import os from typing import Optional import numpy as np import gymnasium as gym from gymnasium import spaces from gymnasium.error import DependencyNotInstalled def cmp(a, b): return float(a > b) - float(a < b) # 1 = Ace, 2-10 = Number cards, Jack/Queen/King = 10 deck = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10] def draw_card(np_random): return int(np_random.choice(deck)) def draw_hand(np_random): return [draw_card(np_random), draw_card(np_random)] def usable_ace(hand): # Does this hand have a usable ace? return int(1 in hand and sum(hand) + 10 <= 21) def sum_hand(hand): # Return current hand total if usable_ace(hand): return sum(hand) + 10 return sum(hand) def is_bust(hand): # Is this hand a bust? return sum_hand(hand) > 21 def score(hand): # What is the score of this hand (0 if bust) return 0 if is_bust(hand) else sum_hand(hand) def is_natural(hand): # Is this hand a natural blackjack? return sorted(hand) == [1, 10] class BlackjackEnv(gym.Env): """ Blackjack is a card game where the goal is to beat the dealer by obtaining cards that sum to closer to 21 (without going over 21) than the dealers cards. ## Description The game starts with the dealer having one face up and one face down card, while the player has two face up cards. All cards are drawn from an infinite deck (i.e. with replacement). The card values are: - Face cards (Jack, Queen, King) have a point value of 10. - Aces can either count as 11 (called a 'usable ace') or 1. - Numerical cards (2-9) have a value equal to their number. The player has the sum of cards held. The player can request additional cards (hit) until they decide to stop (stick) or exceed 21 (bust, immediate loss). After the player sticks, the dealer reveals their facedown card, and draws cards until their sum is 17 or greater. If the dealer goes bust, the player wins. If neither the player nor the dealer busts, the outcome (win, lose, draw) is decided by whose sum is closer to 21. This environment corresponds to the version of the blackjack problem described in Example 5.1 in Reinforcement Learning: An Introduction by Sutton and Barto [1]. ## Action Space The action shape is `(1,)` in the range `{0, 1}` indicating whether to stick or hit. - 0: Stick - 1: Hit ## Observation Space The observation consists of a 3-tuple containing: the player's current sum, the value of the dealer's one showing card (1-10 where 1 is ace), and whether the player holds a usable ace (0 or 1). The observation is returned as `(int(), int(), int())`. ## Starting State The starting state is initialised in the following range. | Observation | Min | Max | |---------------------------|------|------| | Player current sum | 4 | 12 | | Dealer showing card value | 2 | 11 | | Usable Ace | 0 | 1 | ## Rewards - win game: +1 - lose game: -1 - draw game: 0 - win game with natural blackjack: +1.5 (if natural is True) +1 (if natural is False) ## Episode End The episode ends if the following happens: - Termination: 1. The player hits and the sum of hand exceeds 21. 2. The player sticks. An ace will always be counted as usable (11) unless it busts the player. ## Information No additional information is returned. ## Arguments ```python import gymnasium as gym gym.make('Blackjack-v1', natural=False, sab=False) ``` `natural=False`: Whether to give an additional reward for starting with a natural blackjack, i.e. starting with an ace and ten (sum is 21). `sab=False`: Whether to follow the exact rules outlined in the book by Sutton and Barto. If `sab` is `True`, the keyword argument `natural` will be ignored. If the player achieves a natural blackjack and the dealer does not, the player will win (i.e. get a reward of +1). The reverse rule does not apply. If both the player and the dealer get a natural, it will be a draw (i.e. reward 0). ## References [1] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction” 2020. [Online]. Available: [http://www.incompleteideas.net/book/RLbook2020.pdf](http://www.incompleteideas.net/book/RLbook2020.pdf) ## Version History * v1: Fix the natural handling in Blackjack * v0: Initial version release """ metadata = { "render_modes": ["human", "rgb_array"], "render_fps": 4, } def __init__(self, render_mode: Optional[str] = None, natural=False, sab=False): self.action_space = spaces.Discrete(2) self.observation_space = spaces.Tuple( (spaces.Discrete(32), spaces.Discrete(11), spaces.Discrete(2)) ) # Flag to payout 1.5 on a "natural" blackjack win, like casino rules # Ref: http://www.bicyclecards.com/how-to-play/blackjack/ self.natural = natural # Flag for full agreement with the (Sutton and Barto, 2018) definition. Overrides self.natural self.sab = sab self.render_mode = render_mode def step(self, action): assert self.action_space.contains(action) if action: # hit: add a card to players hand and return self.player.append(draw_card(self.np_random)) if is_bust(self.player): terminated = True reward = -1.0 else: terminated = False reward = 0.0 else: # stick: play out the dealers hand, and score terminated = True while sum_hand(self.dealer) < 17: self.dealer.append(draw_card(self.np_random)) reward = cmp(score(self.player), score(self.dealer)) if self.sab and is_natural(self.player) and not is_natural(self.dealer): # Player automatically wins. Rules consistent with S&B reward = 1.0 elif ( not self.sab and self.natural and is_natural(self.player) and reward == 1.0 ): # Natural gives extra points, but doesn't autowin. Legacy implementation reward = 1.5 if self.render_mode == "human": self.render() return self._get_obs(), reward, terminated, False, {} def _get_obs(self): return (sum_hand(self.player), self.dealer[0], usable_ace(self.player)) def reset( self, seed: Optional[int] = None, options: Optional[dict] = None, ): super().reset(seed=seed) self.dealer = draw_hand(self.np_random) self.player = draw_hand(self.np_random) _, dealer_card_value, _ = self._get_obs() suits = ["C", "D", "H", "S"] self.dealer_top_card_suit = self.np_random.choice(suits) if dealer_card_value == 1: self.dealer_top_card_value_str = "A" elif dealer_card_value == 10: self.dealer_top_card_value_str = self.np_random.choice(["J", "Q", "K"]) else: self.dealer_top_card_value_str = str(dealer_card_value) if self.render_mode == "human": self.render() return self._get_obs(), {} def render(self): if self.render_mode is None: assert self.spec is not None gym.logger.warn( "You are calling render method without specifying any render mode. " "You can specify the render_mode at initialization, " f'e.g. gym.make("{self.spec.id}", render_mode="rgb_array")' ) return try: import pygame except ImportError as e: raise DependencyNotInstalled( "pygame is not installed, run `pip install gymnasium[toy-text]`" ) from e player_sum, dealer_card_value, usable_ace = self._get_obs() screen_width, screen_height = 600, 500 card_img_height = screen_height // 3 card_img_width = int(card_img_height * 142 / 197) spacing = screen_height // 20 bg_color = (7, 99, 36) white = (255, 255, 255) if not hasattr(self, "screen"): pygame.init() if self.render_mode == "human": pygame.display.init() self.screen = pygame.display.set_mode((screen_width, screen_height)) else: pygame.font.init() self.screen = pygame.Surface((screen_width, screen_height)) if not hasattr(self, "clock"): self.clock = pygame.time.Clock() self.screen.fill(bg_color) def get_image(path): cwd = os.path.dirname(__file__) image = pygame.image.load(os.path.join(cwd, path)) return image def get_font(path, size): cwd = os.path.dirname(__file__) font = pygame.font.Font(os.path.join(cwd, path), size) return font small_font = get_font( os.path.join("font", "Minecraft.ttf"), screen_height // 15 ) dealer_text = small_font.render( "Dealer: " + str(dealer_card_value), True, white ) dealer_text_rect = self.screen.blit(dealer_text, (spacing, spacing)) def scale_card_img(card_img): return pygame.transform.scale(card_img, (card_img_width, card_img_height)) dealer_card_img = scale_card_img( get_image( os.path.join( "img", f"{self.dealer_top_card_suit}{self.dealer_top_card_value_str}.png", ) ) ) dealer_card_rect = self.screen.blit( dealer_card_img, ( screen_width // 2 - card_img_width - spacing // 2, dealer_text_rect.bottom + spacing, ), ) hidden_card_img = scale_card_img(get_image(os.path.join("img", "Card.png"))) self.screen.blit( hidden_card_img, ( screen_width // 2 + spacing // 2, dealer_text_rect.bottom + spacing, ), ) player_text = small_font.render("Player", True, white) player_text_rect = self.screen.blit( player_text, (spacing, dealer_card_rect.bottom + 1.5 * spacing) ) large_font = get_font(os.path.join("font", "Minecraft.ttf"), screen_height // 6) player_sum_text = large_font.render(str(player_sum), True, white) player_sum_text_rect = self.screen.blit( player_sum_text, ( screen_width // 2 - player_sum_text.get_width() // 2, player_text_rect.bottom + spacing, ), ) if usable_ace: usable_ace_text = small_font.render("usable ace", True, white) self.screen.blit( usable_ace_text, ( screen_width // 2 - usable_ace_text.get_width() // 2, player_sum_text_rect.bottom + spacing // 2, ), ) if self.render_mode == "human": pygame.event.pump() pygame.display.update() self.clock.tick(self.metadata["render_fps"]) else: return np.transpose( np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2) ) def close(self): if hasattr(self, "screen"): import pygame pygame.display.quit() pygame.quit() # Pixel art from Mariia Khmelnytska (https://www.123rf.com/photo_104453049_stock-vector-pixel-art-playing-cards-standart-deck-vector-set.html)