/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/schema.h"
#ifdef ONNX_ML
namespace ONNX_NAMESPACE {
static const char* LabelEncoder_ver1_doc = R"DOC(
Converts strings to integers and vice versa.
If the string default value is set, it will convert integers to strings.
If the int default value is set, it will convert strings to integers.
Each operator converts either integers to strings or strings to integers, depending
on which default value attribute is provided. Only one default value attribute
should be defined.
When converting from integers to strings, the string is fetched from the
'classes_strings' list, by simple indexing.
When converting from strings to integers, the string is looked up in the list
and the index at which it is found is used as the converted value.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
LabelEncoder,
1,
OpSchema()
.SetDoc(LabelEncoder_ver1_doc)
.Input(0, "X", "Input data.", "T1")
.Output(0, "Y", "Output data. If strings are input, the output values are integers, and vice versa.", "T2")
.TypeConstraint(
"T1",
{"tensor(string)", "tensor(int64)"},
"The input type must be a tensor of integers or strings, of any shape.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)"},
"The output type will be a tensor of strings or integers, and will have the same shape as the input.")
.Attr("classes_strings", "A list of labels.", AttributeProto::STRINGS, OPTIONAL_VALUE)
.Attr(
"default_int64",
"An integer to use when an input string value is not found in the map.
One and only one of the "
"'default_*' attributes must be defined.",
AttributeProto::INT,
static_cast(-1))
.Attr(
"default_string",
"A string to use when an input integer value is not found in the map.
One and only one of the "
"'default_*' attributes must be defined.",
AttributeProto::STRING,
std::string("_Unused"))
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto input_elem_type = ctx.getInputType(0)->tensor_type().elem_type();
auto output_elem_type = ctx.getOutputType(0)->mutable_tensor_type();
if (TensorProto::STRING == input_elem_type) {
output_elem_type->set_elem_type(TensorProto::INT64);
} else if (TensorProto::INT64 == input_elem_type) {
output_elem_type->set_elem_type(TensorProto::STRING);
}
}));
static const char* TreeEnsembleClassifier_ver1_doc = R"DOC(
Tree Ensemble classifier. Returns the top class for each of N inputs.
The attributes named 'nodes_X' form a sequence of tuples, associated by
index into the sequences, which must all be of equal length. These tuples
define the nodes.
Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated class_weights index.
One and only one of classlabels_strings or classlabels_int64s
will be defined. The class_ids are indices into this list.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleClassifier,
1,
OpSchema()
.SetDoc(TreeEnsembleClassifier_ver1_doc)
.Input(0, "X", "Input of shape [N,F]", "T1")
.Output(0, "Y", "N, Top class for each point", "T2")
.Output(1, "Z", "The class score for each class, for each point, a tensor of shape [N,E].", "tensor(float)")
.TypeConstraint(
"T1",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)"},
"The output type will be a tensor of strings or integers, depending on which of the classlabels_* "
"attributes is used.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Ids may restart at zero for each tree, but it not required to.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a missing value: if a value is missing (NaN), use the "
"'true' or 'false' branch based on the value in this array.
This attribute may be left undefined, and "
"the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("class_treeids", "The id of the tree that this node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_nodeids", "node id that this weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_ids", "The index of the class list that each weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_weights", "The weight for the class in class_id.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr(
"classlabels_strings",
"Class labels if using string labels.
One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"classlabels_int64s",
"Class labels if using integer labels.
One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT.'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"base_values",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
std::vector label_strs;
auto result = getRepeatedAttribute(ctx, "classlabels_strings", label_strs);
bool using_strings = (result && !label_strs.empty());
auto output_elem_type = ctx.getOutputType(0)->mutable_tensor_type();
if (using_strings) {
output_elem_type->set_elem_type(TensorProto::STRING);
} else {
output_elem_type->set_elem_type(TensorProto::INT64);
}
}));
static const char* TreeEnsembleClassifier_ver3_doc = R"DOC(
Tree Ensemble classifier. Returns the top class for each of N inputs.
The attributes named 'nodes_X' form a sequence of tuples, associated by
index into the sequences, which must all be of equal length. These tuples
define the nodes.
Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated class_weights index.
One and only one of classlabels_strings or classlabels_int64s
will be defined. The class_ids are indices into this list.
All fields ending with _as_tensor can be used instead of the
same parameter without the suffix if the element type is double and not float.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleClassifier,
3,
OpSchema()
.SetDoc(TreeEnsembleClassifier_ver3_doc)
.Input(0, "X", "Input of shape [N,F]", "T1")
.Output(0, "Y", "N, Top class for each point", "T2")
.Output(1, "Z", "The class score for each class, for each point, a tensor of shape [N,E].", "tensor(float)")
.TypeConstraint(
"T1",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)"},
"The output type will be a tensor of strings or integers, depending on which of the classlabels_* "
"attributes is used.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Ids may restart at zero for each tree, but it not required to.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_values_as_tensor",
"Thresholds to do the splitting on for each node.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates_as_tensor",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a missing value: if a value is missing (NaN), use the "
"'true' or 'false' branch based on the value in this array.
This attribute may be left undefined, and "
"the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("class_treeids", "The id of the tree that this node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_nodeids", "node id that this weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_ids", "The index of the class list that each weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_weights", "The weight for the class in class_id.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr(
"class_weights_as_tensor",
"The weight for the class in class_id.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"classlabels_strings",
"Class labels if using string labels.
One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"classlabels_int64s",
"Class labels if using integer labels.
One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT.'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"base_values",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"base_values_as_tensor",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto* nodes_values = ctx.getAttribute("nodes_values");
auto* nodes_values_as_tensor = ctx.getAttribute("nodes_values_as_tensor");
auto* nodes_hitrates = ctx.getAttribute("nodes_hitrates");
auto* nodes_hitrates_as_tensor = ctx.getAttribute("nodes_hitrates_as_tensor");
auto* class_weights = ctx.getAttribute("class_weights");
auto* class_weights_as_tensor = ctx.getAttribute("class_weights_as_tensor");
auto* base_values = ctx.getAttribute("base_values");
auto* base_values_as_tensor = ctx.getAttribute("base_values_as_tensor");
if (nullptr != nodes_values && nullptr != nodes_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_values', 'nodes_values_as_tensor' should be specified.");
}
if (nullptr != nodes_hitrates && nullptr != nodes_hitrates_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_hitrates', 'nodes_hitrates_as_tensor' should be specified.");
}
if (nullptr != class_weights && nullptr != class_weights_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'class_weights', 'class_weights_as_tensor' should be specified.");
}
if (nullptr != base_values && nullptr != base_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'base_values', 'base_values_as_tensor' should be specified.");
}
std::vector classlabels_strings;
auto result = getRepeatedAttribute(ctx, "classlabels_strings", classlabels_strings);
bool using_strings = (result && !classlabels_strings.empty());
if (using_strings) {
updateOutputElemType(ctx, 0, TensorProto::STRING);
} else {
updateOutputElemType(ctx, 0, TensorProto::INT64);
}
updateOutputElemType(ctx, 1, TensorProto::FLOAT);
checkInputRank(ctx, 0, 2);
Dim N, E;
unifyInputDim(ctx, 0, 0, N);
if (using_strings) {
unifyDim(E, classlabels_strings.size());
} else {
std::vector classlabels_int64s;
result = getRepeatedAttribute(ctx, "classlabels_int64s", classlabels_int64s);
if (!result || classlabels_int64s.empty()) {
fail_shape_inference("Non of classlabels_int64s or classlabels_strings is set.");
}
unifyDim(E, classlabels_int64s.size());
}
updateOutputShape(ctx, 0, {N});
updateOutputShape(ctx, 1, {N, E});
}));
static const char* TreeEnsembleRegressor_ver1_doc = R"DOC(
Tree Ensemble regressor. Returns the regressed values for each input in N.
All args with nodes_ are fields of a tuple of tree nodes, and
it is assumed they are the same length, and an index i will decode the
tuple across these inputs. Each node id can appear only once
for each tree id.
All fields prefixed with target_ are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated target_weights index.
All trees must have their node ids start at 0 and increment by 1.
Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleRegressor,
1,
OpSchema()
.SetDoc(TreeEnsembleRegressor_ver1_doc)
.Input(0, "X", "Input of shape [N,F]", "T")
.Output(0, "Y", "N classes", "tensor(float)")
.TypeConstraint(
"T",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Node ids must restart at zero for each tree and increase sequentially.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a NaN: use the 'true' (if the attribute value is 1) "
"or 'false' (if the attribute value is 0) branch based on the value in this array.
This attribute may "
"be left undefined and the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("target_treeids", "The id of the tree that each node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_nodeids", "The node id of each weight", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_ids", "The index of the target that each weight is for", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_weights", "The weight for each target", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr("n_targets", "The total number of targets.", AttributeProto::INT, OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"aggregate_function",
"Defines how to aggregate leaf values within a target.
One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'",
AttributeProto::STRING,
std::string("SUM"))
.Attr(
"base_values",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE));
static const char* TreeEnsembleRegressor_ver3_doc = R"DOC(
Tree Ensemble regressor. Returns the regressed values for each input in N.
All args with nodes_ are fields of a tuple of tree nodes, and
it is assumed they are the same length, and an index i will decode the
tuple across these inputs. Each node id can appear only once
for each tree id.
All fields prefixed with target_ are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated target_weights index.
All fields ending with _as_tensor can be used instead of the
same parameter without the suffix if the element type is double and not float.
All trees must have their node ids start at 0 and increment by 1.
Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleRegressor,
3,
OpSchema()
.SetDoc(TreeEnsembleRegressor_ver3_doc)
.Input(0, "X", "Input of shape [N,F]", "T")
.Output(0, "Y", "N classes", "tensor(float)")
.TypeConstraint(
"T",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Node ids must restart at zero for each tree and increase sequentially.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_values_as_tensor",
"Thresholds to do the splitting on for each node.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates_as_tensor",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.
One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a NaN: use the 'true' (if the attribute value is 1) "
"or 'false' (if the attribute value is 0) branch based on the value in this array.
This attribute may "
"be left undefined and the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("target_treeids", "The id of the tree that each node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_nodeids", "The node id of each weight", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_ids", "The index of the target that each weight is for", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_weights", "The weight for each target", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr("target_weights_as_tensor", "The weight for each target", AttributeProto::TENSOR, OPTIONAL_VALUE)
.Attr("n_targets", "The total number of targets.", AttributeProto::INT, OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"aggregate_function",
"Defines how to aggregate leaf values within a target.
One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'",
AttributeProto::STRING,
std::string("SUM"))
.Attr(
"base_values",
"Base values for regression, added to final prediction after applying aggregate_function; the size must be "
"the same as the classes or can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"base_values_as_tensor",
"Base values for regression, added to final prediction after applying aggregate_function; the size must be "
"the same as the classes or can be left unassigned (assumed 0)",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto* nodes_values = ctx.getAttribute("nodes_values");
auto* nodes_values_as_tensor = ctx.getAttribute("nodes_values_as_tensor");
auto* nodes_hitrates = ctx.getAttribute("nodes_hitrates");
auto* nodes_hitrates_as_tensor = ctx.getAttribute("nodes_hitrates_as_tensor");
auto* target_weights = ctx.getAttribute("target_weights");
auto* target_weights_as_tensor = ctx.getAttribute("target_weights_as_tensor");
auto* base_values = ctx.getAttribute("base_values");
auto* base_values_as_tensor = ctx.getAttribute("base_values_as_tensor");
if (nullptr != nodes_values && nullptr != nodes_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_values', 'nodes_values_as_tensor' should be specified.");
}
if (nullptr != nodes_hitrates && nullptr != nodes_hitrates_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_hitrates', 'nodes_hitrates_as_tensor' should be specified.");
}
if (nullptr != target_weights && nullptr != target_weights_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'target_weights', 'target_weights_as_tensor' should be specified.");
}
if (nullptr != base_values && nullptr != base_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'base_values', 'base_values_as_tensor' should be specified.");
}
checkInputRank(ctx, 0, 2);
Dim N, E;
unifyInputDim(ctx, 0, 0, N);
if (nullptr != ctx.getAttribute("n_targets")) {
unifyDim(E, ctx.getAttribute("n_targets")->i());
}
updateOutputElemType(ctx, 0, TensorProto::FLOAT);
updateOutputShape(ctx, 0, {N, E});
}));
static const char* LabelEncoder_ver2_doc = R"DOC(
Maps each element in the input tensor to another value.
The mapping is determined by the two parallel attributes, 'keys_*' and
'values_*' attribute. The i-th value in the specified 'keys_*' attribute
would be mapped to the i-th value in the specified 'values_*' attribute. It
implies that input's element type and the element type of the specified
'keys_*' should be identical while the output type is identical to the
specified 'values_*' attribute. If an input element can not be found in the
specified 'keys_*' attribute, the 'default_*' that matches the specified
'values_*' attribute may be used as its output value.
Let's consider an example which maps a string tensor to an integer tensor.
Assume and 'keys_strings' is ["Amy", "Sally"], 'values_int64s' is [5, 6],
and 'default_int64' is '-1'. The input ["Dori", "Amy", "Amy", "Sally",
"Sally"] would be mapped to [-1, 5, 5, 6, 6].
Since this operator is an one-to-one mapping, its input and output shapes
are the same. Notice that only one of 'keys_*'/'values_*' can be set.
For key look-up, bit-wise comparison is used so even a float NaN can be
mapped to a value in 'values_*' attribute.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
LabelEncoder,
2,
OpSchema()
.SetDoc(LabelEncoder_ver2_doc)
.Input(0, "X", "Input data. It can be either tensor or scalar.", "T1")
.Output(0, "Y", "Output data.", "T2")
.TypeConstraint(
"T1",
{"tensor(string)", "tensor(int64)", "tensor(float)"},
"The input type is a tensor of any shape.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)", "tensor(float)"},
"Output type is determined by the specified 'values_*' attribute.")
.Attr(
"keys_strings",
"A list of strings. One and only one of 'keys_*'s should be set.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("keys_int64s", "A list of ints.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("keys_floats", "A list of floats.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr(
"values_strings",
"A list of strings. One and only one of 'value_*'s should be set.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("values_int64s", "A list of ints.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("values_floats", "A list of floats.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr("default_string", "A string.", AttributeProto::STRING, std::string("_Unused"))
.Attr("default_int64", "An integer.", AttributeProto::INT, static_cast(-1))
.Attr("default_float", "A float.", AttributeProto::FLOAT, -0.f)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Label encoder is one-to-one mapping.
if (ctx.getNumInputs() != 1) {
fail_shape_inference("Label encoder has only one input.");
}
if (ctx.getNumOutputs() != 1) {
fail_shape_inference("Label encoder has only one output.");
}
// Load all key_* attributes.
std::vector keys_strings;
bool keys_strings_result = getRepeatedAttribute(ctx, "keys_strings", keys_strings);
std::vector keys_int64s;
bool keys_int64s_result = getRepeatedAttribute(ctx, "keys_int64s", keys_int64s);
std::vector keys_floats;
bool keys_floats_result = getRepeatedAttribute(ctx, "keys_floats", keys_floats);
// Check if only one keys_* attribute is set.
if (static_cast(keys_strings_result) + static_cast(keys_int64s_result) +
static_cast(keys_floats_result) !=
1) {
fail_shape_inference("Only one of keys_*'s can be set in label encoder.");
}
// Check if the specified keys_* matches input type.
auto input_elem_type = ctx.getInputType(0)->tensor_type().elem_type();
if (keys_strings_result && input_elem_type != TensorProto::STRING) {
fail_shape_inference("Input type is not string tensor but key_strings is set");
}
if (keys_int64s_result && input_elem_type != TensorProto::INT64) {
fail_shape_inference("Input type is not int64 tensor but keys_int64s is set");
}
if (keys_floats_result && input_elem_type != TensorProto::FLOAT) {
fail_shape_inference("Input type is not float tensor but keys_floats is set");
}
// Load all values_* attributes.
std::vector values_strings;
bool values_strings_result = getRepeatedAttribute(ctx, "values_strings", values_strings);
std::vector values_int64s;
bool values_int64s_result = getRepeatedAttribute(ctx, "values_int64s", values_int64s);
std::vector values_floats;
bool values_floats_result = getRepeatedAttribute(ctx, "values_floats", values_floats);
// Check if only one values_* attribute is set.
if (static_cast(values_strings_result) + static_cast(values_int64s_result) +
static_cast(values_floats_result) !=
1) {
fail_shape_inference("Only one of values_*'s can be set in label encoder.");
}
// Assign output type based on the specified values_*.
auto output_elem_type = ctx.getOutputType(0)->mutable_tensor_type();
if (values_strings_result)
output_elem_type->set_elem_type(TensorProto::STRING);
if (values_int64s_result)
output_elem_type->set_elem_type(TensorProto::INT64);
if (values_floats_result)
output_elem_type->set_elem_type(TensorProto::FLOAT);
// Input and output shapes are the same.
propagateShapeFromInputToOutput(ctx, 0, 0);
}));
} // namespace ONNX_NAMESPACE
#endif