from typing import Any, Dict, List, Optional, Type import torch as th from gymnasium import spaces from torch import nn from stable_baselines3.common.policies import BasePolicy from stable_baselines3.common.torch_layers import ( BaseFeaturesExtractor, CombinedExtractor, FlattenExtractor, NatureCNN, create_mlp, ) from stable_baselines3.common.type_aliases import PyTorchObs, Schedule class QNetwork(BasePolicy): """ Action-Value (Q-Value) network for DQN :param observation_space: Observation space :param action_space: Action space :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) """ action_space: spaces.Discrete def __init__( self, observation_space: spaces.Space, action_space: spaces.Discrete, features_extractor: BaseFeaturesExtractor, features_dim: int, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, normalize_images: bool = True, ) -> None: super().__init__( observation_space, action_space, features_extractor=features_extractor, normalize_images=normalize_images, ) if net_arch is None: net_arch = [64, 64] self.net_arch = net_arch self.activation_fn = activation_fn self.features_dim = features_dim action_dim = int(self.action_space.n) # number of actions q_net = create_mlp(self.features_dim, action_dim, self.net_arch, self.activation_fn) self.q_net = nn.Sequential(*q_net) def forward(self, obs: PyTorchObs) -> th.Tensor: """ Predict the q-values. :param obs: Observation :return: The estimated Q-Value for each action. """ return self.q_net(self.extract_features(obs, self.features_extractor)) def _predict(self, observation: PyTorchObs, deterministic: bool = True) -> th.Tensor: q_values = self(observation) # Greedy action action = q_values.argmax(dim=1).reshape(-1) return action def _get_constructor_parameters(self) -> Dict[str, Any]: data = super()._get_constructor_parameters() data.update( dict( net_arch=self.net_arch, features_dim=self.features_dim, activation_fn=self.activation_fn, features_extractor=self.features_extractor, ) ) return data class DQNPolicy(BasePolicy): """ Policy class with Q-Value Net and target net for DQN :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param features_extractor_class: Features extractor to use. :param features_extractor_kwargs: Keyword arguments to pass to the features extractor. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ q_net: QNetwork q_net_target: QNetwork def __init__( self, observation_space: spaces.Space, action_space: spaces.Discrete, lr_schedule: Schedule, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ) -> None: super().__init__( observation_space, action_space, features_extractor_class, features_extractor_kwargs, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, normalize_images=normalize_images, ) if net_arch is None: if features_extractor_class == NatureCNN: net_arch = [] else: net_arch = [64, 64] self.net_arch = net_arch self.activation_fn = activation_fn self.net_args = { "observation_space": self.observation_space, "action_space": self.action_space, "net_arch": self.net_arch, "activation_fn": self.activation_fn, "normalize_images": normalize_images, } self._build(lr_schedule) def _build(self, lr_schedule: Schedule) -> None: """ Create the network and the optimizer. Put the target network into evaluation mode. :param lr_schedule: Learning rate schedule lr_schedule(1) is the initial learning rate """ self.q_net = self.make_q_net() self.q_net_target = self.make_q_net() self.q_net_target.load_state_dict(self.q_net.state_dict()) self.q_net_target.set_training_mode(False) # Setup optimizer with initial learning rate self.optimizer = self.optimizer_class( # type: ignore[call-arg] self.parameters(), lr=lr_schedule(1), **self.optimizer_kwargs, ) def make_q_net(self) -> QNetwork: # Make sure we always have separate networks for features extractors etc net_args = self._update_features_extractor(self.net_args, features_extractor=None) return QNetwork(**net_args).to(self.device) def forward(self, obs: PyTorchObs, deterministic: bool = True) -> th.Tensor: return self._predict(obs, deterministic=deterministic) def _predict(self, obs: PyTorchObs, deterministic: bool = True) -> th.Tensor: return self.q_net._predict(obs, deterministic=deterministic) def _get_constructor_parameters(self) -> Dict[str, Any]: data = super()._get_constructor_parameters() data.update( dict( net_arch=self.net_args["net_arch"], activation_fn=self.net_args["activation_fn"], lr_schedule=self._dummy_schedule, # dummy lr schedule, not needed for loading policy alone optimizer_class=self.optimizer_class, optimizer_kwargs=self.optimizer_kwargs, features_extractor_class=self.features_extractor_class, features_extractor_kwargs=self.features_extractor_kwargs, ) ) return data def set_training_mode(self, mode: bool) -> None: """ Put the policy in either training or evaluation mode. This affects certain modules, such as batch normalisation and dropout. :param mode: if true, set to training mode, else set to evaluation mode """ self.q_net.set_training_mode(mode) self.training = mode MlpPolicy = DQNPolicy class CnnPolicy(DQNPolicy): """ Policy class for DQN when using images as input. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param features_extractor_class: Features extractor to use. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: spaces.Space, action_space: spaces.Discrete, lr_schedule: Schedule, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, features_extractor_class: Type[BaseFeaturesExtractor] = NatureCNN, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ) -> None: super().__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, ) class MultiInputPolicy(DQNPolicy): """ Policy class for DQN when using dict observations as input. :param observation_space: Observation space :param action_space: Action space :param lr_schedule: Learning rate schedule (could be constant) :param net_arch: The specification of the policy and value networks. :param activation_fn: Activation function :param features_extractor_class: Features extractor to use. :param normalize_images: Whether to normalize images or not, dividing by 255.0 (True by default) :param optimizer_class: The optimizer to use, ``th.optim.Adam`` by default :param optimizer_kwargs: Additional keyword arguments, excluding the learning rate, to pass to the optimizer """ def __init__( self, observation_space: spaces.Dict, action_space: spaces.Discrete, lr_schedule: Schedule, net_arch: Optional[List[int]] = None, activation_fn: Type[nn.Module] = nn.ReLU, features_extractor_class: Type[BaseFeaturesExtractor] = CombinedExtractor, features_extractor_kwargs: Optional[Dict[str, Any]] = None, normalize_images: bool = True, optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam, optimizer_kwargs: Optional[Dict[str, Any]] = None, ) -> None: super().__init__( observation_space, action_space, lr_schedule, net_arch, activation_fn, features_extractor_class, features_extractor_kwargs, normalize_images, optimizer_class, optimizer_kwargs, )