Files
2024-10-30 22:14:35 +01:00

297 lines
16 KiB
Python

import numpy as np
from gymnasium import utils
from gymnasium.envs.mujoco import MujocoEnv
from gymnasium.spaces import Box
DEFAULT_CAMERA_CONFIG = {
"trackbodyid": 2,
"distance": 4.0,
"lookat": np.array((0.0, 0.0, 1.15)),
"elevation": -20.0,
}
class Walker2dEnv(MujocoEnv, utils.EzPickle):
"""
## Description
This environment builds on the [hopper](https://gymnasium.farama.org/environments/mujoco/hopper/) environment
by adding another set of legs making it possible for the robot to walk forward instead of
hop. Like other Mujoco environments, this environment aims to increase the number of independent state
and control variables as compared to the classic control environments. The walker is a
two-dimensional two-legged figure that consist of seven main body parts - a single torso at the top
(with the two legs splitting after the torso), two thighs in the middle below the torso, two legs
in the bottom below the thighs, and two feet attached to the legs on which the entire body rests.
The goal is to walk in the in the forward (right)
direction by applying torques on the six hinges connecting the seven body parts.
## Action Space
The action space is a `Box(-1, 1, (6,), float32)`. An action represents the torques applied at the hinge joints.
| Num | Action | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit |
|-----|----------------------------------------|-------------|-------------|----------------------------------|-------|--------------|
| 0 | Torque applied on the thigh rotor | -1 | 1 | thigh_joint | hinge | torque (N m) |
| 1 | Torque applied on the leg rotor | -1 | 1 | leg_joint | hinge | torque (N m) |
| 2 | Torque applied on the foot rotor | -1 | 1 | foot_joint | hinge | torque (N m) |
| 3 | Torque applied on the left thigh rotor | -1 | 1 | thigh_left_joint | hinge | torque (N m) |
| 4 | Torque applied on the left leg rotor | -1 | 1 | leg_left_joint | hinge | torque (N m) |
| 5 | Torque applied on the left foot rotor | -1 | 1 | foot_left_joint | hinge | torque (N m) |
## Observation Space
Observations consist of positional values of different body parts of the walker,
followed by the velocities of those individual parts (their derivatives) with all the positions ordered before all the velocities.
By default, observations do not include the x-coordinate of the torso. It may
be included by passing `exclude_current_positions_from_observation=False` during construction.
In that case, the observation space will be `Box(-Inf, Inf, (18,), float64)` where the first observation
represent the x-coordinates of the torso of the walker.
Regardless of whether `exclude_current_positions_from_observation` was set to true or false, the x-coordinate
of the torso will be returned in `info` with key `"x_position"`.
By default, observation is a `Box(-Inf, Inf, (17,), float64)` where the elements correspond to the following:
| Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit |
| --- | -------------------------------------------------- | ---- | --- | -------------------------------- | ----- | ------------------------ |
| excluded | x-coordinate of the torso | -Inf | Inf | rootx | slide | position (m) |
| 0 | z-coordinate of the torso (height of Walker2d) | -Inf | Inf | rootz | slide | position (m) |
| 1 | angle of the torso | -Inf | Inf | rooty | hinge | angle (rad) |
| 2 | angle of the thigh joint | -Inf | Inf | thigh_joint | hinge | angle (rad) |
| 3 | angle of the leg joint | -Inf | Inf | leg_joint | hinge | angle (rad) |
| 4 | angle of the foot joint | -Inf | Inf | foot_joint | hinge | angle (rad) |
| 5 | angle of the left thigh joint | -Inf | Inf | thigh_left_joint | hinge | angle (rad) |
| 6 | angle of the left leg joint | -Inf | Inf | leg_left_joint | hinge | angle (rad) |
| 7 | angle of the left foot joint | -Inf | Inf | foot_left_joint | hinge | angle (rad) |
| 8 | velocity of the x-coordinate of the torso | -Inf | Inf | rootx | slide | velocity (m/s) |
| 9 | velocity of the z-coordinate (height) of the torso | -Inf | Inf | rootz | slide | velocity (m/s) |
| 10 | angular velocity of the angle of the torso | -Inf | Inf | rooty | hinge | angular velocity (rad/s) |
| 11 | angular velocity of the thigh hinge | -Inf | Inf | thigh_joint | hinge | angular velocity (rad/s) |
| 12 | angular velocity of the leg hinge | -Inf | Inf | leg_joint | hinge | angular velocity (rad/s) |
| 13 | angular velocity of the foot hinge | -Inf | Inf | foot_joint | hinge | angular velocity (rad/s) |
| 14 | angular velocity of the thigh hinge | -Inf | Inf | thigh_left_joint | hinge | angular velocity (rad/s) |
| 15 | angular velocity of the leg hinge | -Inf | Inf | leg_left_joint | hinge | angular velocity (rad/s) |
| 16 | angular velocity of the foot hinge | -Inf | Inf | foot_left_joint | hinge | angular velocity (rad/s) |
## Rewards
The reward consists of three parts:
- *healthy_reward*: Every timestep that the walker is alive, it receives a fixed reward of value `healthy_reward`,
- *forward_reward*: A reward of walking forward which is measured as
*`forward_reward_weight` * (x-coordinate before action - x-coordinate after action)/dt*.
*dt* is the time between actions and is dependeent on the frame_skip parameter
(default is 4), where the frametime is 0.002 - making the default
*dt = 4 * 0.002 = 0.008*. This reward would be positive if the walker walks forward (positive x direction).
- *ctrl_cost*: A cost for penalising the walker if it
takes actions that are too large. It is measured as
*`ctrl_cost_weight` * sum(action<sup>2</sup>)* where *`ctrl_cost_weight`* is
a parameter set for the control and has a default value of 0.001
The total reward returned is ***reward*** *=* *healthy_reward bonus + forward_reward - ctrl_cost* and `info` will also contain the individual reward terms
## Starting State
All observations start in state
(0.0, 1.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
with a uniform noise in the range of [-`reset_noise_scale`, `reset_noise_scale`] added to the values for stochasticity.
## Episode End
The walker is said to be unhealthy if any of the following happens:
1. Any of the state space values is no longer finite
2. The height of the walker is ***not*** in the closed interval specified by `healthy_z_range`
3. The absolute value of the angle (`observation[1]` if `exclude_current_positions_from_observation=False`, else `observation[2]`) is ***not*** in the closed interval specified by `healthy_angle_range`
If `terminate_when_unhealthy=True` is passed during construction (which is the default),
the episode ends when any of the following happens:
1. Truncation: The episode duration reaches a 1000 timesteps
2. Termination: The walker is unhealthy
If `terminate_when_unhealthy=False` is passed, the episode is ended only when 1000 timesteps are exceeded.
## Arguments
No additional arguments are currently supported in v2 and lower.
```python
import gymnasium as gym
env = gym.make('Walker2d-v4')
```
v3 and beyond take `gymnasium.make` kwargs such as `xml_file`, `ctrl_cost_weight`, `reset_noise_scale`, etc.
```python
import gymnasium as gym
env = gym.make('Walker2d-v4', ctrl_cost_weight=0.1, ....)
```
| Parameter | Type | Default | Description |
| -------------------------------------------- | --------- | ---------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `xml_file` | **str** | `"walker2d.xml"` | Path to a MuJoCo model |
| `forward_reward_weight` | **float** | `1.0` | Weight for _forward_reward_ term (see section on reward) |
| `ctrl_cost_weight` | **float** | `1e-3` | Weight for _ctr_cost_ term (see section on reward) |
| `healthy_reward` | **float** | `1.0` | Constant reward given if the ant is "healthy" after timestep |
| `terminate_when_unhealthy` | **bool** | `True` | If true, issue a done signal if the z-coordinate of the walker is no longer healthy |
| `healthy_z_range` | **tuple** | `(0.8, 2)` | The z-coordinate of the torso of the walker must be in this range to be considered healthy |
| `healthy_angle_range` | **tuple** | `(-1, 1)` | The angle must be in this range to be considered healthy |
| `reset_noise_scale` | **float** | `5e-3` | Scale of random perturbations of initial position and velocity (see section on Starting State) |
| `exclude_current_positions_from_observation` | **bool** | `True` | Whether or not to omit the x-coordinate from observations. Excluding the position can serve as an inductive bias to induce position-agnostic behavior in policies |
## Version History
* v4: All MuJoCo environments now use the MuJoCo bindings in mujoco >= 2.1.3
* v3: Support for `gymnasium.make` kwargs such as `xml_file`, `ctrl_cost_weight`, `reset_noise_scale`, etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
* v2: All continuous control environments now use mujoco-py >= 1.50
* v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments.
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 125,
}
def __init__(
self,
forward_reward_weight=1.0,
ctrl_cost_weight=1e-3,
healthy_reward=1.0,
terminate_when_unhealthy=True,
healthy_z_range=(0.8, 2.0),
healthy_angle_range=(-1.0, 1.0),
reset_noise_scale=5e-3,
exclude_current_positions_from_observation=True,
**kwargs,
):
utils.EzPickle.__init__(
self,
forward_reward_weight,
ctrl_cost_weight,
healthy_reward,
terminate_when_unhealthy,
healthy_z_range,
healthy_angle_range,
reset_noise_scale,
exclude_current_positions_from_observation,
**kwargs,
)
self._forward_reward_weight = forward_reward_weight
self._ctrl_cost_weight = ctrl_cost_weight
self._healthy_reward = healthy_reward
self._terminate_when_unhealthy = terminate_when_unhealthy
self._healthy_z_range = healthy_z_range
self._healthy_angle_range = healthy_angle_range
self._reset_noise_scale = reset_noise_scale
self._exclude_current_positions_from_observation = (
exclude_current_positions_from_observation
)
if exclude_current_positions_from_observation:
observation_space = Box(
low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64
)
else:
observation_space = Box(
low=-np.inf, high=np.inf, shape=(18,), dtype=np.float64
)
MujocoEnv.__init__(
self,
"walker2d.xml",
4,
observation_space=observation_space,
default_camera_config=DEFAULT_CAMERA_CONFIG,
**kwargs,
)
@property
def healthy_reward(self):
return (
float(self.is_healthy or self._terminate_when_unhealthy)
* self._healthy_reward
)
def control_cost(self, action):
control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
return control_cost
@property
def is_healthy(self):
z, angle = self.data.qpos[1:3]
min_z, max_z = self._healthy_z_range
min_angle, max_angle = self._healthy_angle_range
healthy_z = min_z < z < max_z
healthy_angle = min_angle < angle < max_angle
is_healthy = healthy_z and healthy_angle
return is_healthy
@property
def terminated(self):
terminated = not self.is_healthy if self._terminate_when_unhealthy else False
return terminated
def _get_obs(self):
position = self.data.qpos.flat.copy()
velocity = np.clip(self.data.qvel.flat.copy(), -10, 10)
if self._exclude_current_positions_from_observation:
position = position[1:]
observation = np.concatenate((position, velocity)).ravel()
return observation
def step(self, action):
x_position_before = self.data.qpos[0]
self.do_simulation(action, self.frame_skip)
x_position_after = self.data.qpos[0]
x_velocity = (x_position_after - x_position_before) / self.dt
ctrl_cost = self.control_cost(action)
forward_reward = self._forward_reward_weight * x_velocity
healthy_reward = self.healthy_reward
rewards = forward_reward + healthy_reward
costs = ctrl_cost
observation = self._get_obs()
reward = rewards - costs
terminated = self.terminated
info = {
"x_position": x_position_after,
"x_velocity": x_velocity,
}
if self.render_mode == "human":
self.render()
return observation, reward, terminated, False, info
def reset_model(self):
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
qpos = self.init_qpos + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nq
)
qvel = self.init_qvel + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nv
)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation