from contextlib import closing from io import StringIO from os import path from typing import Optional import numpy as np import gymnasium as gym from gymnasium import Env, spaces from gymnasium.envs.toy_text.utils import categorical_sample from gymnasium.error import DependencyNotInstalled UP = 0 RIGHT = 1 DOWN = 2 LEFT = 3 class CliffWalkingEnv(Env): """ Cliff walking involves crossing a gridworld from start to goal while avoiding falling off a cliff. ## Description The game starts with the player at location [3, 0] of the 4x12 grid world with the goal located at [3, 11]. If the player reaches the goal the episode ends. A cliff runs along [3, 1..10]. If the player moves to a cliff location it returns to the start location. The player makes moves until they reach the goal. Adapted from Example 6.6 (page 132) from Reinforcement Learning: An Introduction by Sutton and Barto [1]. With inspiration from: [https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py](https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py) ## Action Space The action shape is `(1,)` in the range `{0, 3}` indicating which direction to move the player. - 0: Move up - 1: Move right - 2: Move down - 3: Move left ## Observation Space There are 3 x 12 + 1 possible states. The player cannot be at the cliff, nor at the goal as the latter results in the end of the episode. What remains are all the positions of the first 3 rows plus the bottom-left cell. The observation is a value representing the player's current position as current_row * nrows + current_col (where both the row and col start at 0). For example, the stating position can be calculated as follows: 3 * 12 + 0 = 36. The observation is returned as an `int()`. ## Starting State The episode starts with the player in state `[36]` (location [3, 0]). ## Reward Each time step incurs -1 reward, unless the player stepped into the cliff, which incurs -100 reward. ## Episode End The episode terminates when the player enters state `[47]` (location [3, 11]). ## Information `step()` and `reset()` return a dict with the following keys: - "p" - transition proability for the state. As cliff walking is not stochastic, the transition probability returned always 1.0. ## Arguments ```python import gymnasium as gym gym.make('CliffWalking-v0') ``` ## References [1] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction” 2020. [Online]. Available: [http://www.incompleteideas.net/book/RLbook2020.pdf](http://www.incompleteideas.net/book/RLbook2020.pdf) ## Version History - v0: Initial version release """ metadata = { "render_modes": ["human", "rgb_array", "ansi"], "render_fps": 4, } def __init__(self, render_mode: Optional[str] = None): self.shape = (4, 12) self.start_state_index = np.ravel_multi_index((3, 0), self.shape) self.nS = np.prod(self.shape) self.nA = 4 # Cliff Location self._cliff = np.zeros(self.shape, dtype=bool) self._cliff[3, 1:-1] = True # Calculate transition probabilities and rewards self.P = {} for s in range(self.nS): position = np.unravel_index(s, self.shape) self.P[s] = {a: [] for a in range(self.nA)} self.P[s][UP] = self._calculate_transition_prob(position, [-1, 0]) self.P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1]) self.P[s][DOWN] = self._calculate_transition_prob(position, [1, 0]) self.P[s][LEFT] = self._calculate_transition_prob(position, [0, -1]) # Calculate initial state distribution # We always start in state (3, 0) self.initial_state_distrib = np.zeros(self.nS) self.initial_state_distrib[self.start_state_index] = 1.0 self.observation_space = spaces.Discrete(self.nS) self.action_space = spaces.Discrete(self.nA) self.render_mode = render_mode # pygame utils self.cell_size = (60, 60) self.window_size = ( self.shape[1] * self.cell_size[1], self.shape[0] * self.cell_size[0], ) self.window_surface = None self.clock = None self.elf_images = None self.start_img = None self.goal_img = None self.cliff_img = None self.mountain_bg_img = None self.near_cliff_img = None self.tree_img = None def _limit_coordinates(self, coord: np.ndarray) -> np.ndarray: """Prevent the agent from falling out of the grid world.""" coord[0] = min(coord[0], self.shape[0] - 1) coord[0] = max(coord[0], 0) coord[1] = min(coord[1], self.shape[1] - 1) coord[1] = max(coord[1], 0) return coord def _calculate_transition_prob(self, current, delta): """Determine the outcome for an action. Transition Prob is always 1.0. Args: current: Current position on the grid as (row, col) delta: Change in position for transition Returns: Tuple of ``(1.0, new_state, reward, terminated)`` """ new_position = np.array(current) + np.array(delta) new_position = self._limit_coordinates(new_position).astype(int) new_state = np.ravel_multi_index(tuple(new_position), self.shape) if self._cliff[tuple(new_position)]: return [(1.0, self.start_state_index, -100, False)] terminal_state = (self.shape[0] - 1, self.shape[1] - 1) is_terminated = tuple(new_position) == terminal_state return [(1.0, new_state, -1, is_terminated)] def step(self, a): transitions = self.P[self.s][a] i = categorical_sample([t[0] for t in transitions], self.np_random) p, s, r, t = transitions[i] self.s = s self.lastaction = a if self.render_mode == "human": self.render() return (int(s), r, t, False, {"prob": p}) def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None): super().reset(seed=seed) self.s = categorical_sample(self.initial_state_distrib, self.np_random) self.lastaction = None if self.render_mode == "human": self.render() return int(self.s), {"prob": 1} def render(self): if self.render_mode is None: assert self.spec is not None gym.logger.warn( "You are calling render method without specifying any render mode. " "You can specify the render_mode at initialization, " f'e.g. gym.make("{self.spec.id}", render_mode="rgb_array")' ) return if self.render_mode == "ansi": return self._render_text() else: return self._render_gui(self.render_mode) def _render_gui(self, mode): try: import pygame except ImportError as e: raise DependencyNotInstalled( "pygame is not installed, run `pip install gymnasium[toy-text]`" ) from e if self.window_surface is None: pygame.init() if mode == "human": pygame.display.init() pygame.display.set_caption("CliffWalking") self.window_surface = pygame.display.set_mode(self.window_size) else: # rgb_array self.window_surface = pygame.Surface(self.window_size) if self.clock is None: self.clock = pygame.time.Clock() if self.elf_images is None: hikers = [ path.join(path.dirname(__file__), "img/elf_up.png"), path.join(path.dirname(__file__), "img/elf_right.png"), path.join(path.dirname(__file__), "img/elf_down.png"), path.join(path.dirname(__file__), "img/elf_left.png"), ] self.elf_images = [ pygame.transform.scale(pygame.image.load(f_name), self.cell_size) for f_name in hikers ] if self.start_img is None: file_name = path.join(path.dirname(__file__), "img/stool.png") self.start_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.goal_img is None: file_name = path.join(path.dirname(__file__), "img/cookie.png") self.goal_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.mountain_bg_img is None: bg_imgs = [ path.join(path.dirname(__file__), "img/mountain_bg1.png"), path.join(path.dirname(__file__), "img/mountain_bg2.png"), ] self.mountain_bg_img = [ pygame.transform.scale(pygame.image.load(f_name), self.cell_size) for f_name in bg_imgs ] if self.near_cliff_img is None: near_cliff_imgs = [ path.join(path.dirname(__file__), "img/mountain_near-cliff1.png"), path.join(path.dirname(__file__), "img/mountain_near-cliff2.png"), ] self.near_cliff_img = [ pygame.transform.scale(pygame.image.load(f_name), self.cell_size) for f_name in near_cliff_imgs ] if self.cliff_img is None: file_name = path.join(path.dirname(__file__), "img/mountain_cliff.png") self.cliff_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) for s in range(self.nS): row, col = np.unravel_index(s, self.shape) pos = (col * self.cell_size[0], row * self.cell_size[1]) check_board_mask = row % 2 ^ col % 2 self.window_surface.blit(self.mountain_bg_img[check_board_mask], pos) if self._cliff[row, col]: self.window_surface.blit(self.cliff_img, pos) if row < self.shape[0] - 1 and self._cliff[row + 1, col]: self.window_surface.blit(self.near_cliff_img[check_board_mask], pos) if s == self.start_state_index: self.window_surface.blit(self.start_img, pos) if s == self.nS - 1: self.window_surface.blit(self.goal_img, pos) if s == self.s: elf_pos = (pos[0], pos[1] - 0.1 * self.cell_size[1]) last_action = self.lastaction if self.lastaction is not None else 2 self.window_surface.blit(self.elf_images[last_action], elf_pos) if mode == "human": pygame.event.pump() pygame.display.update() self.clock.tick(self.metadata["render_fps"]) else: # rgb_array return np.transpose( np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2) ) def _render_text(self): outfile = StringIO() for s in range(self.nS): position = np.unravel_index(s, self.shape) if self.s == s: output = " x " # Print terminal state elif position == (3, 11): output = " T " elif self._cliff[position]: output = " C " else: output = " o " if position[1] == 0: output = output.lstrip() if position[1] == self.shape[1] - 1: output = output.rstrip() output += "\n" outfile.write(output) outfile.write("\n") with closing(outfile): return outfile.getvalue() # Elf and stool from https://franuka.itch.io/rpg-snow-tileset # All other assets by ____