Files
2024-10-30 22:14:35 +01:00

88 lines
3.0 KiB
Python

import onnx
from ..quant_utils import TENSOR_NAME_QUANT_SUFFIX, QuantizedValue, QuantizedValueType, attribute_to_kwarg, ms_domain
from .base_operator import QuantOperatorBase
from .qdq_base_operator import QDQOperatorBase
class QLinearWhere(QuantOperatorBase):
def should_quantize(self):
return True
def quantize(self):
node = self.node
assert node.op_type == "Where"
if not self.quantizer.force_quantize_no_input_check:
self.quantizer.new_nodes += [node]
return
(
data_found,
output_scale_name,
output_zp_name,
_,
_,
) = self.quantizer._get_quantization_params(node.output[0])
(
q_input_names,
zero_point_names,
scale_names,
nodes,
) = self.quantizer.quantize_activation(node, [1, 2])
if not data_found or q_input_names is None:
return super().quantize()
qlinear_output = node.output[0] + TENSOR_NAME_QUANT_SUFFIX
qlinear_output_name = node.name + "_quant" if node.name else ""
q_output = QuantizedValue(
node.output[0],
qlinear_output,
output_scale_name,
output_zp_name,
QuantizedValueType.Input,
)
self.quantizer.quantized_value_map[node.output[0]] = q_output
kwargs = {}
for attribute in node.attribute:
kwargs.update(attribute_to_kwarg(attribute))
kwargs["domain"] = ms_domain
qlwhere_inputs = [
node.input[0],
q_input_names[0],
scale_names[0],
zero_point_names[0],
q_input_names[1],
scale_names[1],
zero_point_names[1],
output_scale_name,
output_zp_name,
]
qlwhere_node = onnx.helper.make_node(
"QLinearWhere", qlwhere_inputs, [qlinear_output], qlinear_output_name, **kwargs
)
self.quantizer.new_nodes += nodes
self.quantizer.new_nodes += [qlwhere_node]
class QDQWhere(QDQOperatorBase):
def quantize(self):
node = self.node
assert node.op_type == "Where"
if self.quantizer.force_quantize_no_input_check:
if not self.quantizer.is_tensor_quantized(node.input[1]):
self.quantizer.quantize_activation_tensor(node.input[1])
if not self.quantizer.is_tensor_quantized(node.input[2]):
self.quantizer.quantize_activation_tensor(node.input[2])
if not self.disable_qdq_for_node_output:
for output in node.output:
self.quantizer.quantize_activation_tensor(output)
elif (
self.quantizer.is_tensor_quantized(node.input[1])
and self.quantizer.is_tensor_quantized(node.input[2])
and not self.disable_qdq_for_node_output
):
for output in node.output:
self.quantizer.quantize_activation_tensor(output)