Files
2024-10-30 22:14:35 +01:00

169 lines
6.7 KiB
Python

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from logging import getLogger
from typing import Dict, List
from fusion_base import Fusion
from fusion_utils import FusionUtils
from onnx import NodeProto, TensorProto, helper
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionTranspose(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "Transpose", "Transpose")
def fuse(
self,
transpose_node: NodeProto,
input_name_to_nodes: Dict[str, List[NodeProto]],
output_name_to_node: Dict[str, NodeProto],
):
"""
Note that onnxruntime will do comprehensive transpose optimization after loading model.
The purpose of this fusion is to make graph clean before running onnxruntime.
Case 1:
(input)-->Transpose(perm=a)-->Transpose(perm=b)-->
After:
(input)-->Transpose(perm=a)--> (this path can be removed if the output is not used anymore)
|
+----->Transpose(perm=a*b)-->
Case 2 (Cast has only one child):
(input)-->Transpose(perm=a)--> Cast -->Transpose(perm=b)-->
After:
(input)-->Transpose(perm=a)--> (this path can be removed if the output is not used anymore)
|
+----->Cast --> Transpose(perm=a*b)-->
"""
transpose_b = transpose_node
if transpose_b.input[0] not in output_name_to_node:
return
transpose_a = output_name_to_node[transpose_b.input[0]]
if transpose_a.op_type != "Cast":
cast_node = None
else:
cast_node = transpose_a
cast_children = self.model.get_children(cast_node, input_name_to_nodes)
if cast_children and len(cast_children) > 1:
return
if cast_node.input[0] not in output_name_to_node:
return
transpose_a = output_name_to_node[cast_node.input[0]]
if transpose_a.op_type != "Transpose":
return
permutation = OnnxModel.get_node_attribute(transpose_b, "perm")
assert isinstance(permutation, list)
parent_permutation = OnnxModel.get_node_attribute(transpose_a, "perm")
assert isinstance(parent_permutation, list)
assert len(parent_permutation) == len(permutation)
output_permutation = []
for _j, index in enumerate(permutation):
output_permutation.append(parent_permutation[index])
if cast_node is None:
if FusionUtils.skip_parent(self.model, transpose_b, transpose_a, input_name_to_nodes):
self.nodes_to_remove.append(transpose_a)
else:
if FusionUtils.skip_parent(self.model, cast_node, transpose_a, input_name_to_nodes):
self.nodes_to_remove.append(transpose_a)
transpose_b.ClearField("attribute")
transpose_b.attribute.extend([helper.make_attribute("perm", output_permutation)])
class FusionInsertTranspose(Fusion):
def __init__(self, model: OnnxModel):
super().__init__(model, "", "GroupNorm")
def create_transpose_node(self, input_name: str, perm: List[int], output_name=None):
"""Append a Transpose node after an input"""
node_name = self.model.create_node_name("Transpose")
if output_name is None:
output_name = node_name + "_out" + "-" + input_name
transpose_node = helper.make_node("Transpose", inputs=[input_name], outputs=[output_name], name=node_name)
transpose_node.attribute.extend([helper.make_attribute("perm", perm)])
return transpose_node
def fuse(
self,
group_norm_node: NodeProto,
input_name_to_nodes: Dict[str, List[NodeProto]],
output_name_to_node: Dict[str, NodeProto],
):
"""
This optimization will insert an Transpose, and onnxruntime transpose optimizer will remove it together with
another Transpose so that we can get effect of reducing one Transpose after onnxruntime optimization.
Before:
--> Gemm --> Unsqueeze(axes=[2]) --> Unsqueeze(axes=[3]) --> Add --> Transpose([0,2,3,1]) --> GroupNorm
After:
--> Gemm --> Unsqueeze(axes=[1]) --> Unsqueeze(axes=[2]) -->Transpose([0,3,1,2]) --> Add --> Transpose([0,2,3,1]) --> GroupNorm
"""
gemm_path = self.model.match_parent_path(
group_norm_node, ["Transpose", "Add", "Unsqueeze", "Unsqueeze", "Gemm"], [0, 0, None, 0, 0]
)
if gemm_path is None:
return
transpose, add, unsqueeze_3, unsqueeze_2, gemm = gemm_path
if self.model.find_graph_output(unsqueeze_3.output[0]):
return
permutation = OnnxModel.get_node_attribute(transpose, "perm")
assert isinstance(permutation, list)
if permutation != [0, 2, 3, 1]:
return
if not (
len(unsqueeze_3.input) == 2
and self.model.get_constant_value(unsqueeze_3.input[1]) == 3
and len(unsqueeze_2.input) == 2
and self.model.get_constant_value(unsqueeze_2.input[1]) == 2
and len(self.model.get_children(gemm, input_name_to_nodes)) == 1
and len(self.model.get_children(unsqueeze_3, input_name_to_nodes)) == 1
and len(self.model.get_children(unsqueeze_2, input_name_to_nodes)) == 1
):
return
# Here we use hard-coded name so that it could be shared for the whole model.
axes_1 = "ort_const_unsqueeze_axes_1"
if self.model.get_initializer(axes_1) is None:
self.add_initializer(
name=axes_1,
data_type=TensorProto.INT64,
dims=[1],
vals=[1],
raw=False,
)
axes_2 = "ort_const_unsqueeze_axes_2"
if self.model.get_initializer(axes_2) is None:
self.add_initializer(
name=axes_2,
data_type=TensorProto.INT64,
dims=[1],
vals=[2],
raw=False,
)
unsqueeze_3.input[1] = "ort_const_unsqueeze_axes_2"
unsqueeze_2.input[1] = "ort_const_unsqueeze_axes_1"
transpose_output_name = self.model.create_node_name("Transpose") + "_NCHW"
self.model.replace_input_of_all_nodes(unsqueeze_3.output[0], transpose_output_name)
new_transpose = self.create_transpose_node(unsqueeze_3.output[0], [0, 3, 1, 2], transpose_output_name)
self.model.add_node(new_transpose, self.this_graph_name)
self.increase_counter("Insert Transpose")