|
|
|
|
@property
|
|
def T(self):
|
|
'''Matrix transposition'''
|
|
return self.transpose()
|
|
|
|
@property
|
|
def C(self):
|
|
'''By-element conjugation'''
|
|
return self.conjugate()
|
|
|
|
def n(self, *args, **kwargs):
|
|
"""Apply evalf() to each element of self."""
|
|
return self.evalf(*args, **kwargs)
|
|
|
|
def xreplace(self, rule): # should mirror core.basic.xreplace
|
|
"""Return a new matrix with xreplace applied to each entry.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import SparseMatrix, Matrix
|
|
>>> SparseMatrix(1, 1, [x])
|
|
Matrix([[x]])
|
|
>>> _.xreplace({x: y})
|
|
Matrix([[y]])
|
|
>>> Matrix(_).xreplace({y: x})
|
|
Matrix([[x]])
|
|
"""
|
|
return self.applyfunc(lambda x: x.xreplace(rule))
|
|
|
|
def _eval_simplify(self, **kwargs):
|
|
# XXX: We can't use self.simplify here as mutable subclasses will
|
|
# override simplify and have it return None
|
|
return self.applyfunc(lambda x: x.simplify(**kwargs))
|
|
|
|
def _eval_trigsimp(self, **opts):
|
|
from sympy.simplify.trigsimp import trigsimp
|
|
return self.applyfunc(lambda x: trigsimp(x, **opts))
|
|
|
|
def upper_triangular(self, k=0):
|
|
"""Return the elements on and above the kth diagonal of a matrix.
|
|
If k is not specified then simply returns upper-triangular portion
|
|
of a matrix
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ones
|
|
>>> A = ones(4)
|
|
>>> A.upper_triangular()
|
|
Matrix([
|
|
[1, 1, 1, 1],
|
|
[0, 1, 1, 1],
|
|
[0, 0, 1, 1],
|
|
[0, 0, 0, 1]])
|
|
|
|
>>> A.upper_triangular(2)
|
|
Matrix([
|
|
[0, 0, 1, 1],
|
|
[0, 0, 0, 1],
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 0]])
|
|
|
|
>>> A.upper_triangular(-1)
|
|
Matrix([
|
|
[1, 1, 1, 1],
|
|
[1, 1, 1, 1],
|
|
[0, 1, 1, 1],
|
|
[0, 0, 1, 1]])
|
|
|
|
"""
|
|
|
|
def entry(i, j):
|
|
return self[i, j] if i + k <= j else self.zero
|
|
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def lower_triangular(self, k=0):
|
|
"""Return the elements on and below the kth diagonal of a matrix.
|
|
If k is not specified then simply returns lower-triangular portion
|
|
of a matrix
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ones
|
|
>>> A = ones(4)
|
|
>>> A.lower_triangular()
|
|
Matrix([
|
|
[1, 0, 0, 0],
|
|
[1, 1, 0, 0],
|
|
[1, 1, 1, 0],
|
|
[1, 1, 1, 1]])
|
|
|
|
>>> A.lower_triangular(-2)
|
|
Matrix([
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 1, 0, 0]])
|
|
|
|
>>> A.lower_triangular(1)
|
|
Matrix([
|
|
[1, 1, 0, 0],
|
|
[1, 1, 1, 0],
|
|
[1, 1, 1, 1],
|
|
[1, 1, 1, 1]])
|
|
|
|
"""
|
|
|
|
def entry(i, j):
|
|
return self[i, j] if i + k >= j else self.zero
|
|
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_Abs(self):
|
|
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
|
|
|
|
def _eval_add(self, other):
|
|
return self._new(self.rows, self.cols,
|
|
lambda i, j: self[i, j] + other[i, j])
|
|
|
|
def _eval_matrix_mul(self, other):
|
|
def entry(i, j):
|
|
vec = [self[i,k]*other[k,j] for k in range(self.cols)]
|
|
try:
|
|
return Add(*vec)
|
|
except (TypeError, SympifyError):
|
|
# Some matrices don't work with `sum` or `Add`
|
|
# They don't work with `sum` because `sum` tries to add `0`
|
|
# Fall back to a safe way to multiply if the `Add` fails.
|
|
return reduce(lambda a, b: a + b, vec)
|
|
|
|
return self._new(self.rows, other.cols, entry)
|
|
|
|
def _eval_matrix_mul_elementwise(self, other):
|
|
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
|
|
|
|
def _eval_matrix_rmul(self, other):
|
|
def entry(i, j):
|
|
return sum(other[i,k]*self[k,j] for k in range(other.cols))
|
|
return self._new(other.rows, self.cols, entry)
|
|
|
|
def _eval_pow_by_recursion(self, num):
|
|
if num == 1:
|
|
return self
|
|
|
|
if num % 2 == 1:
|
|
a, b = self, self._eval_pow_by_recursion(num - 1)
|
|
else:
|
|
a = b = self._eval_pow_by_recursion(num // 2)
|
|
|
|
return a.multiply(b)
|
|
|
|
def _eval_pow_by_cayley(self, exp):
|
|
from sympy.discrete.recurrences import linrec_coeffs
|
|
row = self.shape[0]
|
|
p = self.charpoly()
|
|
|
|
coeffs = (-p).all_coeffs()[1:]
|
|
coeffs = linrec_coeffs(coeffs, exp)
|
|
new_mat = self.eye(row)
|
|
ans = self.zeros(row)
|
|
|
|
for i in range(row):
|
|
ans += coeffs[i]*new_mat
|
|
new_mat *= self
|
|
|
|
return ans
|
|
|
|
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
|
|
if prevsimp is None:
|
|
prevsimp = [True]*len(self)
|
|
|
|
if num == 1:
|
|
return self
|
|
|
|
if num % 2 == 1:
|
|
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
|
|
prevsimp=prevsimp)
|
|
else:
|
|
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
|
|
prevsimp=prevsimp)
|
|
|
|
m = a.multiply(b, dotprodsimp=False)
|
|
lenm = len(m)
|
|
elems = [None]*lenm
|
|
|
|
for i in range(lenm):
|
|
if prevsimp[i]:
|
|
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
|
|
else:
|
|
elems[i] = m[i]
|
|
|
|
return m._new(m.rows, m.cols, elems)
|
|
|
|
def _eval_scalar_mul(self, other):
|
|
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
|
|
|
|
def _eval_scalar_rmul(self, other):
|
|
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
|
|
|
|
def _eval_Mod(self, other):
|
|
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
|
|
|
|
# Python arithmetic functions
|
|
def __abs__(self):
|
|
"""Returns a new matrix with entry-wise absolute values."""
|
|
return self._eval_Abs()
|
|
|
|
@call_highest_priority('__radd__')
|
|
def __add__(self, other):
|
|
"""Return self + other, raising ShapeError if shapes do not match."""
|
|
|
|
other, T = _coerce_operand(self, other)
|
|
|
|
if T != "is_matrix":
|
|
return NotImplemented
|
|
|
|
if self.shape != other.shape:
|
|
raise ShapeError(f"Matrix size mismatch: {self.shape} + {other.shape}.")
|
|
|
|
# Unify matrix types
|
|
a, b = self, other
|
|
if a.__class__ != classof(a, b):
|
|
b, a = a, b
|
|
|
|
return a._eval_add(b)
|
|
|
|
@call_highest_priority('__rtruediv__')
|
|
def __truediv__(self, other):
|
|
return self * (self.one / other)
|
|
|
|
@call_highest_priority('__rmatmul__')
|
|
def __matmul__(self, other):
|
|
self, other, T = _unify_with_other(self, other)
|
|
|
|
if T != "is_matrix":
|
|
return NotImplemented
|
|
|
|
return self.__mul__(other)
|
|
|
|
def __mod__(self, other):
|
|
return self.applyfunc(lambda x: x % other)
|
|
|
|
@call_highest_priority('__rmul__')
|
|
def __mul__(self, other):
|
|
"""Return self*other where other is either a scalar or a matrix
|
|
of compatible dimensions.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
|
|
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
|
|
True
|
|
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> A*B
|
|
Matrix([
|
|
[30, 36, 42],
|
|
[66, 81, 96]])
|
|
>>> B*A
|
|
Traceback (most recent call last):
|
|
...
|
|
ShapeError: Matrices size mismatch.
|
|
>>>
|
|
|
|
See Also
|
|
========
|
|
|
|
matrix_multiply_elementwise
|
|
"""
|
|
|
|
return self.multiply(other)
|
|
|
|
def multiply(self, other, dotprodsimp=None):
|
|
"""Same as __mul__() but with optional simplification.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
dotprodsimp : bool, optional
|
|
Specifies whether intermediate term algebraic simplification is used
|
|
during matrix multiplications to control expression blowup and thus
|
|
speed up calculation. Default is off.
|
|
"""
|
|
|
|
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
|
|
|
|
self, other, T = _unify_with_other(self, other)
|
|
|
|
if T == "possible_scalar":
|
|
try:
|
|
return self._eval_scalar_mul(other)
|
|
except TypeError:
|
|
return NotImplemented
|
|
|
|
elif T == "is_matrix":
|
|
|
|
if self.shape[1] != other.shape[0]:
|
|
raise ShapeError(f"Matrix size mismatch: {self.shape} * {other.shape}.")
|
|
|
|
m = self._eval_matrix_mul(other)
|
|
|
|
if isimpbool:
|
|
m = m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
|
|
|
|
return m
|
|
|
|
else:
|
|
return NotImplemented
|
|
|
|
def multiply_elementwise(self, other):
|
|
"""Return the Hadamard product (elementwise product) of A and B
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
|
|
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
|
|
>>> A.multiply_elementwise(B)
|
|
Matrix([
|
|
[ 0, 10, 200],
|
|
[300, 40, 5]])
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.matrices.matrixbase.MatrixBase.cross
|
|
sympy.matrices.matrixbase.MatrixBase.dot
|
|
multiply
|
|
"""
|
|
if self.shape != other.shape:
|
|
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
|
|
|
|
return self._eval_matrix_mul_elementwise(other)
|
|
|
|
def __neg__(self):
|
|
return self._eval_scalar_mul(-1)
|
|
|
|
@call_highest_priority('__rpow__')
|
|
def __pow__(self, exp):
|
|
"""Return self**exp a scalar or symbol."""
|
|
|
|
return self.pow(exp)
|
|
|
|
|
|
def pow(self, exp, method=None):
|
|
r"""Return self**exp a scalar or symbol.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
method : multiply, mulsimp, jordan, cayley
|
|
If multiply then it returns exponentiation using recursion.
|
|
If jordan then Jordan form exponentiation will be used.
|
|
If cayley then the exponentiation is done using Cayley-Hamilton
|
|
theorem.
|
|
If mulsimp then the exponentiation is done using recursion
|
|
with dotprodsimp. This specifies whether intermediate term
|
|
algebraic simplification is used during naive matrix power to
|
|
control expression blowup and thus speed up calculation.
|
|
If None, then it heuristically decides which method to use.
|
|
|
|
"""
|
|
|
|
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
|
|
raise TypeError('No such method')
|
|
if self.rows != self.cols:
|
|
raise NonSquareMatrixError()
|
|
a = self
|
|
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
|
|
exp = sympify(exp)
|
|
|
|
if exp.is_zero:
|
|
return a._new(a.rows, a.cols, lambda i, j: int(i == j))
|
|
if exp == 1:
|
|
return a
|
|
|
|
diagonal = getattr(a, 'is_diagonal', None)
|
|
if diagonal is not None and diagonal():
|
|
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
|
|
|
|
if exp.is_Number and exp % 1 == 0:
|
|
if a.rows == 1:
|
|
return a._new([[a[0]**exp]])
|
|
if exp < 0:
|
|
exp = -exp
|
|
a = a.inv()
|
|
# When certain conditions are met,
|
|
# Jordan block algorithm is faster than
|
|
# computation by recursion.
|
|
if method == 'jordan':
|
|
try:
|
|
return jordan_pow(exp)
|
|
except MatrixError:
|
|
if method == 'jordan':
|
|
raise
|
|
|
|
elif method == 'cayley':
|
|
if not exp.is_Number or exp % 1 != 0:
|
|
raise ValueError("cayley method is only valid for integer powers")
|
|
return a._eval_pow_by_cayley(exp)
|
|
|
|
elif method == "mulsimp":
|
|
if not exp.is_Number or exp % 1 != 0:
|
|
raise ValueError("mulsimp method is only valid for integer powers")
|
|
return a._eval_pow_by_recursion_dotprodsimp(exp)
|
|
|
|
elif method == "multiply":
|
|
if not exp.is_Number or exp % 1 != 0:
|
|
raise ValueError("multiply method is only valid for integer powers")
|
|
return a._eval_pow_by_recursion(exp)
|
|
|
|
elif method is None and exp.is_Number and exp % 1 == 0:
|
|
if exp.is_Float:
|
|
exp = Integer(exp)
|
|
# Decide heuristically which method to apply
|
|
if a.rows == 2 and exp > 100000:
|
|
return jordan_pow(exp)
|
|
elif _get_intermediate_simp_bool(True, None):
|
|
return a._eval_pow_by_recursion_dotprodsimp(exp)
|
|
elif exp > 10000:
|
|
return a._eval_pow_by_cayley(exp)
|
|
else:
|
|
return a._eval_pow_by_recursion(exp)
|
|
|
|
if jordan_pow:
|
|
try:
|
|
return jordan_pow(exp)
|
|
except NonInvertibleMatrixError:
|
|
# Raised by jordan_pow on zero determinant matrix unless exp is
|
|
# definitely known to be a non-negative integer.
|
|
# Here we raise if n is definitely not a non-negative integer
|
|
# but otherwise we can leave this as an unevaluated MatPow.
|
|
if exp.is_integer is False or exp.is_nonnegative is False:
|
|
raise
|
|
|
|
from sympy.matrices.expressions import MatPow
|
|
return MatPow(a, exp)
|
|
|
|
@call_highest_priority('__add__')
|
|
def __radd__(self, other):
|
|
return self + other
|
|
|
|
@call_highest_priority('__matmul__')
|
|
def __rmatmul__(self, other):
|
|
self, other, T = _unify_with_other(self, other)
|
|
|
|
if T != "is_matrix":
|
|
return NotImplemented
|
|
|
|
return self.__rmul__(other)
|
|
|
|
@call_highest_priority('__mul__')
|
|
def __rmul__(self, other):
|
|
return self.rmultiply(other)
|
|
|
|
def rmultiply(self, other, dotprodsimp=None):
|
|
"""Same as __rmul__() but with optional simplification.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
dotprodsimp : bool, optional
|
|
Specifies whether intermediate term algebraic simplification is used
|
|
during matrix multiplications to control expression blowup and thus
|
|
speed up calculation. Default is off.
|
|
"""
|
|
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
|
|
self, other, T = _unify_with_other(self, other)
|
|
|
|
if T == "possible_scalar":
|
|
try:
|
|
return self._eval_scalar_rmul(other)
|
|
except TypeError:
|
|
return NotImplemented
|
|
|
|
elif T == "is_matrix":
|
|
if self.shape[0] != other.shape[1]:
|
|
raise ShapeError("Matrix size mismatch.")
|
|
|
|
m = self._eval_matrix_rmul(other)
|
|
|
|
if isimpbool:
|
|
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
|
|
|
|
return m
|
|
|
|
else:
|
|
return NotImplemented
|
|
|
|
@call_highest_priority('__sub__')
|
|
def __rsub__(self, a):
|
|
return (-self) + a
|
|
|
|
@call_highest_priority('__rsub__')
|
|
def __sub__(self, a):
|
|
return self + (-a)
|
|
|
|
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
|
|
return _det_bareiss(self, iszerofunc=iszerofunc)
|
|
|
|
def _eval_det_berkowitz(self):
|
|
return _det_berkowitz(self)
|
|
|
|
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
|
|
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc)
|
|
|
|
def _eval_det_bird(self):
|
|
return _det_bird(self)
|
|
|
|
def _eval_det_laplace(self):
|
|
return _det_laplace(self)
|
|
|
|
def _eval_determinant(self): # for expressions.determinant.Determinant
|
|
return _det(self)
|
|
|
|
def adjugate(self, method="berkowitz"):
|
|
return _adjugate(self, method=method)
|
|
|
|
def charpoly(self, x='lambda', simplify=_utilities_simplify):
|
|
return _charpoly(self, x=x, simplify=simplify)
|
|
|
|
def cofactor(self, i, j, method="berkowitz"):
|
|
return _cofactor(self, i, j, method=method)
|
|
|
|
def cofactor_matrix(self, method="berkowitz"):
|
|
return _cofactor_matrix(self, method=method)
|
|
|
|
def det(self, method="bareiss", iszerofunc=None):
|
|
return _det(self, method=method, iszerofunc=iszerofunc)
|
|
|
|
def per(self):
|
|
return _per(self)
|
|
|
|
def minor(self, i, j, method="berkowitz"):
|
|
return _minor(self, i, j, method=method)
|
|
|
|
def minor_submatrix(self, i, j):
|
|
return _minor_submatrix(self, i, j)
|
|
|
|
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__
|
|
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__
|
|
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__
|
|
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__
|
|
_eval_det_bird.__doc__ = _det_bird.__doc__
|
|
_eval_det_laplace.__doc__ = _det_laplace.__doc__
|
|
_eval_det_lu.__doc__ = _det_LU.__doc__
|
|
_eval_determinant.__doc__ = _det.__doc__
|
|
adjugate.__doc__ = _adjugate.__doc__
|
|
charpoly.__doc__ = _charpoly.__doc__
|
|
cofactor.__doc__ = _cofactor.__doc__
|
|
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__
|
|
det.__doc__ = _det.__doc__
|
|
per.__doc__ = _per.__doc__
|
|
minor.__doc__ = _minor.__doc__
|
|
minor_submatrix.__doc__ = _minor_submatrix.__doc__
|
|
|
|
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
|
|
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify,
|
|
with_pivots=with_pivots)
|
|
|
|
@property
|
|
def is_echelon(self):
|
|
return _is_echelon(self)
|
|
|
|
def rank(self, iszerofunc=_iszero, simplify=False):
|
|
return _rank(self, iszerofunc=iszerofunc, simplify=simplify)
|
|
|
|
def rref_rhs(self, rhs):
|
|
"""Return reduced row-echelon form of matrix, matrix showing
|
|
rhs after reduction steps. ``rhs`` must have the same number
|
|
of rows as ``self``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, symbols
|
|
>>> r1, r2 = symbols('r1 r2')
|
|
>>> Matrix([[1, 1], [2, 1]]).rref_rhs(Matrix([r1, r2]))
|
|
(Matrix([
|
|
[1, 0],
|
|
[0, 1]]), Matrix([
|
|
[ -r1 + r2],
|
|
[2*r1 - r2]]))
|
|
"""
|
|
r, _ = _rref(self.hstack(self, self.eye(self.rows), rhs))
|
|
return r[:, :self.cols], r[:, -rhs.cols:]
|
|
|
|
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True,
|
|
normalize_last=True):
|
|
return _rref(self, iszerofunc=iszerofunc, simplify=simplify,
|
|
pivots=pivots, normalize_last=normalize_last)
|
|
|
|
echelon_form.__doc__ = _echelon_form.__doc__
|
|
is_echelon.__doc__ = _is_echelon.__doc__
|
|
rank.__doc__ = _rank.__doc__
|
|
rref.__doc__ = _rref.__doc__
|
|
|
|
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
|
|
"""Validate the arguments for a row/column operation. ``error_str``
|
|
can be one of "row" or "col" depending on the arguments being parsed."""
|
|
if op not in ["n->kn", "n<->m", "n->n+km"]:
|
|
raise ValueError("Unknown {} operation '{}'. Valid col operations "
|
|
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
|
|
|
|
# define self_col according to error_str
|
|
self_cols = self.cols if error_str == 'col' else self.rows
|
|
|
|
# normalize and validate the arguments
|
|
if op == "n->kn":
|
|
col = col if col is not None else col1
|
|
if col is None or k is None:
|
|
raise ValueError("For a {0} operation 'n->kn' you must provide the "
|
|
"kwargs `{0}` and `k`".format(error_str))
|
|
if not 0 <= col < self_cols:
|
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col))
|
|
|
|
elif op == "n<->m":
|
|
# we need two cols to swap. It does not matter
|
|
# how they were specified, so gather them together and
|
|
# remove `None`
|
|
cols = {col, k, col1, col2}.difference([None])
|
|
if len(cols) > 2:
|
|
# maybe the user left `k` by mistake?
|
|
cols = {col, col1, col2}.difference([None])
|
|
if len(cols) != 2:
|
|
raise ValueError("For a {0} operation 'n<->m' you must provide the "
|
|
"kwargs `{0}1` and `{0}2`".format(error_str))
|
|
col1, col2 = cols
|
|
if not 0 <= col1 < self_cols:
|
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col1))
|
|
if not 0 <= col2 < self_cols:
|
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2))
|
|
|
|
elif op == "n->n+km":
|
|
col = col1 if col is None else col
|
|
col2 = col1 if col2 is None else col2
|
|
if col is None or col2 is None or k is None:
|
|
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
|
|
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
|
|
if col == col2:
|
|
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
|
|
"be different.".format(error_str))
|
|
if not 0 <= col < self_cols:
|
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col))
|
|
if not 0 <= col2 < self_cols:
|
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2))
|
|
|
|
else:
|
|
raise ValueError('invalid operation %s' % repr(op))
|
|
|
|
return op, col, k, col1, col2
|
|
|
|
def _eval_col_op_multiply_col_by_const(self, col, k):
|
|
def entry(i, j):
|
|
if j == col:
|
|
return k * self[i, j]
|
|
return self[i, j]
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_col_op_swap(self, col1, col2):
|
|
def entry(i, j):
|
|
if j == col1:
|
|
return self[i, col2]
|
|
elif j == col2:
|
|
return self[i, col1]
|
|
return self[i, j]
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
|
|
def entry(i, j):
|
|
if j == col:
|
|
return self[i, j] + k * self[i, col2]
|
|
return self[i, j]
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_row_op_swap(self, row1, row2):
|
|
def entry(i, j):
|
|
if i == row1:
|
|
return self[row2, j]
|
|
elif i == row2:
|
|
return self[row1, j]
|
|
return self[i, j]
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_row_op_multiply_row_by_const(self, row, k):
|
|
def entry(i, j):
|
|
if i == row:
|
|
return k * self[i, j]
|
|
return self[i, j]
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
|
|
def entry(i, j):
|
|
if i == row:
|
|
return self[i, j] + k * self[row2, j]
|
|
return self[i, j]
|
|
return self._new(self.rows, self.cols, entry)
|
|
|
|
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
|
|
"""Performs the elementary column operation `op`.
|
|
|
|
`op` may be one of
|
|
|
|
* ``"n->kn"`` (column n goes to k*n)
|
|
* ``"n<->m"`` (swap column n and column m)
|
|
* ``"n->n+km"`` (column n goes to column n + k*column m)
|
|
|
|
Parameters
|
|
==========
|
|
|
|
op : string; the elementary row operation
|
|
col : the column to apply the column operation
|
|
k : the multiple to apply in the column operation
|
|
col1 : one column of a column swap
|
|
col2 : second column of a column swap or column "m" in the column operation
|
|
"n->n+km"
|
|
"""
|
|
|
|
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
|
|
|
|
# now that we've validated, we're all good to dispatch
|
|
if op == "n->kn":
|
|
return self._eval_col_op_multiply_col_by_const(col, k)
|
|
if op == "n<->m":
|
|
return self._eval_col_op_swap(col1, col2)
|
|
if op == "n->n+km":
|
|
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
|
|
|
|
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
|
|
"""Performs the elementary row operation `op`.
|
|
|
|
`op` may be one of
|
|
|
|
* ``"n->kn"`` (row n goes to k*n)
|
|
* ``"n<->m"`` (swap row n and row m)
|
|
* ``"n->n+km"`` (row n goes to row n + k*row m)
|
|
|
|
Parameters
|
|
==========
|
|
|
|
op : string; the elementary row operation
|
|
row : the row to apply the row operation
|
|
k : the multiple to apply in the row operation
|
|
row1 : one row of a row swap
|
|
row2 : second row of a row swap or row "m" in the row operation
|
|
"n->n+km"
|
|
"""
|
|
|
|
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
|
|
|
|
# now that we've validated, we're all good to dispatch
|
|
if op == "n->kn":
|
|
return self._eval_row_op_multiply_row_by_const(row, k)
|
|
if op == "n<->m":
|
|
return self._eval_row_op_swap(row1, row2)
|
|
if op == "n->n+km":
|
|
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
|
|
|
|
def columnspace(self, simplify=False):
|
|
return _columnspace(self, simplify=simplify)
|
|
|
|
def nullspace(self, simplify=False, iszerofunc=_iszero):
|
|
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc)
|
|
|
|
def rowspace(self, simplify=False):
|
|
return _rowspace(self, simplify=simplify)
|
|
|
|
# This is a classmethod but is converted to such later in order to allow
|
|
# assignment of __doc__ since that does not work for already wrapped
|
|
# classmethods in Python 3.6.
|
|
def orthogonalize(cls, *vecs, **kwargs):
|
|
return _orthogonalize(cls, *vecs, **kwargs)
|
|
|
|
columnspace.__doc__ = _columnspace.__doc__
|
|
nullspace.__doc__ = _nullspace.__doc__
|
|
rowspace.__doc__ = _rowspace.__doc__
|
|
orthogonalize.__doc__ = _orthogonalize.__doc__
|
|
|
|
orthogonalize = classmethod(orthogonalize) # type:ignore
|
|
|
|
def eigenvals(self, error_when_incomplete=True, **flags):
|
|
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags)
|
|
|
|
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
|
|
return _eigenvects(self, error_when_incomplete=error_when_incomplete,
|
|
iszerofunc=iszerofunc, **flags)
|
|
|
|
def is_diagonalizable(self, reals_only=False, **kwargs):
|
|
return _is_diagonalizable(self, reals_only=reals_only, **kwargs)
|
|
|
|
def diagonalize(self, reals_only=False, sort=False, normalize=False):
|
|
return _diagonalize(self, reals_only=reals_only, sort=sort,
|
|
normalize=normalize)
|
|
|
|
def bidiagonalize(self, upper=True):
|
|
return _bidiagonalize(self, upper=upper)
|
|
|
|
def bidiagonal_decomposition(self, upper=True):
|
|
return _bidiagonal_decomposition(self, upper=upper)
|
|
|
|
@property
|
|
def is_positive_definite(self):
|
|
return _is_positive_definite(self)
|
|
|
|
@property
|
|
def is_positive_semidefinite(self):
|
|
return _is_positive_semidefinite(self)
|
|
|
|
@property
|
|
def is_negative_definite(self):
|
|
return _is_negative_definite(self)
|
|
|
|
@property
|
|
def is_negative_semidefinite(self):
|
|
return _is_negative_semidefinite(self)
|
|
|
|
@property
|
|
def is_indefinite(self):
|
|
return _is_indefinite(self)
|
|
|
|
def jordan_form(self, calc_transform=True, **kwargs):
|
|
return _jordan_form(self, calc_transform=calc_transform, **kwargs)
|
|
|
|
def left_eigenvects(self, **flags):
|
|
return _left_eigenvects(self, **flags)
|
|
|
|
def singular_values(self):
|
|
return _singular_values(self)
|
|
|
|
eigenvals.__doc__ = _eigenvals.__doc__
|
|
eigenvects.__doc__ = _eigenvects.__doc__
|
|
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__
|
|
diagonalize.__doc__ = _diagonalize.__doc__
|
|
is_positive_definite.__doc__ = _is_positive_definite.__doc__
|
|
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__
|
|
is_negative_definite.__doc__ = _is_negative_definite.__doc__
|
|
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__
|
|
is_indefinite.__doc__ = _is_indefinite.__doc__
|
|
jordan_form.__doc__ = _jordan_form.__doc__
|
|
left_eigenvects.__doc__ = _left_eigenvects.__doc__
|
|
singular_values.__doc__ = _singular_values.__doc__
|
|
bidiagonalize.__doc__ = _bidiagonalize.__doc__
|
|
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__
|
|
|
|
def diff(self, *args, evaluate=True, **kwargs):
|
|
"""Calculate the derivative of each element in the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x, y
|
|
>>> M = Matrix([[x, y], [1, 0]])
|
|
>>> M.diff(x)
|
|
Matrix([
|
|
[1, 0],
|
|
[0, 0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
integrate
|
|
limit
|
|
"""
|
|
# XXX this should be handled here rather than in Derivative
|
|
from sympy.tensor.array.array_derivatives import ArrayDerivative
|
|
deriv = ArrayDerivative(self, *args, evaluate=evaluate)
|
|
# XXX This can rather changed to always return immutable matrix
|
|
if not isinstance(self, Basic) and evaluate:
|
|
return deriv.as_mutable()
|
|
return deriv
|
|
|
|
def _eval_derivative(self, arg):
|
|
return self.applyfunc(lambda x: x.diff(arg))
|
|
|
|
def integrate(self, *args, **kwargs):
|
|
"""Integrate each element of the matrix. ``args`` will
|
|
be passed to the ``integrate`` function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x, y
|
|
>>> M = Matrix([[x, y], [1, 0]])
|
|
>>> M.integrate((x, ))
|
|
Matrix([
|
|
[x**2/2, x*y],
|
|
[ x, 0]])
|
|
>>> M.integrate((x, 0, 2))
|
|
Matrix([
|
|
[2, 2*y],
|
|
[2, 0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
limit
|
|
diff
|
|
"""
|
|
return self.applyfunc(lambda x: x.integrate(*args, **kwargs))
|
|
|
|
def jacobian(self, X):
|
|
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
|
|
|
|
Parameters
|
|
==========
|
|
|
|
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
|
|
X : set of x_i's in order, it can be a list or a Matrix
|
|
|
|
Both ``self`` and X can be a row or a column matrix in any order
|
|
(i.e., jacobian() should always work).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import sin, cos, Matrix
|
|
>>> from sympy.abc import rho, phi
|
|
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
|
|
>>> Y = Matrix([rho, phi])
|
|
>>> X.jacobian(Y)
|
|
Matrix([
|
|
[cos(phi), -rho*sin(phi)],
|
|
[sin(phi), rho*cos(phi)],
|
|
[ 2*rho, 0]])
|
|
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
|
|
>>> X.jacobian(Y)
|
|
Matrix([
|
|
[cos(phi), -rho*sin(phi)],
|
|
[sin(phi), rho*cos(phi)]])
|
|
|
|
See Also
|
|
========
|
|
|
|
hessian
|
|
wronskian
|
|
"""
|
|
from sympy.matrices.matrixbase import MatrixBase
|
|
if not isinstance(X, MatrixBase):
|
|
X = self._new(X)
|
|
# Both X and ``self`` can be a row or a column matrix, so we need to make
|
|
# sure all valid combinations work, but everything else fails:
|
|
if self.shape[0] == 1:
|
|
m = self.shape[1]
|
|
elif self.shape[1] == 1:
|
|
m = self.shape[0]
|
|
else:
|
|
raise TypeError("``self`` must be a row or a column matrix")
|
|
if X.shape[0] == 1:
|
|
n = X.shape[1]
|
|
elif X.shape[1] == 1:
|
|
n = X.shape[0]
|
|
else:
|
|
raise TypeError("X must be a row or a column matrix")
|
|
|
|
# m is the number of functions and n is the number of variables
|
|
# computing the Jacobian is now easy:
|
|
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
|
|
|
|
def limit(self, *args):
|
|
"""Calculate the limit of each element in the matrix.
|
|
``args`` will be passed to the ``limit`` function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> from sympy.abc import x, y
|
|
>>> M = Matrix([[x, y], [1, 0]])
|
|
>>> M.limit(x, 2)
|
|
Matrix([
|
|
[2, y],
|
|
[1, 0]])
|
|
|
|
See Also
|
|
========
|
|
|
|
integrate
|
|
diff
|
|
"""
|
|
return self.applyfunc(lambda x: x.limit(*args))
|
|
|
|
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_utilities_simplify):
|
|
return self.charpoly(x=x)
|
|
|
|
def berkowitz_det(self):
|
|
"""Computes determinant using Berkowitz method.
|
|
|
|
See Also
|
|
========
|
|
|
|
det
|
|
"""
|
|
return self.det(method='berkowitz')
|
|
|
|
def berkowitz_eigenvals(self, **flags):
|
|
"""Computes eigenvalues of a Matrix using Berkowitz method."""
|
|
return self.eigenvals(**flags)
|
|
|
|
def berkowitz_minors(self):
|
|
"""Computes principal minors using Berkowitz method."""
|
|
sign, minors = self.one, []
|
|
|
|
for poly in self.berkowitz():
|
|
minors.append(sign * poly[-1])
|
|
sign = -sign
|
|
|
|
return tuple(minors)
|
|
|
|
def berkowitz(self):
|
|
from sympy.matrices import zeros
|
|
berk = ((1,),)
|
|
if not self:
|
|
return berk
|
|
|
|
if not self.is_square:
|
|
raise NonSquareMatrixError()
|
|
|
|
A, N = self, self.rows
|
|
transforms = [0] * (N - 1)
|
|
|
|
for n in range(N, 1, -1):
|
|
T, k = zeros(n + 1, n), n - 1
|
|
|
|
R, C = -A[k, :k], A[:k, k]
|
|
A, a = A[:k, :k], -A[k, k]
|
|
|
|
items = [C]
|
|
|
|
for i in range(0, n - 2):
|
|
items.append(A * items[i])
|
|
|
|
for i, B in enumerate(items):
|
|
items[i] = (R * B)[0, 0]
|
|
|
|
items = [self.one, a] + items
|
|
|
|
for i in range(n):
|
|
T[i:, i] = items[:n - i + 1]
|
|
|
|
transforms[k - 1] = T
|
|
|
|
polys = [self._new([self.one, -A[0, 0]])]
|
|
|
|
for i, T in enumerate(transforms):
|
|
polys.append(T * polys[i])
|
|
|
|
return berk + tuple(map(tuple, polys))
|
|
|
|
def cofactorMatrix(self, method="berkowitz"):
|
|
return self.cofactor_matrix(method=method)
|
|
|
|
def det_bareis(self):
|
|
return _det_bareiss(self)
|
|
|
|
def det_LU_decomposition(self):
|
|
"""Compute matrix determinant using LU decomposition.
|
|
|
|
|
|
Note that this method fails if the LU decomposition itself
|
|
fails. In particular, if the matrix has no inverse this method
|
|
will fail.
|
|
|
|
TODO: Implement algorithm for sparse matrices (SFF),
|
|
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
|
|
|
|
See Also
|
|
========
|
|
|
|
|
|
det
|
|
berkowitz_det
|
|
"""
|
|
return self.det(method='lu')
|
|
|
|
def jordan_cell(self, eigenval, n):
|
|
return self.jordan_block(size=n, eigenvalue=eigenval)
|
|
|
|
def jordan_cells(self, calc_transformation=True):
|
|
P, J = self.jordan_form()
|
|
return P, J.get_diag_blocks()
|
|
|
|
def minorEntry(self, i, j, method="berkowitz"):
|
|
return self.minor(i, j, method=method)
|
|
|
|
def minorMatrix(self, i, j):
|
|
return self.minor_submatrix(i, j)
|
|
|
|
def permuteBkwd(self, perm):
|
|
"""Permute the rows of the matrix with the given permutation in reverse."""
|
|
return self.permute_rows(perm, direction='backward')
|
|
|
|
def permuteFwd(self, perm):
|
|
"""Permute the rows of the matrix with the given permutation."""
|
|
return self.permute_rows(perm, direction='forward')
|
|
|
|
@property
|
|
def kind(self) -> MatrixKind:
|
|
elem_kinds = {e.kind for e in self.flat()}
|
|
if len(elem_kinds) == 1:
|
|
elemkind, = elem_kinds
|
|
else:
|
|
elemkind = UndefinedKind
|
|
return MatrixKind(elemkind)
|
|
|
|
def flat(self):
|
|
"""
|
|
Returns a flat list of all elements in the matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> m = Matrix([[0, 2], [3, 4]])
|
|
>>> m.flat()
|
|
[0, 2, 3, 4]
|
|
|
|
See Also
|
|
========
|
|
|
|
tolist
|
|
values
|
|
"""
|
|
return [self[i, j] for i in range(self.rows) for j in range(self.cols)]
|
|
|
|
def __array__(self, dtype=object, copy=None):
|
|
if copy is not None and not copy:
|
|
raise TypeError("Cannot implement copy=False when converting Matrix to ndarray")
|
|
from .dense import matrix2numpy
|
|
return matrix2numpy(self, dtype=dtype)
|
|
|
|
def __len__(self):
|
|
"""Return the number of elements of ``self``.
|
|
|
|
Implemented mainly so bool(Matrix()) == False.
|
|
"""
|
|
return self.rows * self.cols
|
|
|
|
def _matrix_pow_by_jordan_blocks(self, num):
|
|
from sympy.matrices import diag, MutableMatrix
|
|
|
|
def jordan_cell_power(jc, n):
|
|
N = jc.shape[0]
|
|
l = jc[0,0]
|
|
if l.is_zero:
|
|
if N == 1 and n.is_nonnegative:
|
|
jc[0,0] = l**n
|
|
elif not (n.is_integer and n.is_nonnegative):
|
|
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer")
|
|
else:
|
|
for i in range(N):
|
|
jc[0,i] = KroneckerDelta(i, n)
|
|
else:
|
|
for i in range(N):
|
|
bn = binomial(n, i)
|
|
if isinstance(bn, binomial):
|
|
bn = bn._eval_expand_func()
|
|
jc[0,i] = l**(n-i)*bn
|
|
for i in range(N):
|
|
for j in range(1, N-i):
|
|
jc[j,i+j] = jc [j-1,i+j-1]
|
|
|
|
P, J = self.jordan_form()
|
|
jordan_cells = J.get_diag_blocks()
|
|
# Make sure jordan_cells matrices are mutable:
|
|
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
|
|
for j in jordan_cells:
|
|
jordan_cell_power(j, num)
|
|
return self._new(P.multiply(diag(*jordan_cells))
|
|
.multiply(P.inv()))
|
|
|
|
def __str__(self):
|
|
if S.Zero in self.shape:
|
|
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
|
|
return "Matrix(%s)" % str(self.tolist())
|
|
|
|
def _format_str(self, printer=None):
|
|
if not printer:
|
|
printer = StrPrinter()
|
|
# Handle zero dimensions:
|
|
if S.Zero in self.shape:
|
|
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
|
|
if self.rows == 1:
|
|
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
|
|
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
|
|
|
|
@classmethod
|
|
def irregular(cls, ntop, *matrices, **kwargs):
|
|
"""Return a matrix filled by the given matrices which
|
|
are listed in order of appearance from left to right, top to
|
|
bottom as they first appear in the matrix. They must fill the
|
|
matrix completely.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ones, Matrix
|
|
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
|
|
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
|
|
Matrix([
|
|
[1, 2, 2, 2, 3, 3],
|
|
[1, 2, 2, 2, 3, 3],
|
|
[4, 2, 2, 2, 5, 5],
|
|
[6, 6, 7, 7, 5, 5]])
|
|
"""
|
|
ntop = as_int(ntop)
|
|
# make sure we are working with explicit matrices
|
|
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i
|
|
for i in matrices]
|
|
q = list(range(len(b)))
|
|
dat = [i.rows for i in b]
|
|
active = [q.pop(0) for _ in range(ntop)]
|
|
cols = sum(b[i].cols for i in active)
|
|
rows = []
|
|
while any(dat):
|
|
r = []
|
|
for a, j in enumerate(active):
|
|
r.extend(b[j][-dat[j], :])
|
|
dat[j] -= 1
|
|
if dat[j] == 0 and q:
|
|
active[a] = q.pop(0)
|
|
if len(r) != cols:
|
|
raise ValueError(filldedent('''
|
|
Matrices provided do not appear to fill
|
|
the space completely.'''))
|
|
rows.append(r)
|
|
return cls._new(rows)
|
|
|
|
@classmethod
|
|
def _handle_ndarray(cls, arg):
|
|
# NumPy array or matrix or some other object that implements
|
|
# __array__. So let's first use this method to get a
|
|
# numpy.array() and then make a Python list out of it.
|
|
arr = arg.__array__()
|
|
if len(arr.shape) == 2:
|
|
rows, cols = arr.shape[0], arr.shape[1]
|
|
flat_list = [cls._sympify(i) for i in arr.ravel()]
|
|
return rows, cols, flat_list
|
|
elif len(arr.shape) == 1:
|
|
flat_list = [cls._sympify(i) for i in arr]
|
|
return arr.shape[0], 1, flat_list
|
|
else:
|
|
raise NotImplementedError(
|
|
"SymPy supports just 1D and 2D matrices")
|
|
|
|
@classmethod
|
|
def _handle_creation_inputs(cls, *args, **kwargs):
|
|
"""Return the number of rows, cols and flat matrix elements.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, I
|
|
|
|
Matrix can be constructed as follows:
|
|
|
|
* from a nested list of iterables
|
|
|
|
>>> Matrix( ((1, 2+I), (3, 4)) )
|
|
Matrix([
|
|
[1, 2 + I],
|
|
[3, 4]])
|
|
|
|
* from un-nested iterable (interpreted as a column)
|
|
|
|
>>> Matrix( [1, 2] )
|
|
Matrix([
|
|
[1],
|
|
[2]])
|
|
|
|
* from un-nested iterable with dimensions
|
|
|
|
>>> Matrix(1, 2, [1, 2] )
|
|
Matrix([[1, 2]])
|
|
|
|
* from no arguments (a 0 x 0 matrix)
|
|
|
|
>>> Matrix()
|
|
Matrix(0, 0, [])
|
|
|
|
* from a rule
|
|
|
|
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
|
|
Matrix([
|
|
[0, 0],
|
|
[1, 1/2]])
|
|
|
|
See Also
|
|
========
|
|
irregular - filling a matrix with irregular blocks
|
|
"""
|
|
from sympy.matrices import SparseMatrix
|
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
|
from sympy.matrices.expressions.blockmatrix import BlockMatrix
|
|
|
|
flat_list = None
|
|
|
|
if len(args) == 1:
|
|
# Matrix(SparseMatrix(...))
|
|
if isinstance(args[0], SparseMatrix):
|
|
return args[0].rows, args[0].cols, flatten(args[0].tolist())
|
|
|
|
# Matrix(Matrix(...))
|
|
elif isinstance(args[0], MatrixBase):
|
|
return args[0].rows, args[0].cols, args[0].flat()
|
|
|
|
# Matrix(MatrixSymbol('X', 2, 2))
|
|
elif isinstance(args[0], Basic) and args[0].is_Matrix:
|
|
return args[0].rows, args[0].cols, args[0].as_explicit().flat()
|
|
|
|
elif isinstance(args[0], mp.matrix):
|
|
M = args[0]
|
|
flat_list = [cls._sympify(x) for x in M]
|
|
return M.rows, M.cols, flat_list
|
|
|
|
# Matrix(numpy.ones((2, 2)))
|
|
elif hasattr(args[0], "__array__"):
|
|
return cls._handle_ndarray(args[0])
|
|
|
|
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
|
|
elif is_sequence(args[0]) \
|
|
and not isinstance(args[0], DeferredVector):
|
|
dat = list(args[0])
|
|
ismat = lambda i: isinstance(i, MatrixBase) and (
|
|
evaluate or isinstance(i, (BlockMatrix, MatrixSymbol)))
|
|
raw = lambda i: is_sequence(i) and not ismat(i)
|
|
evaluate = kwargs.get('evaluate', True)
|
|
|
|
|
|
if evaluate:
|
|
|
|
def make_explicit(x):
|
|
"""make Block and Symbol explicit"""
|
|
if isinstance(x, BlockMatrix):
|
|
return x.as_explicit()
|
|
elif isinstance(x, MatrixSymbol) and all(_.is_Integer for _ in x.shape):
|
|
return x.as_explicit()
|
|
else:
|
|
return x
|
|
|
|
def make_explicit_row(row):
|
|
# Could be list or could be list of lists
|
|
if isinstance(row, (list, tuple)):
|
|
return [make_explicit(x) for x in row]
|
|
else:
|
|
return make_explicit(row)
|
|
|
|
if isinstance(dat, (list, tuple)):
|
|
dat = [make_explicit_row(row) for row in dat]
|
|
|
|
if dat in ([], [[]]):
|
|
rows = cols = 0
|
|
flat_list = []
|
|
elif not any(raw(i) or ismat(i) for i in dat):
|
|
# a column as a list of values
|
|
flat_list = [cls._sympify(i) for i in dat]
|
|
rows = len(flat_list)
|
|
cols = 1 if rows else 0
|
|
elif evaluate and all(ismat(i) for i in dat):
|
|
# a column as a list of matrices
|
|
ncol = {i.cols for i in dat if any(i.shape)}
|
|
if ncol:
|
|
if len(ncol) != 1:
|
|
raise ValueError('mismatched dimensions')
|
|
flat_list = [_ for i in dat for r in i.tolist() for _ in r]
|
|
cols = ncol.pop()
|
|
rows = len(flat_list)//cols
|
|
else:
|
|
rows = cols = 0
|
|
flat_list = []
|
|
elif evaluate and any(ismat(i) for i in dat):
|
|
ncol = set()
|
|
flat_list = []
|
|
for i in dat:
|
|
if ismat(i):
|
|
flat_list.extend(
|
|
[k for j in i.tolist() for k in j])
|
|
if any(i.shape):
|
|
ncol.add(i.cols)
|
|
elif raw(i):
|
|
if i:
|
|
ncol.add(len(i))
|
|
flat_list.extend([cls._sympify(ij) for ij in i])
|
|
else:
|
|
ncol.add(1)
|
|
flat_list.append(i)
|
|
if len(ncol) > 1:
|
|
raise ValueError('mismatched dimensions')
|
|
cols = ncol.pop()
|
|
rows = len(flat_list)//cols
|
|
else:
|
|
# list of lists; each sublist is a logical row
|
|
# which might consist of many rows if the values in
|
|
# the row are matrices
|
|
flat_list = []
|
|
ncol = set()
|
|
rows = cols = 0
|
|
for row in dat:
|
|
if not is_sequence(row) and \
|
|
not getattr(row, 'is_Matrix', False):
|
|
raise ValueError('expecting list of lists')
|
|
|
|
if hasattr(row, '__array__'):
|
|
if 0 in row.shape:
|
|
continue
|
|
|
|
if evaluate and all(ismat(i) for i in row):
|
|
r, c, flatT = cls._handle_creation_inputs(
|
|
[i.T for i in row])
|
|
T = reshape(flatT, [c])
|
|
flat = \
|
|
[T[i][j] for j in range(c) for i in range(r)]
|
|
r, c = c, r
|
|
else:
|
|
r = 1
|
|
if getattr(row, 'is_Matrix', False):
|
|
c = 1
|
|
flat = [row]
|
|
else:
|
|
c = len(row)
|
|
flat = [cls._sympify(i) for i in row]
|
|
ncol.add(c)
|
|
if len(ncol) > 1:
|
|
raise ValueError('mismatched dimensions')
|
|
flat_list.extend(flat)
|
|
rows += r
|
|
cols = ncol.pop() if ncol else 0
|
|
|
|
elif len(args) == 3:
|
|
rows = as_int(args[0])
|
|
cols = as_int(args[1])
|
|
|
|
if rows < 0 or cols < 0:
|
|
raise ValueError("Cannot create a {} x {} matrix. "
|
|
"Both dimensions must be positive".format(rows, cols))
|
|
|
|
# Matrix(2, 2, lambda i, j: i+j)
|
|
if len(args) == 3 and isinstance(args[2], Callable):
|
|
op = args[2]
|
|
flat_list = []
|
|
for i in range(rows):
|
|
flat_list.extend(
|
|
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
|
|
for j in range(cols)])
|
|
|
|
# Matrix(2, 2, [1, 2, 3, 4])
|
|
elif len(args) == 3 and is_sequence(args[2]):
|
|
flat_list = args[2]
|
|
if len(flat_list) != rows * cols:
|
|
raise ValueError(
|
|
'List length should be equal to rows*columns')
|
|
flat_list = [cls._sympify(i) for i in flat_list]
|
|
|
|
|
|
# Matrix()
|
|
elif len(args) == 0:
|
|
# Empty Matrix
|
|
rows = cols = 0
|
|
flat_list = []
|
|
|
|
if flat_list is None:
|
|
raise TypeError(filldedent('''
|
|
Data type not understood; expecting list of lists
|
|
or lists of values.'''))
|
|
|
|
return rows, cols, flat_list
|
|
|
|
def _setitem(self, key, value):
|
|
"""Helper to set value at location given by key.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, I, zeros, ones
|
|
>>> m = Matrix(((1, 2+I), (3, 4)))
|
|
>>> m
|
|
Matrix([
|
|
[1, 2 + I],
|
|
[3, 4]])
|
|
>>> m[1, 0] = 9
|
|
>>> m
|
|
Matrix([
|
|
[1, 2 + I],
|
|
[9, 4]])
|
|
>>> m[1, 0] = [[0, 1]]
|
|
|
|
To replace row r you assign to position r*m where m
|
|
is the number of columns:
|
|
|
|
>>> M = zeros(4)
|
|
>>> m = M.cols
|
|
>>> M[3*m] = ones(1, m)*2; M
|
|
Matrix([
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 0],
|
|
[2, 2, 2, 2]])
|
|
|
|
And to replace column c you can assign to position c:
|
|
|
|
>>> M[2] = ones(m, 1)*4; M
|
|
Matrix([
|
|
[0, 0, 4, 0],
|
|
[0, 0, 4, 0],
|
|
[0, 0, 4, 0],
|
|
[2, 2, 4, 2]])
|
|
"""
|
|
from .dense import Matrix
|
|
|
|
is_slice = isinstance(key, slice)
|
|
i, j = key = self.key2ij(key)
|
|
is_mat = isinstance(value, MatrixBase)
|
|
if isinstance(i, slice) or isinstance(j, slice):
|
|
if is_mat:
|
|
self.copyin_matrix(key, value)
|
|
return
|
|
if not isinstance(value, Expr) and is_sequence(value):
|
|
self.copyin_list(key, value)
|
|
return
|
|
raise ValueError('unexpected value: %s' % value)
|
|
else:
|
|
if (not is_mat and
|
|
not isinstance(value, Basic) and is_sequence(value)):
|
|
value = Matrix(value)
|
|
is_mat = True
|
|
if is_mat:
|
|
if is_slice:
|
|
key = (slice(*divmod(i, self.cols)),
|
|
slice(*divmod(j, self.cols)))
|
|
else:
|
|
key = (slice(i, i + value.rows),
|
|
slice(j, j + value.cols))
|
|
self.copyin_matrix(key, value)
|
|
else:
|
|
return i, j, self._sympify(value)
|
|
return
|
|
|
|
def add(self, b):
|
|
"""Return self + b."""
|
|
return self + b
|
|
|
|
def condition_number(self):
|
|
"""Returns the condition number of a matrix.
|
|
|
|
This is the maximum singular value divided by the minimum singular value
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, S
|
|
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
|
|
>>> A.condition_number()
|
|
100
|
|
|
|
See Also
|
|
========
|
|
|
|
singular_values
|
|
"""
|
|
|
|
if not self:
|
|
return self.zero
|
|
singularvalues = self.singular_values()
|
|
return Max(*singularvalues) / Min(*singularvalues)
|
|
|
|
def copy(self):
|
|
"""
|
|
Returns the copy of a matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix(2, 2, [1, 2, 3, 4])
|
|
>>> A.copy()
|
|
Matrix([
|
|
[1, 2],
|
|
[3, 4]])
|
|
|
|
"""
|
|
return self._new(self.rows, self.cols, self.flat())
|
|
|
|
def cross(self, b):
|
|
r"""
|
|
Return the cross product of ``self`` and ``b`` relaxing the condition
|
|
of compatible dimensions: if each has 3 elements, a matrix of the
|
|
same type and shape as ``self`` will be returned. If ``b`` has the same
|
|
shape as ``self`` then common identities for the cross product (like
|
|
`a \times b = - b \times a`) will hold.
|
|
|
|
Parameters
|
|
==========
|
|
b : 3x1 or 1x3 Matrix
|
|
|
|
See Also
|
|
========
|
|
|
|
dot
|
|
hat
|
|
vee
|
|
multiply
|
|
multiply_elementwise
|
|
"""
|
|
from sympy.matrices.expressions.matexpr import MatrixExpr
|
|
|
|
if not isinstance(b, (MatrixBase, MatrixExpr)):
|
|
raise TypeError(
|
|
"{} must be a Matrix, not {}.".format(b, type(b)))
|
|
|
|
if not (self.rows * self.cols == b.rows * b.cols == 3):
|
|
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
|
|
((self.rows, self.cols), (b.rows, b.cols)))
|
|
else:
|
|
return self._new(self.rows, self.cols, (
|
|
(self[1] * b[2] - self[2] * b[1]),
|
|
(self[2] * b[0] - self[0] * b[2]),
|
|
(self[0] * b[1] - self[1] * b[0])))
|
|
|
|
def hat(self):
|
|
r"""
|
|
Return the skew-symmetric matrix representing the cross product,
|
|
so that ``self.hat() * b`` is equivalent to ``self.cross(b)``.
|
|
|
|
Examples
|
|
========
|
|
|
|
Calling ``hat`` creates a skew-symmetric 3x3 Matrix from a 3x1 Matrix:
|
|
|
|
>>> from sympy import Matrix
|
|
>>> a = Matrix([1, 2, 3])
|
|
>>> a.hat()
|
|
Matrix([
|
|
[ 0, -3, 2],
|
|
[ 3, 0, -1],
|
|
[-2, 1, 0]])
|
|
|
|
Multiplying it with another 3x1 Matrix calculates the cross product:
|
|
|
|
>>> b = Matrix([3, 2, 1])
|
|
>>> a.hat() * b
|
|
Matrix([
|
|
[-4],
|
|
[ 8],
|
|
[-4]])
|
|
|
|
Which is equivalent to calling the ``cross`` method:
|
|
|
|
>>> a.cross(b)
|
|
Matrix([
|
|
[-4],
|
|
[ 8],
|
|
[-4]])
|
|
|
|
See Also
|
|
========
|
|
|
|
dot
|
|
cross
|
|
vee
|
|
multiply
|
|
multiply_elementwise
|
|
"""
|
|
|
|
if self.shape != (3, 1):
|
|
raise ShapeError("Dimensions incorrect, expected (3, 1), got " +
|
|
str(self.shape))
|
|
else:
|
|
x, y, z = self
|
|
return self._new(3, 3, (
|
|
0, -z, y,
|
|
z, 0, -x,
|
|
-y, x, 0))
|
|
|
|
def vee(self):
|
|
r"""
|
|
Return a 3x1 vector from a skew-symmetric matrix representing the cross product,
|
|
so that ``self * b`` is equivalent to ``self.vee().cross(b)``.
|
|
|
|
Examples
|
|
========
|
|
|
|
Calling ``vee`` creates a vector from a skew-symmetric Matrix:
|
|
|
|
>>> from sympy import Matrix
|
|
>>> A = Matrix([[0, -3, 2], [3, 0, -1], [-2, 1, 0]])
|
|
>>> a = A.vee()
|
|
>>> a
|
|
Matrix([
|
|
[1],
|
|
[2],
|
|
[3]])
|
|
|
|
Calculating the matrix product of the original matrix with a vector
|
|
is equivalent to a cross product:
|
|
|
|
>>> b = Matrix([3, 2, 1])
|
|
>>> A * b
|
|
Matrix([
|
|
[-4],
|
|
[ 8],
|
|
[-4]])
|
|
|
|
>>> a.cross(b)
|
|
Matrix([
|
|
[-4],
|
|
[ 8],
|
|
[-4]])
|
|
|
|
``vee`` can also be used to retrieve angular velocity expressions.
|
|
Defining a rotation matrix:
|
|
|
|
>>> from sympy import rot_ccw_axis3, trigsimp
|
|
>>> from sympy.physics.mechanics import dynamicsymbols
|
|
>>> theta = dynamicsymbols('theta')
|
|
>>> R = rot_ccw_axis3(theta)
|
|
>>> R
|
|
Matrix([
|
|
[cos(theta(t)), -sin(theta(t)), 0],
|
|
[sin(theta(t)), cos(theta(t)), 0],
|
|
[ 0, 0, 1]])
|
|
|
|
We can retrive the angular velocity:
|
|
|
|
>>> Omega = R.T * R.diff()
|
|
>>> Omega = trigsimp(Omega)
|
|
>>> Omega.vee()
|
|
Matrix([
|
|
[ 0],
|
|
[ 0],
|
|
[Derivative(theta(t), t)]])
|
|
|
|
See Also
|
|
========
|
|
|
|
dot
|
|
cross
|
|
hat
|
|
multiply
|
|
multiply_elementwise
|
|
"""
|
|
|
|
if self.shape != (3, 3):
|
|
raise ShapeError("Dimensions incorrect, expected (3, 3), got " +
|
|
str(self.shape))
|
|
elif not self.is_anti_symmetric():
|
|
raise ValueError("Matrix is not skew-symmetric")
|
|
else:
|
|
return self._new(3, 1, (
|
|
self[2, 1],
|
|
self[0, 2],
|
|
self[1, 0]))
|
|
|
|
@property
|
|
def D(self):
|
|
"""Return Dirac conjugate (if ``self.rows == 4``).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, I, eye
|
|
>>> m = Matrix((0, 1 + I, 2, 3))
|
|
>>> m.D
|
|
Matrix([[0, 1 - I, -2, -3]])
|
|
>>> m = (eye(4) + I*eye(4))
|
|
>>> m[0, 3] = 2
|
|
>>> m.D
|
|
Matrix([
|
|
[1 - I, 0, 0, 0],
|
|
[ 0, 1 - I, 0, 0],
|
|
[ 0, 0, -1 + I, 0],
|
|
[ 2, 0, 0, -1 + I]])
|
|
|
|
If the matrix does not have 4 rows an AttributeError will be raised
|
|
because this property is only defined for matrices with 4 rows.
|
|
|
|
>>> Matrix(eye(2)).D
|
|
Traceback (most recent call last):
|
|
...
|
|
AttributeError: Matrix has no attribute D.
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.matrices.matrixbase.MatrixBase.conjugate: By-element conjugation
|
|
sympy.matrices.matrixbase.MatrixBase.H: Hermite conjugation
|
|
"""
|
|
from sympy.physics.matrices import mgamma
|
|
if self.rows != 4:
|
|
# In Python 3.2, properties can only return an AttributeError
|
|
# so we can't raise a ShapeError -- see commit which added the
|
|
# first line of this inline comment. Also, there is no need
|
|
# for a message since MatrixBase will raise the AttributeError
|
|
raise AttributeError
|
|
return self.H * mgamma(0)
|
|
|
|
def dot(self, b, hermitian=None, conjugate_convention=None):
|
|
"""Return the dot or inner product of two vectors of equal length.
|
|
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
|
|
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
|
|
A scalar is returned.
|
|
|
|
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
|
|
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
|
|
to compute the hermitian inner product.
|
|
|
|
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
|
|
|
|
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
|
|
the conjugate of the first vector (``self``) is used. If ``"right"``
|
|
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> v = Matrix([1, 1, 1])
|
|
>>> M.row(0).dot(v)
|
|
6
|
|
>>> M.col(0).dot(v)
|
|
12
|
|
>>> v = [3, 2, 1]
|
|
>>> M.row(0).dot(v)
|
|
10
|
|
|
|
>>> from sympy import I
|
|
>>> q = Matrix([1*I, 1*I, 1*I])
|
|
>>> q.dot(q, hermitian=False)
|
|
-3
|
|
|
|
>>> q.dot(q, hermitian=True)
|
|
3
|
|
|
|
>>> q1 = Matrix([1, 1, 1*I])
|
|
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
|
|
1 - 2*I
|
|
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
|
|
1 + 2*I
|
|
|
|
|
|
See Also
|
|
========
|
|
|
|
cross
|
|
multiply
|
|
multiply_elementwise
|
|
"""
|
|
from .dense import Matrix
|
|
|
|
if not isinstance(b, MatrixBase):
|
|
if is_sequence(b):
|
|
if len(b) != self.cols and len(b) != self.rows:
|
|
raise ShapeError(
|
|
"Dimensions incorrect for dot product: %s, %s" % (
|
|
self.shape, len(b)))
|
|
return self.dot(Matrix(b))
|
|
else:
|
|
raise TypeError(
|
|
"`b` must be an ordered iterable or Matrix, not %s." %
|
|
type(b))
|
|
|
|
if (1 not in self.shape) or (1 not in b.shape):
|
|
raise ShapeError
|
|
if len(self) != len(b):
|
|
raise ShapeError(
|
|
"Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
|
|
|
|
mat = self
|
|
n = len(mat)
|
|
if mat.shape != (1, n):
|
|
mat = mat.reshape(1, n)
|
|
if b.shape != (n, 1):
|
|
b = b.reshape(n, 1)
|
|
|
|
# Now ``mat`` is a row vector and ``b`` is a column vector.
|
|
|
|
# If it so happens that only conjugate_convention is passed
|
|
# then automatically set hermitian to True. If only hermitian
|
|
# is true but no conjugate_convention is not passed then
|
|
# automatically set it to ``"maths"``
|
|
|
|
if conjugate_convention is not None and hermitian is None:
|
|
hermitian = True
|
|
if hermitian and conjugate_convention is None:
|
|
conjugate_convention = "maths"
|
|
|
|
if hermitian == True:
|
|
if conjugate_convention in ("maths", "left", "math"):
|
|
mat = mat.conjugate()
|
|
elif conjugate_convention in ("physics", "right"):
|
|
b = b.conjugate()
|
|
else:
|
|
raise ValueError("Unknown conjugate_convention was entered."
|
|
" conjugate_convention must be one of the"
|
|
" following: math, maths, left, physics or right.")
|
|
return (mat * b)[0]
|
|
|
|
def dual(self):
|
|
"""Returns the dual of a matrix.
|
|
|
|
A dual of a matrix is:
|
|
|
|
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`
|
|
|
|
Since the levicivita method is anti_symmetric for any pairwise
|
|
exchange of indices, the dual of a symmetric matrix is the zero
|
|
matrix. Strictly speaking the dual defined here assumes that the
|
|
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
|
|
so that the dual is a covariant second rank tensor.
|
|
|
|
"""
|
|
from sympy.matrices import zeros
|
|
|
|
M, n = self[:, :], self.rows
|
|
work = zeros(n)
|
|
if self.is_symmetric():
|
|
return work
|
|
|
|
for i in range(1, n):
|
|
for j in range(1, n):
|
|
acum = 0
|
|
for k in range(1, n):
|
|
acum += LeviCivita(i, j, 0, k) * M[0, k]
|
|
work[i, j] = acum
|
|
work[j, i] = -acum
|
|
|
|
for l in range(1, n):
|
|
acum = 0
|
|
for a in range(1, n):
|
|
for b in range(1, n):
|
|
acum += LeviCivita(0, l, a, b) * M[a, b]
|
|
acum /= 2
|
|
work[0, l] = -acum
|
|
work[l, 0] = acum
|
|
|
|
return work
|
|
|
|
def _eval_matrix_exp_jblock(self):
|
|
"""A helper function to compute an exponential of a Jordan block
|
|
matrix
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, Matrix
|
|
>>> l = Symbol('lamda')
|
|
|
|
A trivial example of 1*1 Jordan block:
|
|
|
|
>>> m = Matrix.jordan_block(1, l)
|
|
>>> m._eval_matrix_exp_jblock()
|
|
Matrix([[exp(lamda)]])
|
|
|
|
An example of 3*3 Jordan block:
|
|
|
|
>>> m = Matrix.jordan_block(3, l)
|
|
>>> m._eval_matrix_exp_jblock()
|
|
Matrix([
|
|
[exp(lamda), exp(lamda), exp(lamda)/2],
|
|
[ 0, exp(lamda), exp(lamda)],
|
|
[ 0, 0, exp(lamda)]])
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition
|
|
"""
|
|
size = self.rows
|
|
l = self[0, 0]
|
|
exp_l = exp(l)
|
|
|
|
bands = {i: exp_l / factorial(i) for i in range(size)}
|
|
|
|
from .sparsetools import banded
|
|
return self.__class__(banded(size, bands))
|
|
|
|
|
|
def analytic_func(self, f, x):
|
|
"""
|
|
Computes f(A) where A is a Square Matrix
|
|
and f is an analytic function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, Matrix, S, log
|
|
|
|
>>> x = Symbol('x')
|
|
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
|
|
>>> f = log(x)
|
|
>>> m.analytic_func(f, x)
|
|
Matrix([
|
|
[ 0, log(2)],
|
|
[log(2), 0]])
|
|
|
|
Parameters
|
|
==========
|
|
|
|
f : Expr
|
|
Analytic Function
|
|
x : Symbol
|
|
parameter of f
|
|
|
|
"""
|
|
|
|
f, x = _sympify(f), _sympify(x)
|
|
if not self.is_square:
|
|
raise NonSquareMatrixError
|
|
if not x.is_symbol:
|
|
raise ValueError("{} must be a symbol.".format(x))
|
|
if x not in f.free_symbols:
|
|
raise ValueError(
|
|
"{} must be a parameter of {}.".format(x, f))
|
|
if x in self.free_symbols:
|
|
raise ValueError(
|
|
"{} must not be a parameter of {}.".format(x, self))
|
|
|
|
eigen = self.eigenvals()
|
|
max_mul = max(eigen.values())
|
|
derivative = {}
|
|
dd = f
|
|
for i in range(max_mul - 1):
|
|
dd = diff(dd, x)
|
|
derivative[i + 1] = dd
|
|
n = self.shape[0]
|
|
r = self.zeros(n)
|
|
f_val = self.zeros(n, 1)
|
|
row = 0
|
|
|
|
for i in eigen:
|
|
mul = eigen[i]
|
|
f_val[row] = f.subs(x, i)
|
|
if f_val[row].is_number and not f_val[row].is_complex:
|
|
raise ValueError(
|
|
"Cannot evaluate the function because the "
|
|
"function {} is not analytic at the given "
|
|
"eigenvalue {}".format(f, f_val[row]))
|
|
val = 1
|
|
for a in range(n):
|
|
r[row, a] = val
|
|
val *= i
|
|
if mul > 1:
|
|
coe = [1 for ii in range(n)]
|
|
deri = 1
|
|
while mul > 1:
|
|
row = row + 1
|
|
mul -= 1
|
|
d_i = derivative[deri].subs(x, i)
|
|
if d_i.is_number and not d_i.is_complex:
|
|
raise ValueError(
|
|
"Cannot evaluate the function because the "
|
|
"derivative {} is not analytic at the given "
|
|
"eigenvalue {}".format(derivative[deri], d_i))
|
|
f_val[row] = d_i
|
|
for a in range(n):
|
|
if a - deri + 1 <= 0:
|
|
r[row, a] = 0
|
|
coe[a] = 0
|
|
continue
|
|
coe[a] = coe[a]*(a - deri + 1)
|
|
r[row, a] = coe[a]*pow(i, a - deri)
|
|
deri += 1
|
|
row += 1
|
|
c = r.solve(f_val)
|
|
ans = self.zeros(n)
|
|
pre = self.eye(n)
|
|
for i in range(n):
|
|
ans = ans + c[i]*pre
|
|
pre *= self
|
|
return ans
|
|
|
|
|
|
def exp(self):
|
|
"""Return the exponential of a square matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, Matrix
|
|
|
|
>>> t = Symbol('t')
|
|
>>> m = Matrix([[0, 1], [-1, 0]]) * t
|
|
>>> m.exp()
|
|
Matrix([
|
|
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
|
|
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
|
|
"""
|
|
if not self.is_square:
|
|
raise NonSquareMatrixError(
|
|
"Exponentiation is valid only for square matrices")
|
|
try:
|
|
P, J = self.jordan_form()
|
|
cells = J.get_diag_blocks()
|
|
except MatrixError:
|
|
raise NotImplementedError(
|
|
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
|
|
|
|
blocks = [cell._eval_matrix_exp_jblock() for cell in cells]
|
|
from sympy.matrices import diag
|
|
eJ = diag(*blocks)
|
|
# n = self.rows
|
|
ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None)
|
|
if all(value.is_real for value in self.values()):
|
|
return type(self)(re(ret))
|
|
else:
|
|
return type(self)(ret)
|
|
|
|
def _eval_matrix_log_jblock(self):
|
|
"""Helper function to compute logarithm of a jordan block.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Symbol, Matrix
|
|
>>> l = Symbol('lamda')
|
|
|
|
A trivial example of 1*1 Jordan block:
|
|
|
|
>>> m = Matrix.jordan_block(1, l)
|
|
>>> m._eval_matrix_log_jblock()
|
|
Matrix([[log(lamda)]])
|
|
|
|
An example of 3*3 Jordan block:
|
|
|
|
>>> m = Matrix.jordan_block(3, l)
|
|
>>> m._eval_matrix_log_jblock()
|
|
Matrix([
|
|
[log(lamda), 1/lamda, -1/(2*lamda**2)],
|
|
[ 0, log(lamda), 1/lamda],
|
|
[ 0, 0, log(lamda)]])
|
|
"""
|
|
size = self.rows
|
|
l = self[0, 0]
|
|
|
|
if l.is_zero:
|
|
raise MatrixError(
|
|
'Could not take logarithm or reciprocal for the given '
|
|
'eigenvalue {}'.format(l))
|
|
|
|
bands = {0: log(l)}
|
|
for i in range(1, size):
|
|
bands[i] = -((-l) ** -i) / i
|
|
|
|
from .sparsetools import banded
|
|
return self.__class__(banded(size, bands))
|
|
|
|
def log(self, simplify=cancel):
|
|
"""Return the logarithm of a square matrix.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
simplify : function, bool
|
|
The function to simplify the result with.
|
|
|
|
Default is ``cancel``, which is effective to reduce the
|
|
expression growing for taking reciprocals and inverses for
|
|
symbolic matrices.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import S, Matrix
|
|
|
|
Examples for positive-definite matrices:
|
|
|
|
>>> m = Matrix([[1, 1], [0, 1]])
|
|
>>> m.log()
|
|
Matrix([
|
|
[0, 1],
|
|
[0, 0]])
|
|
|
|
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
|
|
>>> m.log()
|
|
Matrix([
|
|
[ 0, log(2)],
|
|
[log(2), 0]])
|
|
|
|
Examples for non positive-definite matrices:
|
|
|
|
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
|
|
>>> m.log()
|
|
Matrix([
|
|
[ I*pi/2, log(2) - I*pi/2],
|
|
[log(2) - I*pi/2, I*pi/2]])
|
|
|
|
>>> m = Matrix(
|
|
... [[0, 0, 0, 1],
|
|
... [0, 0, 1, 0],
|
|
... [0, 1, 0, 0],
|
|
... [1, 0, 0, 0]])
|
|
>>> m.log()
|
|
Matrix([
|
|
[ I*pi/2, 0, 0, -I*pi/2],
|
|
[ 0, I*pi/2, -I*pi/2, 0],
|
|
[ 0, -I*pi/2, I*pi/2, 0],
|
|
[-I*pi/2, 0, 0, I*pi/2]])
|
|
"""
|
|
if not self.is_square:
|
|
raise NonSquareMatrixError(
|
|
"Logarithm is valid only for square matrices")
|
|
|
|
try:
|
|
if simplify:
|
|
P, J = simplify(self).jordan_form()
|
|
else:
|
|
P, J = self.jordan_form()
|
|
|
|
cells = J.get_diag_blocks()
|
|
except MatrixError:
|
|
raise NotImplementedError(
|
|
"Logarithm is implemented only for matrices for which "
|
|
"the Jordan normal form can be computed")
|
|
|
|
blocks = [
|
|
cell._eval_matrix_log_jblock()
|
|
for cell in cells]
|
|
from sympy.matrices import diag
|
|
eJ = diag(*blocks)
|
|
|
|
if simplify:
|
|
ret = simplify(P * eJ * simplify(P.inv()))
|
|
ret = self.__class__(ret)
|
|
else:
|
|
ret = P * eJ * P.inv()
|
|
|
|
return ret
|
|
|
|
def is_nilpotent(self):
|
|
"""Checks if a matrix is nilpotent.
|
|
|
|
A matrix B is nilpotent if for some integer k, B**k is
|
|
a zero matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix
|
|
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
|
|
>>> a.is_nilpotent()
|
|
True
|
|
|
|
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
|
|
>>> a.is_nilpotent()
|
|
False
|
|
"""
|
|
if not self:
|
|
return True
|
|
if not self.is_square:
|
|
raise NonSquareMatrixError(
|
|
"Nilpotency is valid only for square matrices")
|
|
x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s)
|
|
p = self.charpoly(x)
|
|
if p.args[0] == x ** self.rows:
|
|
return True
|
|
return False
|
|
|
|
def key2bounds(self, keys):
|
|
"""Converts a key with potentially mixed types of keys (integer and slice)
|
|
into a tuple of ranges and raises an error if any index is out of ``self``'s
|
|
range.
|
|
|
|
See Also
|
|
========
|
|
|
|
key2ij
|
|
"""
|
|
islice, jslice = [isinstance(k, slice) for k in keys]
|
|
if islice:
|
|
if not self.rows:
|
|
rlo = rhi = 0
|
|
else:
|
|
rlo, rhi = keys[0].indices(self.rows)[:2]
|
|
else:
|
|
rlo = a2idx(keys[0], self.rows)
|
|
rhi = rlo + 1
|
|
if jslice:
|
|
if not self.cols:
|
|
clo = chi = 0
|
|
else:
|
|
clo, chi = keys[1].indices(self.cols)[:2]
|
|
else:
|
|
clo = a2idx(keys[1], self.cols)
|
|
chi = clo + 1
|
|
return rlo, rhi, clo, chi
|
|
|
|
def key2ij(self, key):
|
|
"""Converts key into canonical form, converting integers or indexable
|
|
items into valid integers for ``self``'s range or returning slices
|
|
unchanged.
|
|
|
|
See Also
|
|
========
|
|
|
|
key2bounds
|
|
"""
|
|
if is_sequence(key):
|
|
if not len(key) == 2:
|
|
raise TypeError('key must be a sequence of length 2')
|
|
return [a2idx(i, n) if not isinstance(i, slice) else i
|
|
for i, n in zip(key, self.shape)]
|
|
elif isinstance(key, slice):
|
|
return key.indices(len(self))[:2]
|
|
else:
|
|
return divmod(a2idx(key, len(self)), self.cols)
|
|
|
|
def normalized(self, iszerofunc=_iszero):
|
|
"""Return the normalized version of ``self``.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
iszerofunc : Function, optional
|
|
A function to determine whether ``self`` is a zero vector.
|
|
The default ``_iszero`` tests to see if each element is
|
|
exactly zero.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Matrix
|
|
Normalized vector form of ``self``.
|
|
It has the same length as a unit vector. However, a zero vector
|
|
will be returned for a vector with norm 0.
|
|
|
|
Raises
|
|
======
|
|
|
|
ShapeError
|
|
If the matrix is not in a vector form.
|
|
|
|
See Also
|
|
========
|
|
|
|
norm
|
|
"""
|
|
if self.rows != 1 and self.cols != 1:
|
|
raise ShapeError("A Matrix must be a vector to normalize.")
|
|
norm = self.norm()
|
|
if iszerofunc(norm):
|
|
out = self.zeros(self.rows, self.cols)
|
|
else:
|
|
out = self.applyfunc(lambda i: i / norm)
|
|
return out
|
|
|
|
def norm(self, ord=None):
|
|
"""Return the Norm of a Matrix or Vector.
|
|
|
|
In the simplest case this is the geometric size of the vector
|
|
Other norms can be specified by the ord parameter
|
|
|
|
|
|
===== ============================ ==========================
|
|
ord norm for matrices norm for vectors
|
|
===== ============================ ==========================
|
|
None Frobenius norm 2-norm
|
|
'fro' Frobenius norm - does not exist
|
|
inf maximum row sum max(abs(x))
|
|
-inf -- min(abs(x))
|
|
1 maximum column sum as below
|
|
-1 -- as below
|
|
2 2-norm (largest sing. value) as below
|
|
-2 smallest singular value as below
|
|
other - does not exist sum(abs(x)**ord)**(1./ord)
|
|
===== ============================ ==========================
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
|
|
>>> x = Symbol('x', real=True)
|
|
>>> v = Matrix([cos(x), sin(x)])
|
|
>>> trigsimp( v.norm() )
|
|
1
|
|
>>> v.norm(10)
|
|
(sin(x)**10 + cos(x)**10)**(1/10)
|
|
>>> A = Matrix([[1, 1], [1, 1]])
|
|
>>> A.norm(1) # maximum sum of absolute values of A is 2
|
|
2
|
|
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
|
|
2
|
|
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
|
|
0
|
|
>>> A.norm() # Frobenius Norm
|
|
2
|
|
>>> A.norm(oo) # Infinity Norm
|
|
2
|
|
>>> Matrix([1, -2]).norm(oo)
|
|
2
|
|
>>> Matrix([-1, 2]).norm(-oo)
|
|
1
|
|
|
|
See Also
|
|
========
|
|
|
|
normalized
|
|
"""
|
|
# Row or Column Vector Norms
|
|
vals = list(self.values()) or [0]
|
|
if S.One in self.shape:
|
|
if ord in (2, None): # Common case sqrt(<x, x>)
|
|
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
|
|
|
|
elif ord == 1: # sum(abs(x))
|
|
return Add(*(abs(i) for i in vals))
|
|
|
|
elif ord is S.Infinity: # max(abs(x))
|
|
return Max(*[abs(i) for i in vals])
|
|
|
|
elif ord is S.NegativeInfinity: # min(abs(x))
|
|
return Min(*[abs(i) for i in vals])
|
|
|
|
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
|
|
# Note that while useful this is not mathematically a norm
|
|
try:
|
|
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord)
|
|
except (NotImplementedError, TypeError):
|
|
raise ValueError("Expected order to be Number, Symbol, oo")
|
|
|
|
# Matrix Norms
|
|
else:
|
|
if ord == 1: # Maximum column sum
|
|
m = self.applyfunc(abs)
|
|
return Max(*[sum(m.col(i)) for i in range(m.cols)])
|
|
|
|
elif ord == 2: # Spectral Norm
|
|
# Maximum singular value
|
|
return Max(*self.singular_values())
|
|
|
|
elif ord == -2:
|
|
# Minimum singular value
|
|
return Min(*self.singular_values())
|
|
|
|
elif ord is S.Infinity: # Infinity Norm - Maximum row sum
|
|
m = self.applyfunc(abs)
|
|
return Max(*[sum(m.row(i)) for i in range(m.rows)])
|
|
|
|
elif (ord is None or isinstance(ord,
|
|
str) and ord.lower() in
|
|
['f', 'fro', 'frobenius', 'vector']):
|
|
# Reshape as vector and send back to norm function
|
|
return self.vec().norm(ord=2)
|
|
|
|
else:
|
|
raise NotImplementedError("Matrix Norms under development")
|
|
|
|
def print_nonzero(self, symb="X"):
|
|
"""Shows location of non-zero entries for fast shape lookup.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, eye
|
|
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
|
|
>>> m
|
|
Matrix([
|
|
[0, 1, 2],
|
|
[3, 4, 5]])
|
|
>>> m.print_nonzero()
|
|
[ XX]
|
|
[XXX]
|
|
>>> m = eye(4)
|
|
>>> m.print_nonzero("x")
|
|
[x ]
|
|
[ x ]
|
|
[ x ]
|
|
[ x]
|
|
|
|
"""
|
|
s = []
|
|
for i in range(self.rows):
|
|
line = []
|
|
for j in range(self.cols):
|
|
if self[i, j] == 0:
|
|
line.append(" ")
|
|
else:
|
|
line.append(str(symb))
|
|
s.append("[%s]" % ''.join(line))
|
|
print('\n'.join(s))
|
|
|
|
def project(self, v):
|
|
"""Return the projection of ``self`` onto the line containing ``v``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, S, sqrt
|
|
>>> V = Matrix([sqrt(3)/2, S.Half])
|
|
>>> x = Matrix([[1, 0]])
|
|
>>> V.project(x)
|
|
Matrix([[sqrt(3)/2, 0]])
|
|
>>> V.project(-x)
|
|
Matrix([[sqrt(3)/2, 0]])
|
|
"""
|
|
return v * (self.dot(v) / v.dot(v))
|
|
|
|
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
|
|
colsep=', ', align='right'):
|
|
r"""
|
|
String form of Matrix as a table.
|
|
|
|
``printer`` is the printer to use for on the elements (generally
|
|
something like StrPrinter())
|
|
|
|
``rowstart`` is the string used to start each row (by default '[').
|
|
|
|
``rowend`` is the string used to end each row (by default ']').
|
|
|
|
``rowsep`` is the string used to separate rows (by default a newline).
|
|
|
|
``colsep`` is the string used to separate columns (by default ', ').
|
|
|
|
``align`` defines how the elements are aligned. Must be one of 'left',
|
|
'right', or 'center'. You can also use '<', '>', and '^' to mean the
|
|
same thing, respectively.
|
|
|
|
This is used by the string printer for Matrix.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, StrPrinter
|
|
>>> M = Matrix([[1, 2], [-33, 4]])
|
|
>>> printer = StrPrinter()
|
|
>>> M.table(printer)
|
|
'[ 1, 2]\n[-33, 4]'
|
|
>>> print(M.table(printer))
|
|
[ 1, 2]
|
|
[-33, 4]
|
|
>>> print(M.table(printer, rowsep=',\n'))
|
|
[ 1, 2],
|
|
[-33, 4]
|
|
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
|
|
[[ 1, 2],
|
|
[-33, 4]]
|
|
>>> print(M.table(printer, colsep=' '))
|
|
[ 1 2]
|
|
[-33 4]
|
|
>>> print(M.table(printer, align='center'))
|
|
[ 1 , 2]
|
|
[-33, 4]
|
|
>>> print(M.table(printer, rowstart='{', rowend='}'))
|
|
{ 1, 2}
|
|
{-33, 4}
|
|
"""
|
|
# Handle zero dimensions:
|
|
if S.Zero in self.shape:
|
|
return '[]'
|
|
# Build table of string representations of the elements
|
|
res = []
|
|
# Track per-column max lengths for pretty alignment
|
|
maxlen = [0] * self.cols
|
|
for i in range(self.rows):
|
|
res.append([])
|
|
for j in range(self.cols):
|
|
s = printer._print(self[i, j])
|
|
res[-1].append(s)
|
|
maxlen[j] = max(len(s), maxlen[j])
|
|
# Patch strings together
|
|
align = {
|
|
'left': 'ljust',
|
|
'right': 'rjust',
|
|
'center': 'center',
|
|
'<': 'ljust',
|
|
'>': 'rjust',
|
|
'^': 'center',
|
|
}[align]
|
|
for i, row in enumerate(res):
|
|
for j, elem in enumerate(row):
|
|
row[j] = getattr(elem, align)(maxlen[j])
|
|
res[i] = rowstart + colsep.join(row) + rowend
|
|
return rowsep.join(res)
|
|
|
|
def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
|
|
return _rank_decomposition(self, iszerofunc=iszerofunc,
|
|
simplify=simplify)
|
|
|
|
def cholesky(self, hermitian=True):
|
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
|
|
|
|
def LDLdecomposition(self, hermitian=True):
|
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
|
|
|
|
def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None,
|
|
rankcheck=False):
|
|
return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc,
|
|
rankcheck=rankcheck)
|
|
|
|
def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None,
|
|
rankcheck=False):
|
|
return _LUdecomposition_Simple(self, iszerofunc=iszerofunc,
|
|
simpfunc=simpfunc, rankcheck=rankcheck)
|
|
|
|
def LUdecompositionFF(self):
|
|
return _LUdecompositionFF(self)
|
|
|
|
def singular_value_decomposition(self):
|
|
return _singular_value_decomposition(self)
|
|
|
|
def QRdecomposition(self):
|
|
return _QRdecomposition(self)
|
|
|
|
def upper_hessenberg_decomposition(self):
|
|
return _upper_hessenberg_decomposition(self)
|
|
|
|
def diagonal_solve(self, rhs):
|
|
return _diagonal_solve(self, rhs)
|
|
|
|
def lower_triangular_solve(self, rhs):
|
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
|
|
|
|
def upper_triangular_solve(self, rhs):
|
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
|
|
|
|
def cholesky_solve(self, rhs):
|
|
return _cholesky_solve(self, rhs)
|
|
|
|
def LDLsolve(self, rhs):
|
|
return _LDLsolve(self, rhs)
|
|
|
|
def LUsolve(self, rhs, iszerofunc=_iszero):
|
|
return _LUsolve(self, rhs, iszerofunc=iszerofunc)
|
|
|
|
def QRsolve(self, b):
|
|
return _QRsolve(self, b)
|
|
|
|
def gauss_jordan_solve(self, B, freevar=False):
|
|
return _gauss_jordan_solve(self, B, freevar=freevar)
|
|
|
|
def pinv_solve(self, B, arbitrary_matrix=None):
|
|
return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix)
|
|
|
|
def cramer_solve(self, rhs, det_method="laplace"):
|
|
return _cramer_solve(self, rhs, det_method=det_method)
|
|
|
|
def solve(self, rhs, method='GJ'):
|
|
return _solve(self, rhs, method=method)
|
|
|
|
def solve_least_squares(self, rhs, method='CH'):
|
|
return _solve_least_squares(self, rhs, method=method)
|
|
|
|
def pinv(self, method='RD'):
|
|
return _pinv(self, method=method)
|
|
|
|
def inverse_ADJ(self, iszerofunc=_iszero):
|
|
return _inv_ADJ(self, iszerofunc=iszerofunc)
|
|
|
|
def inverse_BLOCK(self, iszerofunc=_iszero):
|
|
return _inv_block(self, iszerofunc=iszerofunc)
|
|
|
|
def inverse_GE(self, iszerofunc=_iszero):
|
|
return _inv_GE(self, iszerofunc=iszerofunc)
|
|
|
|
def inverse_LU(self, iszerofunc=_iszero):
|
|
return _inv_LU(self, iszerofunc=iszerofunc)
|
|
|
|
def inverse_CH(self, iszerofunc=_iszero):
|
|
return _inv_CH(self, iszerofunc=iszerofunc)
|
|
|
|
def inverse_LDL(self, iszerofunc=_iszero):
|
|
return _inv_LDL(self, iszerofunc=iszerofunc)
|
|
|
|
def inverse_QR(self, iszerofunc=_iszero):
|
|
return _inv_QR(self, iszerofunc=iszerofunc)
|
|
|
|
def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False):
|
|
return _inv(self, method=method, iszerofunc=iszerofunc,
|
|
try_block_diag=try_block_diag)
|
|
|
|
def connected_components(self):
|
|
return _connected_components(self)
|
|
|
|
def connected_components_decomposition(self):
|
|
return _connected_components_decomposition(self)
|
|
|
|
def strongly_connected_components(self):
|
|
return _strongly_connected_components(self)
|
|
|
|
def strongly_connected_components_decomposition(self, lower=True):
|
|
return _strongly_connected_components_decomposition(self, lower=lower)
|
|
|
|
_sage_ = Basic._sage_
|
|
|
|
rank_decomposition.__doc__ = _rank_decomposition.__doc__
|
|
cholesky.__doc__ = _cholesky.__doc__
|
|
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
|
|
LUdecomposition.__doc__ = _LUdecomposition.__doc__
|
|
LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__
|
|
LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__
|
|
singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__
|
|
QRdecomposition.__doc__ = _QRdecomposition.__doc__
|
|
upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__
|
|
|
|
diagonal_solve.__doc__ = _diagonal_solve.__doc__
|
|
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
|
|
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
|
|
cholesky_solve.__doc__ = _cholesky_solve.__doc__
|
|
LDLsolve.__doc__ = _LDLsolve.__doc__
|
|
LUsolve.__doc__ = _LUsolve.__doc__
|
|
QRsolve.__doc__ = _QRsolve.__doc__
|
|
gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__
|
|
pinv_solve.__doc__ = _pinv_solve.__doc__
|
|
cramer_solve.__doc__ = _cramer_solve.__doc__
|
|
solve.__doc__ = _solve.__doc__
|
|
solve_least_squares.__doc__ = _solve_least_squares.__doc__
|
|
|
|
pinv.__doc__ = _pinv.__doc__
|
|
inverse_ADJ.__doc__ = _inv_ADJ.__doc__
|
|
inverse_GE.__doc__ = _inv_GE.__doc__
|
|
inverse_LU.__doc__ = _inv_LU.__doc__
|
|
inverse_CH.__doc__ = _inv_CH.__doc__
|
|
inverse_LDL.__doc__ = _inv_LDL.__doc__
|
|
inverse_QR.__doc__ = _inv_QR.__doc__
|
|
inverse_BLOCK.__doc__ = _inv_block.__doc__
|
|
inv.__doc__ = _inv.__doc__
|
|
|
|
connected_components.__doc__ = _connected_components.__doc__
|
|
connected_components_decomposition.__doc__ = \
|
|
_connected_components_decomposition.__doc__
|
|
strongly_connected_components.__doc__ = \
|
|
_strongly_connected_components.__doc__
|
|
strongly_connected_components_decomposition.__doc__ = \
|
|
_strongly_connected_components_decomposition.__doc__
|
|
|
|
|
|
def _convert_matrix(typ, mat):
|
|
"""Convert mat to a Matrix of type typ."""
|
|
from sympy.matrices.matrixbase import MatrixBase
|
|
if getattr(mat, "is_Matrix", False) and not isinstance(mat, MatrixBase):
|
|
# This is needed for interop between Matrix and the redundant matrix
|
|
# mixin types like _MinimalMatrix etc. If anyone should happen to be
|
|
# using those then this keeps them working. Really _MinimalMatrix etc
|
|
# should be deprecated and removed though.
|
|
return typ(*mat.shape, list(mat))
|
|
else:
|
|
return typ(mat)
|
|
|
|
|
|
def _has_matrix_shape(other):
|
|
shape = getattr(other, 'shape', None)
|
|
if shape is None:
|
|
return False
|
|
return isinstance(shape, tuple) and len(shape) == 2
|
|
|
|
|
|
def _has_rows_cols(other):
|
|
return hasattr(other, 'rows') and hasattr(other, 'cols')
|
|
|
|
|
|
def _coerce_operand(self, other):
|
|
"""Convert other to a Matrix, or check for possible scalar."""
|
|
|
|
INVALID = None, 'invalid_type'
|
|
|
|
# Disallow mixing Matrix and Array
|
|
if isinstance(other, NDimArray):
|
|
return INVALID
|
|
|
|
is_Matrix = getattr(other, 'is_Matrix', None)
|
|
|
|
# Return a Matrix as-is
|
|
if is_Matrix:
|
|
return other, 'is_matrix'
|
|
|
|
# Try to convert numpy array, mpmath matrix etc.
|
|
if is_Matrix is None:
|
|
if _has_matrix_shape(other) or _has_rows_cols(other):
|
|
return _convert_matrix(type(self), other), 'is_matrix'
|
|
|
|
# Could be a scalar but only if not iterable...
|
|
if not isinstance(other, Iterable):
|
|
return other, 'possible_scalar'
|
|
|
|
return INVALID
|
|
|
|
|
|
def classof(A, B):
|
|
"""
|
|
Get the type of the result when combining matrices of different types.
|
|
|
|
Currently the strategy is that immutability is contagious.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Matrix, ImmutableMatrix
|
|
>>> from sympy.matrices.matrixbase import classof
|
|
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
|
|
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
|
|
>>> classof(M, IM)
|
|
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
|
|
"""
|
|
priority_A = getattr(A, '_class_priority', None)
|
|
priority_B = getattr(B, '_class_priority', None)
|
|
if None not in (priority_A, priority_B):
|
|
if A._class_priority > B._class_priority:
|
|
return A.__class__
|
|
else:
|
|
return B.__class__
|
|
|
|
try:
|
|
import numpy
|
|
except ImportError:
|
|
pass
|
|
else:
|
|
if isinstance(A, numpy.ndarray):
|
|
return B.__class__
|
|
if isinstance(B, numpy.ndarray):
|
|
return A.__class__
|
|
|
|
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
|
|
|
|
|
def _unify_with_other(self, other):
|
|
"""Unify self and other into a single matrix type, or check for scalar."""
|
|
other, T = _coerce_operand(self, other)
|
|
|
|
if T == "is_matrix":
|
|
typ = classof(self, other)
|
|
if typ != self.__class__:
|
|
self = _convert_matrix(typ, self)
|
|
if typ != other.__class__:
|
|
other = _convert_matrix(typ, other)
|
|
|
|
return self, other, T
|
|
|
|
|
|
def a2idx(j, n=None):
|
|
"""Return integer after making positive and validating against n."""
|
|
if not isinstance(j, int):
|
|
jindex = getattr(j, '__index__', None)
|
|
if jindex is not None:
|
|
j = jindex()
|
|
else:
|
|
raise IndexError("Invalid index a[%r]" % (j,))
|
|
if n is not None:
|
|
if j < 0:
|
|
j += n
|
|
if not (j >= 0 and j < n):
|
|
raise IndexError("Index out of range: a[%s]" % (j,))
|
|
return int(j)
|
|
|
|
|
|
class DeferredVector(Symbol, NotIterable):
|
|
"""A vector whose components are deferred (e.g. for use with lambdify).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import DeferredVector, lambdify
|
|
>>> X = DeferredVector( 'X' )
|
|
>>> X
|
|
X
|
|
>>> expr = (X[0] + 2, X[2] + 3)
|
|
>>> func = lambdify( X, expr)
|
|
>>> func( [1, 2, 3] )
|
|
(3, 6)
|
|
"""
|
|
|
|
def __getitem__(self, i):
|
|
if i == -0:
|
|
i = 0
|
|
if i < 0:
|
|
raise IndexError('DeferredVector index out of range')
|
|
component_name = '%s[%d]' % (self.name, i)
|
|
return Symbol(component_name)
|
|
|
|
def __str__(self):
|
|
return sstr(self)
|
|
|
|
def __repr__(self):
|
|
return "DeferredVector('%s')" % self.name
|