I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1 @@
from .common import lift_subgraph_as_module, HolderModule, compare_graphs

View File

@ -0,0 +1,96 @@
# mypy: allow-untyped-defs
from typing import Dict, Tuple
from torch.fx._compatibility import compatibility
from torch.fx.graph import Graph
from torch.fx.graph_module import GraphModule
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher
from torch.nn import Module
__all__ = ["HolderModule", "lift_subgraph_as_module", "compare_graphs"]
@compatibility(is_backward_compatible=False)
class HolderModule(Module):
"""
HolderModule is used to copy all the attributes from original module to submodules
that uses the attributes
"""
def __init__(self, d):
super().__init__()
for k, v in d.items():
self.add_module(k, v)
@compatibility(is_backward_compatible=False)
def lift_subgraph_as_module(
gm: GraphModule,
subgraph: Graph,
comp_name: str = "",
class_name: str = "GraphModule",
) -> Tuple[GraphModule, Dict[str, str]]:
"""
Create a GraphModule for subgraph, which copies the necessary attributes from the original parent graph_module.
Args:
gm (GraphModule): parent graph module
subgraph (Graph): a valid subgraph that contains copied nodes from the parent graph
comp_name (str): name for the new component
class_name (str): name for the submodule
"""
# Loop through all module calls (call_module) and param fetches (get_attr)
# in this component, creating HolderModules as necessary to match the path.
# e.g. if in the original module there's a get_attr node fetches "conv.weight".
# We create a HolderModule as root -> add a HolderModule named "conv" ->
# make "weight" a attribute of "conv" HolderModule and point to conv.weight in
# the original module.
submodule = HolderModule({})
orig_to_split_fqn_mapping: Dict[str, str] = {}
for n in subgraph.nodes:
if n.op not in ("call_module", "get_attr"):
continue
target = n.target
assert isinstance(target, str)
target_name_parts = target.split(".")
curr = submodule
orig_gm = gm
for name in target_name_parts[:-1]:
if not hasattr(curr, name):
curr.add_module(name, HolderModule({}))
curr = getattr(curr, name)
orig_gm = getattr(orig_gm, name)
leaf_node_name = target_name_parts[-1]
leaf_node = getattr(orig_gm, leaf_node_name)
orig_to_split_fqn_mapping[target] = f"{comp_name}.{target}"
# Relies on custom __setattr__ magic.
setattr(curr, leaf_node_name, leaf_node)
return GraphModule(submodule, subgraph, class_name), orig_to_split_fqn_mapping
@compatibility(is_backward_compatible=False)
def compare_graphs(left: Graph, right: Graph) -> bool:
"""
Return True if two graphs are identical, i.e they
- have the same number of outputs in the same order
- have the same number of inputs in the same order
- have the same set of nodes, and identical connectivity
"""
matcher = SubgraphMatcher(left, match_output=True, match_placeholder=True)
matches = matcher.match(right)
return len(matches) > 0

View File

@ -0,0 +1,236 @@
# mypy: allow-untyped-defs
import copy
from queue import SimpleQueue
from typing import List, Dict, Tuple
import torch.fx
from torch.fx.graph_module import GraphModule
from torch.fx.graph import Graph
from torch.fx.node import Node
from torch.fx.passes.tools_common import NodeList, NodeSet, legalize_graph
from torch.fx.passes.utils import lift_subgraph_as_module
from torch.fx._compatibility import compatibility
@compatibility(is_backward_compatible=False)
def topo_sort(nodes: NodeList) -> NodeList:
# sort nodes according to the topological order
indegree_map = dict.fromkeys(nodes, 0)
candidates: SimpleQueue = SimpleQueue()
for node in nodes:
for n in node.all_input_nodes:
if n in indegree_map:
indegree_map[node] += 1
if indegree_map[node] == 0:
candidates.put(node)
sorted_nodes: NodeList = []
while not candidates.empty():
node = candidates.get()
sorted_nodes.append(node)
for n in node.users:
if n in indegree_map:
indegree_map[n] -= 1
if indegree_map[n] == 0:
candidates.put(n)
assert len(nodes) == len(sorted_nodes), "topological sorted nodes doesn't have same length as input nodes"
return sorted_nodes
@compatibility(is_backward_compatible=False)
def validate_partition(partition: NodeList) -> bool:
# verify the partition does't form a dependency cycle in the original graph
# returns True for valid partition, False for invalid
partition_set = set(partition)
outputs: NodeList = []
for node in partition_set:
for user_node in node.users:
if user_node not in partition_set:
# external user node, need to expose as an output
outputs.append(user_node)
# Perform BFS on the partition outputs.
# If it reaches a node within the partition, then it found a cycle.
# This function takes the ownership of `root_nodes` and may modify it.
def bfs_find_cycle(root_nodes: NodeList) -> bool:
# Set used to exclude nodes that have already been visited.
# If a node has been visited, that node and all its children have
# been checked for cycles.
visited: NodeSet = set()
# Start with `root_nodes` and traverse through (toward child nodes)
# their connected sub-graph. Nodes in `visited` won't be added
# to `queue` again.
queue: NodeList = root_nodes
while queue:
current = queue.pop()
visited.add(current)
if current in partition_set:
# Started from partition's `output` nodes, and reached
# another node in partition. Cycle!
return True
for user_node in current.users:
if user_node in visited:
continue
queue.append(user_node)
# `root_nodes` don't cause cycle.
return False
# Use all output nodes as roots to traverse
# the graph to check cycles.
if bfs_find_cycle(outputs):
return False
return True
@compatibility(is_backward_compatible=False)
def fuse_as_graphmodule(gm: GraphModule,
nodes: NodeList,
module_name: str) -> Tuple[GraphModule, Tuple[Node, ...], Tuple[Node, ...]]:
"""
Fuse nodes in graph_module into a GraphModule.
Args:
gm (GraphModule): target graph_module
nodes (List[Node]): list of nodes in `gm` to fuse, where the node must be topologically sorted
module_name: class name for the fused GraphModule
Returns:
fused_gm (GraphModule): fused graph module, where its node is a copy of `nodes` in `gm`
original_inputs (Tuple[Node, ...]): input nodes to `nodes` in original `gm`
original_outputs (Tuple[Node, ...]): consumer nodes of `nodes` in original `gm`
"""
# assumption: nodes are already sorted in topo order
for node in nodes:
assert node.graph.owning_module is gm, f"{node} doesn't belong to passed in graph module {gm._get_name()}"
assert not node._erased, f"{node} has been removed from owning graph"
assert node in gm.graph.nodes, f"{node} is not found in graph module {gm._get_name()}"
# validates partition doesn't introduce dependency circles in the graph
assert validate_partition(nodes), "Invalid partition, found dependency cycles"
subgraph = Graph()
node_to_placeholder: Dict[Node, Node] = {} # mapping of nodes from old graph to placeholder in new graph
node_map: Dict[Node, Node] = {} # mapping of nodes from old graph to new graph
# handles inputs through graph.node_copy's arg_transform functions
def remap_inputs(x):
if x.op == "get_attr":
# TODO: do we really need copy the get_attr node into the graph?
# do something here
pass
if x in nodes:
# x is inside subgraph, return the copied node
# the node should have been copied aleady, as we are copying graph in the topological order
return node_map[x]
if x not in node_to_placeholder:
# x is not in subgraph, create a new placeholder for subgraph
placeholder_node = subgraph.placeholder(x.name, type_expr=x.type)
# copy all meta fields, even if some fields might be irrelvant for the placeholder node
placeholder_node.meta = copy.copy(x.meta)
node_to_placeholder[x] = placeholder_node
return node_to_placeholder[x]
# copy nodes in topological order
for node in nodes:
new_node = subgraph.node_copy(node, remap_inputs)
node_map[node] = new_node
# handles outputs
output_mapping: Dict[Node, Node] = {} # mapping from old output to new outputs
for node in nodes:
for user_node in node.users:
if user_node not in nodes:
# external user node, need to expose as an output
output_mapping[node] = node_map[node]
# outs contain nodes in the new subgraph
outs = tuple(output_mapping.values())
# Take care of the args of FX output node. If there's a single
# output then the output node args is like (output_single), else
# if there're multiple outputs then the output node args is like
# ((output_0, output_1, ...)).
subgraph.output(outs[0] if len(outs) == 1 else outs)
# lint to ensure correctness
subgraph.lint()
fused_gm: GraphModule
fused_gm, _ = lift_subgraph_as_module(gm, subgraph, comp_name="", class_name=module_name)
# sub_gm's input nodes in the original module
original_inputs: Tuple[Node, ...] = tuple(node_to_placeholder.keys())
# sub_gm's outputs node in the original module
original_outputs: Tuple[Node, ...] = tuple(output_mapping.keys())
return fused_gm, original_inputs, original_outputs
@compatibility(is_backward_compatible=False)
def insert_subgm(gm: GraphModule, sub_gm: GraphModule, orig_inputs: Tuple[Node, ...], orig_outputs: Tuple[Node, ...]):
# add sub_gm into gm
submodule_name = sub_gm.__class__.__name__
gm.add_submodule(submodule_name, sub_gm)
# Create a call_module node in main graph.
module_node = gm.graph.call_module(
submodule_name,
args=orig_inputs,
kwargs=None)
if len(orig_outputs) == 1:
# main_remapping[comp.orig_outputs[0]] = module_node
orig_outputs[0].replace_all_uses_with(module_node, propagate_meta=True)
else:
for i, orig_output in enumerate(orig_outputs):
# Use Proxy to record getitem access.
proxy_out = torch.fx.Proxy(module_node)[i].node # type: ignore[index]
orig_output.replace_all_uses_with(proxy_out, propagate_meta=True)
module_node.meta["val"] = tuple(orig_output.meta.get("val", None) for orig_output in orig_outputs)
return gm
@compatibility(is_backward_compatible=False)
def erase_nodes(gm: GraphModule, nodes: NodeList):
# erase original nodes in inversed topological order
for node in reversed(nodes):
gm.graph.erase_node(node)
@compatibility(is_backward_compatible=False)
def fuse_by_partitions(gm: GraphModule, partitions: List[NodeList], prefix: str = "fused_") -> GraphModule:
for partition_id, nodes in enumerate(partitions):
sorted_nodes = topo_sort(nodes)
submodule_name = prefix + str(partition_id)
sub_gm, orig_inputs, orig_outputs = fuse_as_graphmodule(gm, sorted_nodes, submodule_name)
insert_subgm(gm, sub_gm, orig_inputs, orig_outputs)
erase_nodes(gm, sorted_nodes)
# topological sort original gm with newly created sub_gm
legalize_graph(gm)
return gm

View File

@ -0,0 +1,401 @@
# mypy: allow-untyped-defs
from dataclasses import dataclass, field
from collections import defaultdict
import copy
import torch
from torch.fx import (
Node,
Graph,
)
from torch.fx._compatibility import compatibility
from typing import Dict, List, Set, Any, Union, Tuple
import logging
import os
__all__ = ['SubgraphMatcher', 'InternalMatch']
# Set`PYTORCH_MATCHER_LOGLEVEL=INFO` to see debug logs
def _init_logger():
logger = logging.getLogger(__name__)
level = os.environ.get('PYTORCH_MATCHER_LOGLEVEL', 'WARNING').upper()
logger.setLevel(level)
console = logging.StreamHandler()
formatter = logging.Formatter("%(filename)s > %(message)s")
console.setFormatter(formatter)
console.setLevel(level)
# add the handlers to the logger
logger.addHandler(console)
logger.propagate = False
return logger
logger = _init_logger()
@compatibility(is_backward_compatible=False)
@dataclass
class InternalMatch:
# Nodes from which the match was found
anchors: List[Node]
# Maps nodes in the pattern subgraph to nodes in the larger graph
nodes_map: Dict[Node, Node] = field(default_factory=dict)
# nodes in target graph that are matched placeholder in pattern
placeholder_nodes: List[Node] = field(default_factory=list)
# nodes in matched subgraph returned by output
returning_nodes: List[Node] = field(default_factory=list)
# map from a string name to a node in the target graph
# only available if the matcher is `SubgraphMatcherWithNameNodesMap`
name_node_map: Dict[str, Node] = field(default_factory=dict)
def __copy__(self):
return InternalMatch(anchors=self.anchors, nodes_map=self.nodes_map.copy(),
placeholder_nodes=self.placeholder_nodes.copy(),
returning_nodes=self.returning_nodes.copy())
@compatibility(is_backward_compatible=False)
class SubgraphMatcher:
def __init__(self, pattern: Graph,
match_output: bool = False,
match_placeholder: bool = False,
remove_overlapping_matches: bool = True,
ignore_literals: bool = False) -> None:
"""
Args:
pattern: the targeted matching pattern, represented in fx.Graph.
match_output: If True, output node in the pattern graph will be treated as a part of the targeted pattern.
If False, output node is ignored during match.
match_placeholder: If True, placeholder node in the pattern graph will be treated as a part of
the targeted pattern. If False, placeholder nodes will be used a wildcard.
remove_overlapping_matches: If True, in the case of overlapping matches, only the first match
will be returned.
ignore_literals: If True, will not check if literals are equal and
will instead treat them as wildcards.
"""
self.pattern = pattern
self.match_output = match_output
self.match_placeholder = match_placeholder
self.remove_overlapping_matches = remove_overlapping_matches
self.ignore_literals = ignore_literals
if len(pattern.nodes) == 0:
raise ValueError("SubgraphMatcher cannot be initialized with an empty pattern")
for node in pattern.nodes:
if node.op != "output":
assert len(node.users) > 0, \
"SubgraphMatcher cannot be initialized with an pattern with dead code"
# TODO: assert pattern is a connected graph
self.pattern_placeholder_nodes = [n for n in pattern.nodes if n.op == "placeholder"]
output_node = next(iter(reversed(pattern.nodes)))
# nodes returned by outputs
self.pattern_returning_nodes: List[Node] = output_node.all_input_nodes
self.pattern_anchors: List[Node] = []
if match_output:
self.pattern_anchors = [output_node]
else:
# If a node has output_node as the ONLY user, then this node is a graph sink,
# and should be matched against as an anchor
self.pattern_anchors = [n for n in output_node.all_input_nodes if len(n.users) == 1]
def _match_attributes(self, pn: Node, gn: Node) -> bool:
# Attributes matching is complicated. Right now we only support matching constant tensor
assert isinstance(pn.target, str), f"pn.target {pn.target} must be a string."
assert isinstance(gn.target, str), f"gn.target {gn.target} must be a string."
# TODO(tmanlaibaatar) should probably make this actual API
def _getattr(model: torch.fx.GraphModule, attr_name: str):
*prefix, field = attr_name.split(".")
t = model
for item in prefix:
t = getattr(t, item, None) # type: ignore[assignment]
assert t is not None
return getattr(t, field)
pn_value = _getattr(pn.graph.owning_module, pn.target)
gn_value = _getattr(gn.graph.owning_module, gn.target)
if type(pn_value) != type(gn_value):
return False
# Don't require exact match on tensor values.
if isinstance(pn_value, torch.Tensor):
return isinstance(gn_value, torch.Tensor)
else:
raise RuntimeError(f"Unsupported type {pn_value} when matching attributes")
return False
def _nodes_are_equal(self, pn: Node, gn: Node) -> bool:
# if exact match for placeholder is not required, then use placeholder as a wildcard
if not self.match_placeholder and pn.op == "placeholder":
return True
if pn.op == gn.op:
if pn.op == "placeholder" or pn.op == "output":
return True
elif pn.op == "get_attr":
return self._match_attributes(pn, gn)
return pn.target == gn.target
return False
def _is_contained(self, nodes_map: Dict[Node, Node]) -> bool:
# `lookup` represents all the nodes in `original_graph`
# that are part of `pattern`
# Placeholders can be used by other nodes in the graphs
lookup: Dict[Node, Node] = {gn : pn for pn, gn in nodes_map.items() if pn.op != "placeholder"}
for gn, pn in lookup.items():
# nodes returned by output are allowed to be used in other areas of the graph
if pn in self.pattern_returning_nodes:
continue
for user in gn.users:
# If this node has users that were not in `lookup`, then it must leak out of the
# pattern subgraph
if user not in lookup:
return False
return True
def _remove_overlapping_matches(self, matches: List[InternalMatch]) -> List[InternalMatch]:
non_overlapping_matches: List[InternalMatch] = []
nodes_matched: Set[Node] = set()
for match in matches:
found_overlap = False
for pn, gn in match.nodes_map.items():
if pn.op not in {"placeholder", "output"} and gn in nodes_matched:
found_overlap = True
break
if not found_overlap:
non_overlapping_matches.append(match)
for pn, gn in match.nodes_map.items():
if pn.op not in {"placeholder", "output"}:
nodes_matched.add(gn)
return non_overlapping_matches
def _match_literals(self, pn: Any, gn: Any, match: InternalMatch) -> bool:
assert not (isinstance(pn, Node) and isinstance(gn, Node)), "pn and gn cannot both be Node"
if isinstance(pn, Node) and not isinstance(gn, Node):
if pn.op == "placeholder":
# Check if we've already matched these nodes in the current
# traversal
if pn in match.nodes_map:
return match.nodes_map[pn] == gn
match.nodes_map[pn] = gn
return True
else:
return False
elif not isinstance(pn, Node) and isinstance(gn, Node):
return False
else:
return type(gn) == type(pn) and gn == pn
def _match_nodes(self, pn: Node, gn: Node, match: InternalMatch) -> bool:
logger.info(" matching %s to %s", pn, gn)
assert isinstance(pn, Node) and isinstance(gn, Node), str(f"pn and gn must be Node, pn: {pn}, gn: {gn}")
# Check if we've already matched these nodes in the current
# traversal
if pn in match.nodes_map:
return match.nodes_map[pn] == gn
# TODO: use a more efficient way to check if gn is matched before: two-way dict
if gn in match.nodes_map.values():
return False
if not self._nodes_are_equal(pn, gn):
return False
# Optimistically mark `pn` as a match for `gn`, and save a local copy of match
saved_match = copy.copy(match)
match.nodes_map[pn] = gn
# Placeholder is a wildcard and can be matched with any python object
# (including list/tuple)
if pn.op == "placeholder":
return True
# Recursively traverse upwards to check if `pn` is a true
# match for `gn`
match_found = True
def _match_args(args1: Union[List, Tuple], args2: Union[List, Tuple]) -> bool:
if len(args1) != len(args2):
return False
for a1, a2 in zip(args1, args2):
if isinstance(a1, Node) and isinstance(a2, Node):
matched = self._match_nodes(a1, a2, match)
elif isinstance(a1, (list, tuple)) and isinstance(a2, (list, tuple)):
matched = _match_args(a1, a2)
else:
matched = self._match_literals(a1, a2, match) or self.ignore_literals
if not matched:
return False
return True
# Flatten all args/kwargs into 1 list of args
pn_args, gn_args = None, None
if (
(len(pn.args) != len(gn.args) or list(pn.kwargs.keys()) != list(gn.kwargs.keys())) and
pn.op == "call_function" and
isinstance(pn.target, torch._ops.OpOverload)
):
args_schema = pn.target._schema.arguments
def get_all_arguments(orig_args, orig_kwargs):
all_args = []
for i, schema in enumerate(args_schema):
if schema.name in orig_kwargs:
all_args.append(orig_kwargs[schema.name])
elif not schema.kwarg_only and i < len(orig_args):
all_args.append(orig_args[i])
else:
all_args.append(schema.default_value)
return all_args
pn_args = get_all_arguments(pn.args, pn.kwargs)
gn_args = get_all_arguments(gn.args, gn.kwargs)
elif len(pn.args) == len(gn.args) and list(pn.kwargs.keys()) == list(gn.kwargs.keys()):
pn_args = list(pn.args)
gn_args = list(gn.args)
pn_args.extend(list(pn.kwargs.values()))
gn_args.extend(list(gn.kwargs.values()))
else:
match_found = False
match_found = (
match_found and
pn_args is not None and
gn_args is not None and
_match_args(pn_args, gn_args)
)
if not match_found:
# revert to saved_match before matching with current node
match = copy.copy(saved_match)
return False
return True
def match(self, graph: Graph) -> List[InternalMatch]:
"""
Returns:
The matched subgraphs.
Thre returned subgraph would be fully self-contained, meaning the nodes (except placeholder
and nodes returned by output) can only be consumed by nodes within the matched subgraph.
Subgraph pattern matcher is implemented with the backtracking style in the following steps:
1. We first identify all the anchor nodes in the pattern graph. The anchor nodes
are the "sinks" (nodes with no user other than the output node) of the pattern graph.
One pattern graph could have multiple anchors if it has multiple return values.
2. In the target graph, we identify the potential candidate nodes that can be matched
with each anchor. These anchor-candidate pairs are the starting points for
pairwise per-node matching.
3. For each anchor-candidate pair, we simultaneously traverse backwards (DFS) in both
pattern and target graphs. For every pattern nodes along traversal path, we compare it
against the target nodes. In case any comparison failed, the match for this anchor-candidate
pair fails. A match is found when DFS completes traversing the graph. See `self._match_nodes`
for more details.
4. In the case of multiple anchors, every anchor will need to find a match using step 3.
In addition, the matches found between anchors need to have a common intersection node
in order for the match to be valid. This is implemented with backtracking. See `backtracking`
for more details.
Notice: graph traversal must be done in the reverser order because a tensor can have multiple
consumers, but can only have a single producer. Only with reverser order, we can we jointly
traverse the pattern and target graph in a deterministic path.
Warning: In theory, this backtracking algorithm have an **exponential** time complexity. However,
in practice, it's unlikely to blow up.
"""
from torch.fx.passes.utils.fuser_utils import validate_partition
# find candidate nodes to match with pattern anchors
match_candidates: Dict[Node, List[Node]] = defaultdict(list)
for pattern_anchor in self.pattern_anchors:
for node in graph.nodes:
if self._nodes_are_equal(pattern_anchor, node):
match_candidates[pattern_anchor].append(node)
match_candidates_list = list(match_candidates.items())
logger.info("Initial match_candidates_list: %s\n", match_candidates_list)
matches: List[InternalMatch] = []
def backtracking(anchor_index, match):
if anchor_index == len(match_candidates_list):
match.placeholder_nodes = [match.nodes_map[pn] for pn in self.pattern_placeholder_nodes]
match.returning_nodes = [match.nodes_map[pn] for pn in self.pattern_returning_nodes]
matches.append(match)
logger.info("Found a match: %s\n", match)
return
pattern_anchor, candidate_nodes = match_candidates_list[anchor_index]
saved_match = copy.copy(match)
for node in candidate_nodes:
logger.info("Trying to match anchor %s to %s", pattern_anchor, node)
match_found = self._match_nodes(pattern_anchor, node, match)
if match_found:
# match next anchor
backtracking(anchor_index + 1, match)
else:
logger.info("Failed to match anchor %s to %s\n", pattern_anchor, node)
# revert to saved_match before matching with current anchor
match = copy.copy(saved_match)
match = InternalMatch(anchors=self.pattern_anchors)
if match_candidates_list:
backtracking(0, match)
# filter out the matches where the subgraph is not fully_contained
before = len(matches)
matches = [match for match in matches if self._is_contained(match.nodes_map)]
after = len(matches)
if before != after:
logger.info("Filtered out %s matches because they are not fully contained", before - after)
# filter out the matches that form a cycle if the subgraph is fused
valid_matches = []
for match in matches:
matched_compute_nodes = \
[gn for pn, gn in match.nodes_map.items() if pn.op not in {"placeholder", "output"}]
if validate_partition(matched_compute_nodes):
valid_matches.append(match)
if len(valid_matches) != len(matches):
logger.info("Filtered out %s matches because \
matched subgraph would form a cycle if fused", len(matches) - len(valid_matches))
if self.remove_overlapping_matches:
before = len(valid_matches)
matches = self._remove_overlapping_matches(valid_matches)
after = len(matches)
if before != after:
logger.info("Filtered out %s matches because matched subgraphs are overlapping", before - after)
logger.info("Matches returned: %s", matches)
return matches

View File

@ -0,0 +1,114 @@
from typing import Dict, List, Tuple
from torch.fx import Graph, GraphModule, Node
from torch.fx._compatibility import compatibility
from .matcher_utils import InternalMatch, SubgraphMatcher
__all__ = ["SubgraphMatcherWithNameNodeMap"]
def _split_to_graph_and_name_node_map(
gm: GraphModule,
) -> Tuple[GraphModule, Dict[str, Node]]:
from torch.fx.graph import _PyTreeInfo
from torch.utils._pytree import tree_flatten, tree_unflatten
name_node_map = {}
for n in gm.graph.nodes:
if n.op == "output":
assert gm._out_spec is not None
output = tree_unflatten(n.args[0], gm._out_spec)
assert isinstance(
output, tuple
), "Expecting the pattern graph to return a tuple"
assert (
len(output) >= 2
), "Expecting the pattern graph to have at least two outputs"
*out, name_node_map = output
flattened, out_spec = tree_flatten(out)
assert isinstance(
name_node_map, Dict
), "Expecting the input graph to have a dict output as the last element"
n.args = (flattened,)
orig_pytree_info = gm._graph._codegen.pytree_info # type: ignore[attr-defined]
gm._graph._codegen.pytree_info = _PyTreeInfo( # type: ignore[attr-defined]
orig_pytree_info.orig_args, orig_pytree_info.in_spec, out_spec
)
gm.recompile()
return gm, name_node_map
@compatibility(is_backward_compatible=False)
class SubgraphMatcherWithNameNodeMap(SubgraphMatcher):
"""Extends SubgraphMatcher to support querying the matched subgraph nodes through node name,
this requires pattern to have specific format (returning and additional dictionary at the output,
that has node name as key, and the node in the pattern graph as value, see Example for more details)
Difference with SubgraphMatcher is that it takes a `pattern_gm` GraphModule as input during
initialization since we need to modify the graph (which requires `recompile` the GraphModule)
Example::
def pattern(x, weight):
conv = F.conv2d(x, weight)
relu = F.relu(conv)
return relu, {"conv": conv, "relu": relu}
def target_graph(x, weight):
conv = F.conv2d(x, weight)
relu = F.relu(conv)
relu *= 2
return relu
pattern_gm = capture_pre_autograd_graph(pattern, example_inputs)
target_gm = capture_pre_autograd_graph(target_graph, example_inputs)
matcher = SubgraphMatcherWithNameNodeMap(pattern_gm)
matches = matcher.match(target_gm)
for match in matches:
match.name_node_map["conv"].meta["annotation"] = ...
"""
def __init__(
self,
pattern_gm: GraphModule,
match_output: bool = False,
match_placeholder: bool = False,
remove_overlapping_matches: bool = True,
ignore_literals: bool = False,
) -> None:
pattern_gm, name_node_map = _split_to_graph_and_name_node_map(pattern_gm)
self.name_node_map = name_node_map
super().__init__(
pattern_gm.graph,
match_output,
match_placeholder,
remove_overlapping_matches,
ignore_literals,
)
def match(self, graph: Graph) -> List[InternalMatch]:
"""The returned InternalMatch will have name_node_map populated with a map
from node name (str) to the target node, e.g.
{"conv": target_conv_ndoe, "relu": target_relu_node}
this requires the pattern graph returns an additional
output of node name to node, e.g. instead of:
```
def pattern(...):
...
return relu
```
we should do:
```
def pattern(...):
...
return relu, {"conv": conv, "relu": relu}
``` instead
"""
internal_matches = super().match(graph)
for internal_match in internal_matches:
for k, n in self.name_node_map.items():
internal_match.name_node_map[k] = internal_match.nodes_map[n]
return internal_matches

View File

@ -0,0 +1,154 @@
from dataclasses import dataclass, field
from torch.fx.graph import Graph
from torch.fx.node import Node
from torch.fx._compatibility import compatibility
from typing import Dict, List, Any, Type, Optional, Callable
import logging
import os
__all__ = ['get_source_partitions', 'check_subgraphs_connected', 'SourcePartition']
# Set`PYTORCH_MATCHER_LOGLEVEL=INFO` to see debug logs
def _init_logger() -> logging.Logger:
logger = logging.getLogger(__name__)
level = os.environ.get('PYTORCH_MATCHER_LOGLEVEL', 'WARNING').upper()
logger.setLevel(level)
console = logging.StreamHandler()
formatter = logging.Formatter("%(filename)s > %(message)s")
console.setFormatter(formatter)
console.setLevel(level)
# add the handlers to the logger
logger.addHandler(console)
logger.propagate = False
return logger
logger = _init_logger()
@compatibility(is_backward_compatible=False)
@dataclass
class SourcePartition:
# Nodes in a particular partition
nodes: List[Node]
# The source these nodes decomposed from
source: Any
# Nodes in the graph that are needed as inputs to the partition
input_nodes: List[Node] = field(default_factory=list)
# Nodes in the partition that are being used by nodes outside of the
# partition
output_nodes: List[Node] = field(default_factory=list)
# Parameters that are being used
params: List[Node] = field(default_factory=list)
@compatibility(is_backward_compatible=False) # type: ignore[misc]
def get_source_partitions(
graph: Graph,
wanted_sources: List[Any],
filter_fn: Optional[Callable[[Node], bool]] = None,
) -> Dict[Any, List[SourcePartition]]:
"""
Args:
graph: The graph we want to partition
wanted_sources: List of sources of nodes that were decomposed from this
source. This can be a function (ex. torch.nn.functional.linear) or a
leaf module type (ex. torch.nn.Linear).
Returns:
Dictionary mapping sources that were given to a list of SourcePartitions
that correspond to the list of nodes that were decomposed from the given
source.
"""
modules: Dict[Type, Dict[str, List[Node]]] = {}
for node in graph.nodes:
# The metadata source_fn should contain a tuple of a unique name for the
# source, and the source function if the node is decomposed from a
# function, or the type of module if the node is decomposed from a leaf
# module
# TODO: Bypass "torch_fn" when "source_fn_stack" because now "torch_fn" can
# be different from "source_fn_stack", for example for the add_ node
# decomposed from batch norm. We should remove the check on "source_fn_stack"
# after we fix "torch_fn". T199561090
if ((source_fn_st := node.meta.get("source_fn_stack", None)) is None and
(torch_fn := node.meta.get("torch_fn", None)) is not None):
node_fqn, source_fn = torch_fn
source_fn_name = source_fn.split(".")[1]
if source_fn_name in wanted_sources:
diff_modules = modules.setdefault(source_fn_name, {})
partition = diff_modules.setdefault(node_fqn, [])
partition.append(node)
if (source_fn_st := node.meta.get("source_fn_stack", None)) is not None:
source_fn = source_fn_st[-1]
if source_fn[1] in wanted_sources:
diff_modules = modules.setdefault(source_fn[1], {})
partition = diff_modules.setdefault(source_fn[0], [])
partition.append(node)
def make_partition(nodes: List[Node], module_type: Type) -> SourcePartition:
input_nodes = set()
output_nodes = set()
params = set()
for node in nodes:
for arg in node.args:
if isinstance(arg, Node) and arg not in nodes:
input_nodes.add(arg)
if node.op == "get_attr":
params.add(node)
for user in node.users.keys():
if user not in nodes:
output_nodes.add(node)
return SourcePartition(
nodes,
module_type,
list(input_nodes),
list(output_nodes),
list(params), # type: ignore[arg-type]
)
ret: Dict[Type[Any], List[SourcePartition]] = {}
if filter_fn:
# for each partition, we apply filter_fn to filter out all partitions that doesn't satisfy the
# filter condition
filtered_modules = {}
for tp, name_to_partition in modules.items():
filtered_name_to_partition = {
name: partition
for name, partition in name_to_partition.items()
if all(map(filter_fn, partition))
}
filtered_modules[tp] = filtered_name_to_partition
modules = filtered_modules
for k, v in modules.items():
ret[k] = [make_partition(partition, k) for partition in v.values()]
return ret
@compatibility(is_backward_compatible=False) # type: ignore[misc]
def check_subgraphs_connected(subgraph1: SourcePartition, subgraph2: SourcePartition) -> bool:
"""
Given two subgraphs A and B (in the form of a list of nodes), checks if
A has nodes connecting to at least one node in B -- aka there exists a node
in B that uses a node in A (not the other way around).
"""
for node in reversed(subgraph1.nodes):
for user in node.users.keys():
if user in subgraph2.nodes:
return True
return False