Files
2024-10-30 22:14:35 +01:00

75 lines
2.6 KiB
Python

import onnx
import onnx.helper
from ..quant_utils import TENSOR_NAME_QUANT_SUFFIX, QuantizedValue, QuantizedValueType, attribute_to_kwarg, ms_domain
from .base_operator import QuantOperatorBase
class QLinearSoftmax(QuantOperatorBase):
def quantize(self):
node = self.node
# set limitations for softmax output scale and zp, because the output of softmax is always 0-1
if self.quantizer.activation_qType == onnx.onnx_pb.TensorProto.UINT8:
out_scale = 1 / 256.0
out_zero_point = 0
else:
out_scale = 1 / 256.0
out_zero_point = -128
# only try to quantize when given quantization parameters for it
(
data_found,
output_scale_name,
output_zp_name,
_,
_,
) = self.quantizer._get_quantization_params(node.output[0], out_scale, out_zero_point)
# get quantized input tensor names, quantize input if needed
(
quantized_input_names,
input_zero_point_names,
input_scale_names,
nodes,
) = self.quantizer.quantize_activation(node, [0])
if not data_found or quantized_input_names is None:
return super().quantize()
# Create an entry for output quantized value.
qlinear_output_name = node.output[0] + TENSOR_NAME_QUANT_SUFFIX
quantized_output_value = QuantizedValue(
node.output[0],
qlinear_output_name,
output_scale_name,
output_zp_name,
QuantizedValueType.Input,
)
self.quantizer.quantized_value_map[node.output[0]] = quantized_output_value
# Create qlinear softmax node for given type
kwargs = {}
for attribute in node.attribute:
kwargs.update(attribute_to_kwarg(attribute))
kwargs["domain"] = ms_domain
# make qlinearsoft has the real opset_version, its default SinceVersion would be 1
kwargs["opset"] = self.quantizer.opset_version
qlinear_node_name = node.name + "_quant" if node.name else ""
qnode = onnx.helper.make_node(
"QLinear" + node.op_type,
[
quantized_input_names[0],
input_scale_names[0],
input_zero_point_names[0],
output_scale_name,
output_zp_name,
],
[qlinear_output_name],
qlinear_node_name,
**kwargs,
)
# add all newly created nodes
nodes.append(qnode)
self.quantizer.new_nodes += nodes
return None