# Copyright (c) ONNX Project Contributors # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import numpy as np from onnx.reference.op_run import OpRun class Loop(OpRun): def __init__(self, onnx_node, run_params): # type: ignore OpRun.__init__(self, onnx_node, run_params) if "opsets" not in self.run_params: raise KeyError("run_params must contains key 'opsets'.") if "verbose" not in run_params: raise KeyError("run_params must contains key 'verbose'.") self.output_index = {n: i for i, n in enumerate(self.body.output_names)} # type: ignore self.N = len(self.body.input_names) - 2 # type: ignore self.K = len(self.body.output_names) - self.N - 1 # type: ignore def need_context(self) -> bool: """The operator Loop needs to know all results produced so far as the loop may silently access one of them. Some information are not always referred in the list of inputs (kind of static variables). """ return True def _run(self, M, cond, *args, context=None, body=None, attributes=None): # type: ignore if args: v_initial = args[0] args = args[1:] else: v_initial = None if M is not None and not hasattr(M, "dtype"): raise TypeError(f"M must be empty or an array but its type is {type(M)}.") body = self.body # type: ignore loop_inputs = body.input_names inputs = {name: None for name in loop_inputs} if v_initial is not None: inputs[loop_inputs[2]] = v_initial cond_name = body.output_names[0] if args: begin = len(loop_inputs) - len(args) all_inputs = loop_inputs[begin:] for name, val in zip(all_inputs, args): inputs[name] = val if context is not None: for a in context: inputs[a] = context[a] k_carried_away = [[] for i in range(self.K)] # type: ignore it = 0 while cond and (M is None or it < M): self._log(" -- loop> {%r}", context) if len(body.input_names) > 0 and body.input_names[0] is not None: inputs[body.input_names[0]] = np.array( it, dtype=None if M is None else M.dtype ) # type: ignore if len(body.input_names) > 1 and body.input_names[1] is not None: inputs[body.input_names[1]] = cond outputs = self._run_body(inputs, attributes=attributes) # type: ignore if self.K > 0: for k in range(self.K): k_carried_away[k].append(outputs[-self.K + k]) index_cond = self.output_index[cond_name] cond = outputs[index_cond] if cond is None: raise RuntimeError( f"Condition {cond_name!r} returned by the subgraph cannot be None." ) for i, o in zip(body.input_names[2:], body.output_names[1:]): inputs[i] = outputs[self.output_index[o]] it += 1 self._log(" -- loop<") if it == 0: outputs = [inputs[i] for i in body.input_names[2:]] else: outputs = outputs[1 : 1 + self.N] outputs.extend([np.vstack(x) for x in k_carried_away]) while len(outputs) < len(self.onnx_node.output): outputs.append(np.empty(shape=())) res = tuple(outputs) return self._check_and_fix_outputs(res)