Files
2024-10-30 22:14:35 +01:00

188 lines
8.3 KiB
Python

# --------------------------------------------------------------------------
# Copyright (c) Microsoft, Intel Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import logging
import tempfile
import traceback
from pathlib import Path
from typing import Optional, Union
import onnx
import onnxruntime
from onnxruntime.tools.symbolic_shape_infer import SymbolicShapeInference
from onnxruntime.transformers.onnx_utils import extract_raw_data_from_model, has_external_data
from .quant_utils import add_pre_process_metadata
logger = logging.getLogger(__name__)
def quant_pre_process(
input_model: Optional[Union[str, Path, onnx.ModelProto]] = None,
output_model_path: Optional[Union[str, Path]] = None,
skip_optimization: bool = False,
skip_onnx_shape: bool = False,
skip_symbolic_shape: bool = False,
auto_merge: bool = False,
int_max: int = 2**31 - 1,
guess_output_rank: bool = False,
verbose: int = 0,
save_as_external_data: bool = False,
all_tensors_to_one_file: bool = False,
external_data_location: Optional[str] = None,
external_data_size_threshold: int = 1024,
**deprecated_kwargs,
) -> None:
"""Shape inference and model optimization, in preparation for quantization.
Args:
input_model: Path to the input model file or ModelProto
output_model_path: Path to the output model file
skip_optimization: Skip model optimization step if true. This may result in ONNX shape
inference failure for some models.
skip_onnx_shape: Skip ONNX shape inference. Symbolic shape inference is most effective
with transformer based models. Skipping all shape inferences may
reduce the effectiveness of quantization, as a tensor with unknown
shape can not be quantized.
skip_symbolic_shape: Skip symbolic shape inference. Symbolic shape inference is most
effective with transformer based models. Skipping all shape
inferences may reduce the effectiveness of quantization, as a tensor
with unknown shape can not be quantized.
auto_merge: For symbolic shape inference, automatically merge symbolic dims when
conflict happens.
int_max: For symbolic shape inference, specify the maximum value for integer to be
treated as boundless for ops like slice
guess_output_rank: Guess output rank to be the same as input 0 for unknown ops
verbose: Logs detailed info of inference, 0: turn off, 1: warnings, 3: detailed
save_as_external_data: Saving an ONNX model to external data
all_tensors_to_one_file: Saving all the external data to one file
external_data_location: The file location to save the external file
external_data_size_threshold: The size threshold for external data
"""
if input_model is None:
input_model = deprecated_kwargs.pop("input_model_path", None)
assert input_model is not None
assert output_model_path is not None, "output_model_path is required."
with tempfile.TemporaryDirectory(prefix="pre.quant.") as quant_tmp_dir:
temp_path = Path(quant_tmp_dir)
model = None
if not skip_symbolic_shape:
logger.info("Performing symbolic shape inference...")
loaded_model = input_model if isinstance(input_model, onnx.ModelProto) else onnx.load(input_model)
model = SymbolicShapeInference.infer_shapes(
loaded_model,
int_max,
auto_merge,
guess_output_rank,
verbose,
)
if not skip_optimization:
# Use ORT optimizers (native code) to optimize model
if not skip_symbolic_shape:
# Need to save the inferenced model to file so as to run the optimizer
input_model = str(temp_path / "symbolic_shape_inferred.onnx")
if save_as_external_data:
onnx.save_model(
model,
input_model,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
size_threshold=external_data_size_threshold,
convert_attribute=False,
)
else:
onnx.save(model, input_model)
model = None
opt_model_path = str(temp_path / "optimized.onnx")
try:
sess_option = onnxruntime.SessionOptions()
sess_option.optimized_model_filepath = opt_model_path
sess_option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC
# For large model, extract external data from model and add to session options
if isinstance(input_model, onnx.ModelProto):
if has_external_data(input_model):
raise ValueError(
"ModelProto has external data not loaded into memory, ORT cannot create session. "
"Please load external data before calling this function. "
"See https://onnx.ai/onnx/repo-docs/ExternalData.html for more information."
)
external_names, external_values = extract_raw_data_from_model(input_model)
sess_option.add_external_initializers(list(external_names), list(external_values))
input_model = input_model.SerializeToString()
sess = onnxruntime.InferenceSession(input_model, sess_option, providers=["CPUExecutionProvider"])
# Close the session to avoid the cleanup error on Windows for temp folders
# https://github.com/microsoft/onnxruntime/issues/17627
del sess
except Exception:
logger.error(
"ONNX Runtime Model Optimization Failed! Consider rerun with option `--skip_optimization'."
)
logger.error(traceback.format_exc())
input_model = opt_model_path
if not skip_onnx_shape:
# ONNX shape inference.
# According to docs, infer_shapes_path should be used for 2G+ models.
# If the skip optimization is specified, we could be dealing with a
# large model. So be on the safe side, save the model
if model is not None:
input_model = str(temp_path / "symbolic_shape_inferred.onnx")
if save_as_external_data:
onnx.save_model(
model,
input_model,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
size_threshold=external_data_size_threshold,
convert_attribute=False,
)
else:
onnx.save(model, input_model)
model = None
if isinstance(input_model, onnx.ModelProto):
input_model = str(Path(quant_tmp_dir) / "model_input.onnx")
onnx.save_model(
model,
input_model,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
size_threshold=external_data_size_threshold,
convert_attribute=False,
)
inferred_model_path = str(temp_path / "onnx_shape_inferred.onnx")
onnx.shape_inference.infer_shapes_path(input_model, inferred_model_path)
model = onnx.load(inferred_model_path)
if model is None:
model = input_model if isinstance(input_model, onnx.ModelProto) else onnx.load(input_model)
add_pre_process_metadata(model)
if save_as_external_data:
onnx.save_model(
model,
output_model_path,
save_as_external_data=True,
all_tensors_to_one_file=all_tensors_to_one_file,
location=external_data_location,
size_threshold=external_data_size_threshold,
convert_attribute=False,
)
else:
onnx.save(model, output_model_path)