Files
2024-10-30 22:14:35 +01:00

895 lines
32 KiB
Python

__credits__ = ["Andrea PIERRÉ"]
import math
import warnings
from typing import TYPE_CHECKING, Optional
import numpy as np
import gymnasium as gym
from gymnasium import error, spaces
from gymnasium.error import DependencyNotInstalled
from gymnasium.utils import EzPickle, colorize
from gymnasium.utils.step_api_compatibility import step_api_compatibility
try:
import Box2D
from Box2D.b2 import (
circleShape,
contactListener,
edgeShape,
fixtureDef,
polygonShape,
revoluteJointDef,
)
except ImportError as e:
raise DependencyNotInstalled(
"Box2D is not installed, run `pip install gymnasium[box2d]`"
) from e
if TYPE_CHECKING:
import pygame
FPS = 50
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
MAIN_ENGINE_POWER = 13.0
SIDE_ENGINE_POWER = 0.6
INITIAL_RANDOM = 1000.0 # Set 1500 to make game harder
LANDER_POLY = [(-14, +17), (-17, 0), (-17, -10), (+17, -10), (+17, 0), (+14, +17)]
LEG_AWAY = 20
LEG_DOWN = 18
LEG_W, LEG_H = 2, 8
LEG_SPRING_TORQUE = 40
SIDE_ENGINE_HEIGHT = 14
SIDE_ENGINE_AWAY = 12
MAIN_ENGINE_Y_LOCATION = (
4 # The Y location of the main engine on the body of the Lander.
)
VIEWPORT_W = 600
VIEWPORT_H = 400
class ContactDetector(contactListener):
def __init__(self, env):
contactListener.__init__(self)
self.env = env
def BeginContact(self, contact):
if (
self.env.lander == contact.fixtureA.body
or self.env.lander == contact.fixtureB.body
):
self.env.game_over = True
for i in range(2):
if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
self.env.legs[i].ground_contact = True
def EndContact(self, contact):
for i in range(2):
if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
self.env.legs[i].ground_contact = False
class LunarLander(gym.Env, EzPickle):
"""
## Description
This environment is a classic rocket trajectory optimization problem.
According to Pontryagin's maximum principle, it is optimal to fire the
engine at full throttle or turn it off. This is the reason why this
environment has discrete actions: engine on or off.
There are two environment versions: discrete or continuous.
The landing pad is always at coordinates (0,0). The coordinates are the
first two numbers in the state vector.
Landing outside of the landing pad is possible. Fuel is infinite, so an agent
can learn to fly and then land on its first attempt.
To see a heuristic landing, run:
```
python gymnasium/envs/box2d/lunar_lander.py
```
<!-- To play yourself, run: -->
<!-- python examples/agents/keyboard_agent.py LunarLander-v2 -->
## Action Space
There are four discrete actions available:
- 0: do nothing
- 1: fire left orientation engine
- 2: fire main engine
- 3: fire right orientation engine
## Observation Space
The state is an 8-dimensional vector: the coordinates of the lander in `x` & `y`, its linear
velocities in `x` & `y`, its angle, its angular velocity, and two booleans
that represent whether each leg is in contact with the ground or not.
## Rewards
After every step a reward is granted. The total reward of an episode is the
sum of the rewards for all the steps within that episode.
For each step, the reward:
- is increased/decreased the closer/further the lander is to the landing pad.
- is increased/decreased the slower/faster the lander is moving.
- is decreased the more the lander is tilted (angle not horizontal).
- is increased by 10 points for each leg that is in contact with the ground.
- is decreased by 0.03 points each frame a side engine is firing.
- is decreased by 0.3 points each frame the main engine is firing.
The episode receive an additional reward of -100 or +100 points for crashing or landing safely respectively.
An episode is considered a solution if it scores at least 200 points.
## Starting State
The lander starts at the top center of the viewport with a random initial
force applied to its center of mass.
## Episode Termination
The episode finishes if:
1) the lander crashes (the lander body gets in contact with the moon);
2) the lander gets outside of the viewport (`x` coordinate is greater than 1);
3) the lander is not awake. From the [Box2D docs](https://box2d.org/documentation/md__d_1__git_hub_box2d_docs_dynamics.html#autotoc_md61),
a body which is not awake is a body which doesn't move and doesn't
collide with any other body:
> When Box2D determines that a body (or group of bodies) has come to rest,
> the body enters a sleep state which has very little CPU overhead. If a
> body is awake and collides with a sleeping body, then the sleeping body
> wakes up. Bodies will also wake up if a joint or contact attached to
> them is destroyed.
## Arguments
To use to the _continuous_ environment, you need to specify the
`continuous=True` argument like below:
```python
import gymnasium as gym
env = gym.make(
"LunarLander-v2",
continuous: bool = False,
gravity: float = -10.0,
enable_wind: bool = False,
wind_power: float = 15.0,
turbulence_power: float = 1.5,
)
```
If `continuous=True` is passed, continuous actions (corresponding to the throttle of the engines) will be used and the
action space will be `Box(-1, +1, (2,), dtype=np.float32)`.
The first coordinate of an action determines the throttle of the main engine, while the second
coordinate specifies the throttle of the lateral boosters.
Given an action `np.array([main, lateral])`, the main engine will be turned off completely if
`main < 0` and the throttle scales affinely from 50% to 100% for `0 <= main <= 1` (in particular, the
main engine doesn't work with less than 50% power).
Similarly, if `-0.5 < lateral < 0.5`, the lateral boosters will not fire at all. If `lateral < -0.5`, the left
booster will fire, and if `lateral > 0.5`, the right booster will fire. Again, the throttle scales affinely
from 50% to 100% between -1 and -0.5 (and 0.5 and 1, respectively).
`gravity` dictates the gravitational constant, this is bounded to be within 0 and -12.
If `enable_wind=True` is passed, there will be wind effects applied to the lander.
The wind is generated using the function `tanh(sin(2 k (t+C)) + sin(pi k (t+C)))`.
`k` is set to 0.01.
`C` is sampled randomly between -9999 and 9999.
`wind_power` dictates the maximum magnitude of linear wind applied to the craft. The recommended value for `wind_power` is between 0.0 and 20.0.
`turbulence_power` dictates the maximum magnitude of rotational wind applied to the craft. The recommended value for `turbulence_power` is between 0.0 and 2.0.
## Version History
- v2: Count energy spent and in v0.24, added turbulence with wind power and turbulence_power parameters
- v1: Legs contact with ground added in state vector; contact with ground
give +10 reward points, and -10 if then lose contact; reward
renormalized to 200; harder initial random push.
- v0: Initial version
## Notes
There are several unexpected bugs with the implementation of the environment.
1. The position of the side thursters on the body of the lander changes, depending on the orientation of the lander.
This in turn results in an orientation depentant torque being applied to the lander.
2. The units of the state are not consistent. I.e.
* The angular velocity is in units of 0.4 radians per second. In order to convert to radians per second, the value needs to be multiplied by a factor of 2.5.
For the default values of VIEWPORT_W, VIEWPORT_H, SCALE, and FPS, the scale factors equal:
'x': 10
'y': 6.666
'vx': 5
'vy': 7.5
'angle': 1
'angular velocity': 2.5
After the correction has been made, the units of the state are as follows:
'x': (units)
'y': (units)
'vx': (units/second)
'vy': (units/second)
'angle': (radians)
'angular velocity': (radians/second)
<!-- ## References -->
## Credits
Created by Oleg Klimov
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": FPS,
}
def __init__(
self,
render_mode: Optional[str] = None,
continuous: bool = False,
gravity: float = -10.0,
enable_wind: bool = False,
wind_power: float = 15.0,
turbulence_power: float = 1.5,
):
EzPickle.__init__(
self,
render_mode,
continuous,
gravity,
enable_wind,
wind_power,
turbulence_power,
)
assert (
-12.0 < gravity and gravity < 0.0
), f"gravity (current value: {gravity}) must be between -12 and 0"
self.gravity = gravity
if 0.0 > wind_power or wind_power > 20.0:
warnings.warn(
colorize(
f"WARN: wind_power value is recommended to be between 0.0 and 20.0, (current value: {wind_power})",
"yellow",
),
)
self.wind_power = wind_power
if 0.0 > turbulence_power or turbulence_power > 2.0:
warnings.warn(
colorize(
f"WARN: turbulence_power value is recommended to be between 0.0 and 2.0, (current value: {turbulence_power})",
"yellow",
),
)
self.turbulence_power = turbulence_power
self.enable_wind = enable_wind
self.wind_idx = np.random.randint(-9999, 9999)
self.torque_idx = np.random.randint(-9999, 9999)
self.screen: pygame.Surface = None
self.clock = None
self.isopen = True
self.world = Box2D.b2World(gravity=(0, gravity))
self.moon = None
self.lander: Optional[Box2D.b2Body] = None
self.particles = []
self.prev_reward = None
self.continuous = continuous
low = np.array(
[
# these are bounds for position
# realistically the environment should have ended
# long before we reach more than 50% outside
-1.5,
-1.5,
# velocity bounds is 5x rated speed
-5.0,
-5.0,
-math.pi,
-5.0,
-0.0,
-0.0,
]
).astype(np.float32)
high = np.array(
[
# these are bounds for position
# realistically the environment should have ended
# long before we reach more than 50% outside
1.5,
1.5,
# velocity bounds is 5x rated speed
5.0,
5.0,
math.pi,
5.0,
1.0,
1.0,
]
).astype(np.float32)
# useful range is -1 .. +1, but spikes can be higher
self.observation_space = spaces.Box(low, high)
if self.continuous:
# Action is two floats [main engine, left-right engines].
# Main engine: -1..0 off, 0..+1 throttle from 50% to 100% power. Engine can't work with less than 50% power.
# Left-right: -1.0..-0.5 fire left engine, +0.5..+1.0 fire right engine, -0.5..0.5 off
self.action_space = spaces.Box(-1, +1, (2,), dtype=np.float32)
else:
# Nop, fire left engine, main engine, right engine
self.action_space = spaces.Discrete(4)
self.render_mode = render_mode
def _destroy(self):
if not self.moon:
return
self.world.contactListener = None
self._clean_particles(True)
self.world.DestroyBody(self.moon)
self.moon = None
self.world.DestroyBody(self.lander)
self.lander = None
self.world.DestroyBody(self.legs[0])
self.world.DestroyBody(self.legs[1])
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self._destroy()
self.world.contactListener_keepref = ContactDetector(self)
self.world.contactListener = self.world.contactListener_keepref
self.game_over = False
self.prev_shaping = None
W = VIEWPORT_W / SCALE
H = VIEWPORT_H / SCALE
# Create Terrain
CHUNKS = 11
height = self.np_random.uniform(0, H / 2, size=(CHUNKS + 1,))
chunk_x = [W / (CHUNKS - 1) * i for i in range(CHUNKS)]
self.helipad_x1 = chunk_x[CHUNKS // 2 - 1]
self.helipad_x2 = chunk_x[CHUNKS // 2 + 1]
self.helipad_y = H / 4
height[CHUNKS // 2 - 2] = self.helipad_y
height[CHUNKS // 2 - 1] = self.helipad_y
height[CHUNKS // 2 + 0] = self.helipad_y
height[CHUNKS // 2 + 1] = self.helipad_y
height[CHUNKS // 2 + 2] = self.helipad_y
smooth_y = [
0.33 * (height[i - 1] + height[i + 0] + height[i + 1])
for i in range(CHUNKS)
]
self.moon = self.world.CreateStaticBody(
shapes=edgeShape(vertices=[(0, 0), (W, 0)])
)
self.sky_polys = []
for i in range(CHUNKS - 1):
p1 = (chunk_x[i], smooth_y[i])
p2 = (chunk_x[i + 1], smooth_y[i + 1])
self.moon.CreateEdgeFixture(vertices=[p1, p2], density=0, friction=0.1)
self.sky_polys.append([p1, p2, (p2[0], H), (p1[0], H)])
self.moon.color1 = (0.0, 0.0, 0.0)
self.moon.color2 = (0.0, 0.0, 0.0)
# Create Lander body
initial_y = VIEWPORT_H / SCALE
initial_x = VIEWPORT_W / SCALE / 2
self.lander: Box2D.b2Body = self.world.CreateDynamicBody(
position=(initial_x, initial_y),
angle=0.0,
fixtures=fixtureDef(
shape=polygonShape(
vertices=[(x / SCALE, y / SCALE) for x, y in LANDER_POLY]
),
density=5.0,
friction=0.1,
categoryBits=0x0010,
maskBits=0x001, # collide only with ground
restitution=0.0,
), # 0.99 bouncy
)
self.lander.color1 = (128, 102, 230)
self.lander.color2 = (77, 77, 128)
# Apply the initial random impulse to the lander
self.lander.ApplyForceToCenter(
(
self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM),
self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM),
),
True,
)
# Create Lander Legs
self.legs = []
for i in [-1, +1]:
leg = self.world.CreateDynamicBody(
position=(initial_x - i * LEG_AWAY / SCALE, initial_y),
angle=(i * 0.05),
fixtures=fixtureDef(
shape=polygonShape(box=(LEG_W / SCALE, LEG_H / SCALE)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001,
),
)
leg.ground_contact = False
leg.color1 = (128, 102, 230)
leg.color2 = (77, 77, 128)
rjd = revoluteJointDef(
bodyA=self.lander,
bodyB=leg,
localAnchorA=(0, 0),
localAnchorB=(i * LEG_AWAY / SCALE, LEG_DOWN / SCALE),
enableMotor=True,
enableLimit=True,
maxMotorTorque=LEG_SPRING_TORQUE,
motorSpeed=+0.3 * i, # low enough not to jump back into the sky
)
if i == -1:
rjd.lowerAngle = (
+0.9 - 0.5
) # The most esoteric numbers here, angled legs have freedom to travel within
rjd.upperAngle = +0.9
else:
rjd.lowerAngle = -0.9
rjd.upperAngle = -0.9 + 0.5
leg.joint = self.world.CreateJoint(rjd)
self.legs.append(leg)
self.drawlist = [self.lander] + self.legs
if self.render_mode == "human":
self.render()
return self.step(np.array([0, 0]) if self.continuous else 0)[0], {}
def _create_particle(self, mass, x, y, ttl):
p = self.world.CreateDynamicBody(
position=(x, y),
angle=0.0,
fixtures=fixtureDef(
shape=circleShape(radius=2 / SCALE, pos=(0, 0)),
density=mass,
friction=0.1,
categoryBits=0x0100,
maskBits=0x001, # collide only with ground
restitution=0.3,
),
)
p.ttl = ttl
self.particles.append(p)
self._clean_particles(False)
return p
def _clean_particles(self, all):
while self.particles and (all or self.particles[0].ttl < 0):
self.world.DestroyBody(self.particles.pop(0))
def step(self, action):
assert self.lander is not None
# Update wind and apply to the lander
assert self.lander is not None, "You forgot to call reset()"
if self.enable_wind and not (
self.legs[0].ground_contact or self.legs[1].ground_contact
):
# the function used for wind is tanh(sin(2 k x) + sin(pi k x)),
# which is proven to never be periodic, k = 0.01
wind_mag = (
math.tanh(
math.sin(0.02 * self.wind_idx)
+ (math.sin(math.pi * 0.01 * self.wind_idx))
)
* self.wind_power
)
self.wind_idx += 1
self.lander.ApplyForceToCenter(
(wind_mag, 0.0),
True,
)
# the function used for torque is tanh(sin(2 k x) + sin(pi k x)),
# which is proven to never be periodic, k = 0.01
torque_mag = math.tanh(
math.sin(0.02 * self.torque_idx)
+ (math.sin(math.pi * 0.01 * self.torque_idx))
) * (self.turbulence_power)
self.torque_idx += 1
self.lander.ApplyTorque(
(torque_mag),
True,
)
if self.continuous:
action = np.clip(action, -1, +1).astype(np.float32)
else:
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid "
# Apply Engine Impulses
# Tip is a the (X and Y) components of the rotation of the lander.
tip = (math.sin(self.lander.angle), math.cos(self.lander.angle))
# Side is the (-Y and X) components of the rotation of the lander.
side = (-tip[1], tip[0])
# Generate two random numbers between -1/SCALE and 1/SCALE.
dispersion = [self.np_random.uniform(-1.0, +1.0) / SCALE for _ in range(2)]
m_power = 0.0
if (self.continuous and action[0] > 0.0) or (
not self.continuous and action == 2
):
# Main engine
if self.continuous:
m_power = (np.clip(action[0], 0.0, 1.0) + 1.0) * 0.5 # 0.5..1.0
assert m_power >= 0.5 and m_power <= 1.0
else:
m_power = 1.0
# 4 is move a bit downwards, +-2 for randomness
# The components of the impulse to be applied by the main engine.
ox = (
tip[0] * (MAIN_ENGINE_Y_LOCATION / SCALE + 2 * dispersion[0])
+ side[0] * dispersion[1]
)
oy = (
-tip[1] * (MAIN_ENGINE_Y_LOCATION / SCALE + 2 * dispersion[0])
- side[1] * dispersion[1]
)
impulse_pos = (self.lander.position[0] + ox, self.lander.position[1] + oy)
if self.render_mode is not None:
# particles are just a decoration, with no impact on the physics, so don't add them when not rendering
p = self._create_particle(
3.5, # 3.5 is here to make particle speed adequate
impulse_pos[0],
impulse_pos[1],
m_power,
)
p.ApplyLinearImpulse(
(
ox * MAIN_ENGINE_POWER * m_power,
oy * MAIN_ENGINE_POWER * m_power,
),
impulse_pos,
True,
)
self.lander.ApplyLinearImpulse(
(-ox * MAIN_ENGINE_POWER * m_power, -oy * MAIN_ENGINE_POWER * m_power),
impulse_pos,
True,
)
s_power = 0.0
if (self.continuous and np.abs(action[1]) > 0.5) or (
not self.continuous and action in [1, 3]
):
# Orientation/Side engines
if self.continuous:
direction = np.sign(action[1])
s_power = np.clip(np.abs(action[1]), 0.5, 1.0)
assert s_power >= 0.5 and s_power <= 1.0
else:
# action = 1 is left, action = 3 is right
direction = action - 2
s_power = 1.0
# The components of the impulse to be applied by the side engines.
ox = tip[0] * dispersion[0] + side[0] * (
3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE
)
oy = -tip[1] * dispersion[0] - side[1] * (
3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE
)
# The constant 17 is a constant, that is presumably meant to be SIDE_ENGINE_HEIGHT.
# However, SIDE_ENGINE_HEIGHT is defined as 14
# This casuses the position of the thurst on the body of the lander to change, depending on the orientation of the lander.
# This in turn results in an orientation depentant torque being applied to the lander.
impulse_pos = (
self.lander.position[0] + ox - tip[0] * 17 / SCALE,
self.lander.position[1] + oy + tip[1] * SIDE_ENGINE_HEIGHT / SCALE,
)
if self.render_mode is not None:
# particles are just a decoration, with no impact on the physics, so don't add them when not rendering
p = self._create_particle(0.7, impulse_pos[0], impulse_pos[1], s_power)
p.ApplyLinearImpulse(
(
ox * SIDE_ENGINE_POWER * s_power,
oy * SIDE_ENGINE_POWER * s_power,
),
impulse_pos,
True,
)
self.lander.ApplyLinearImpulse(
(-ox * SIDE_ENGINE_POWER * s_power, -oy * SIDE_ENGINE_POWER * s_power),
impulse_pos,
True,
)
self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)
pos = self.lander.position
vel = self.lander.linearVelocity
state = [
(pos.x - VIEWPORT_W / SCALE / 2) / (VIEWPORT_W / SCALE / 2),
(pos.y - (self.helipad_y + LEG_DOWN / SCALE)) / (VIEWPORT_H / SCALE / 2),
vel.x * (VIEWPORT_W / SCALE / 2) / FPS,
vel.y * (VIEWPORT_H / SCALE / 2) / FPS,
self.lander.angle,
20.0 * self.lander.angularVelocity / FPS,
1.0 if self.legs[0].ground_contact else 0.0,
1.0 if self.legs[1].ground_contact else 0.0,
]
assert len(state) == 8
reward = 0
shaping = (
-100 * np.sqrt(state[0] * state[0] + state[1] * state[1])
- 100 * np.sqrt(state[2] * state[2] + state[3] * state[3])
- 100 * abs(state[4])
+ 10 * state[6]
+ 10 * state[7]
) # And ten points for legs contact, the idea is if you
# lose contact again after landing, you get negative reward
if self.prev_shaping is not None:
reward = shaping - self.prev_shaping
self.prev_shaping = shaping
reward -= (
m_power * 0.30
) # less fuel spent is better, about -30 for heuristic landing
reward -= s_power * 0.03
terminated = False
if self.game_over or abs(state[0]) >= 1.0:
terminated = True
reward = -100
if not self.lander.awake:
terminated = True
reward = +100
if self.render_mode == "human":
self.render()
return np.array(state, dtype=np.float32), reward, terminated, False, {}
def render(self):
if self.render_mode is None:
assert self.spec is not None
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym.make("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError as e:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gymnasium[box2d]`"
) from e
if self.screen is None and self.render_mode == "human":
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((VIEWPORT_W, VIEWPORT_H))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((VIEWPORT_W, VIEWPORT_H))
pygame.transform.scale(self.surf, (SCALE, SCALE))
pygame.draw.rect(self.surf, (255, 255, 255), self.surf.get_rect())
for obj in self.particles:
obj.ttl -= 0.15
obj.color1 = (
int(max(0.2, 0.15 + obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
)
obj.color2 = (
int(max(0.2, 0.15 + obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
)
self._clean_particles(False)
for p in self.sky_polys:
scaled_poly = []
for coord in p:
scaled_poly.append((coord[0] * SCALE, coord[1] * SCALE))
pygame.draw.polygon(self.surf, (0, 0, 0), scaled_poly)
gfxdraw.aapolygon(self.surf, scaled_poly, (0, 0, 0))
for obj in self.particles + self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
if type(f.shape) is circleShape:
pygame.draw.circle(
self.surf,
color=obj.color1,
center=trans * f.shape.pos * SCALE,
radius=f.shape.radius * SCALE,
)
pygame.draw.circle(
self.surf,
color=obj.color2,
center=trans * f.shape.pos * SCALE,
radius=f.shape.radius * SCALE,
)
else:
path = [trans * v * SCALE for v in f.shape.vertices]
pygame.draw.polygon(self.surf, color=obj.color1, points=path)
gfxdraw.aapolygon(self.surf, path, obj.color1)
pygame.draw.aalines(
self.surf, color=obj.color2, points=path, closed=True
)
for x in [self.helipad_x1, self.helipad_x2]:
x = x * SCALE
flagy1 = self.helipad_y * SCALE
flagy2 = flagy1 + 50
pygame.draw.line(
self.surf,
color=(255, 255, 255),
start_pos=(x, flagy1),
end_pos=(x, flagy2),
width=1,
)
pygame.draw.polygon(
self.surf,
color=(204, 204, 0),
points=[
(x, flagy2),
(x, flagy2 - 10),
(x + 25, flagy2 - 5),
],
)
gfxdraw.aapolygon(
self.surf,
[(x, flagy2), (x, flagy2 - 10), (x + 25, flagy2 - 5)],
(204, 204, 0),
)
self.surf = pygame.transform.flip(self.surf, False, True)
if self.render_mode == "human":
assert self.screen is not None
self.screen.blit(self.surf, (0, 0))
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.surf)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def heuristic(env, s):
"""
The heuristic for
1. Testing
2. Demonstration rollout.
Args:
env: The environment
s (list): The state. Attributes:
s[0] is the horizontal coordinate
s[1] is the vertical coordinate
s[2] is the horizontal speed
s[3] is the vertical speed
s[4] is the angle
s[5] is the angular speed
s[6] 1 if first leg has contact, else 0
s[7] 1 if second leg has contact, else 0
Returns:
a: The heuristic to be fed into the step function defined above to determine the next step and reward.
"""
angle_targ = s[0] * 0.5 + s[2] * 1.0 # angle should point towards center
if angle_targ > 0.4:
angle_targ = 0.4 # more than 0.4 radians (22 degrees) is bad
if angle_targ < -0.4:
angle_targ = -0.4
hover_targ = 0.55 * np.abs(
s[0]
) # target y should be proportional to horizontal offset
angle_todo = (angle_targ - s[4]) * 0.5 - (s[5]) * 1.0
hover_todo = (hover_targ - s[1]) * 0.5 - (s[3]) * 0.5
if s[6] or s[7]: # legs have contact
angle_todo = 0
hover_todo = (
-(s[3]) * 0.5
) # override to reduce fall speed, that's all we need after contact
if env.continuous:
a = np.array([hover_todo * 20 - 1, -angle_todo * 20])
a = np.clip(a, -1, +1)
else:
a = 0
if hover_todo > np.abs(angle_todo) and hover_todo > 0.05:
a = 2
elif angle_todo < -0.05:
a = 3
elif angle_todo > +0.05:
a = 1
return a
def demo_heuristic_lander(env, seed=None, render=False):
total_reward = 0
steps = 0
s, info = env.reset(seed=seed)
while True:
a = heuristic(env, s)
s, r, terminated, truncated, info = step_api_compatibility(env.step(a), True)
total_reward += r
if render:
still_open = env.render()
if still_open is False:
break
if steps % 20 == 0 or terminated or truncated:
print("observations:", " ".join([f"{x:+0.2f}" for x in s]))
print(f"step {steps} total_reward {total_reward:+0.2f}")
steps += 1
if terminated or truncated:
break
if render:
env.close()
return total_reward
class LunarLanderContinuous:
def __init__(self):
raise error.Error(
"Error initializing LunarLanderContinuous Environment.\n"
"Currently, we do not support initializing this mode of environment by calling the class directly.\n"
"To use this environment, instead create it by specifying the continuous keyword in gym.make, i.e.\n"
'gym.make("LunarLander-v2", continuous=True)'
)
if __name__ == "__main__":
env = gym.make("LunarLander-v2", render_mode="rgb_array")
demo_heuristic_lander(env, render=True)