I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,236 @@
# mypy: allow-untyped-defs
import math
from typing import Optional, Union
import torch
import torch._prims as prims
import torch._prims_common as utils
import torch._refs as refs
from torch import Tensor
from torch._decomp import register_decomposition
from torch._prims_common import (
ELEMENTWISE_TYPE_PROMOTION_KIND,
Number,
NumberType,
TensorLike,
TensorLikeType,
)
from torch._prims_common.wrappers import elementwise_type_promotion_wrapper, out_wrapper
from torch._refs import (
_make_alias,
_make_elementwise_binary_reference,
_make_elementwise_unary_reference,
)
__all__ = [
"bessel_j0",
"bessel_j1",
"entr",
"erfcx",
"expit",
"i0e",
"i1",
"i1e",
"log_ndtr",
"logit",
"log_softmax",
"multigammaln",
"ndtr",
"ndtri",
"softmax",
"spherical_bessel_j0",
"xlog1py",
"zeta",
]
aten = torch._ops.ops.aten
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def bessel_j0(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_j0(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def bessel_j1(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_j1(a)
@register_decomposition(aten.special_entr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def entr(a: TensorLikeType) -> TensorLikeType:
return torch.where(
torch.isnan(a),
a,
torch.where(a > 0, -a * torch.log(a), torch.where(a == 0, 0, -torch.inf)),
)
@register_decomposition(aten.special_erfcx)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def erfcx(a: TensorLikeType) -> TensorLikeType:
return prims.erfcx(a)
# alias for sigmoid
expit = _make_alias(torch.sigmoid, "expit")
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i0e(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_i0e(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i1(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_i1(a)
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def i1e(a: TensorLikeType) -> TensorLikeType:
return prims.bessel_i1e(a)
@register_decomposition(aten.special_log_ndtr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def log_ndtr(a: TensorLikeType) -> TensorLikeType:
# Note: M_SQRT1_2 is the value of 1 / sqrt(2)
M_SQRT1_2 = 0.707106781186547524400844362104849039
t = a * M_SQRT1_2
return torch.where(
a < 1.0,
torch.log(torch.special.erfcx(-t) / 2) - t * t,
torch.log1p(-torch.erfc(t) / 2),
)
@register_decomposition(aten.logit)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("self",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def logit(self: TensorLikeType, eps: Optional[float] = None) -> TensorLikeType:
if eps is None:
eps = -1.0
lo = eps
hi = 1 - eps
self = torch.clamp(self, lo, hi)
return torch.log(torch.true_divide(self, torch.sub(1, self)))
@register_decomposition(aten.special_xlog1py)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a", "b"),
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def xlog1py(a: Union[TensorLikeType, NumberType], b: Union[TensorLikeType, NumberType]):
torch._check(
isinstance(a, TensorLike) or isinstance(b, TensorLike),
lambda: 'Expected either argument a or b to be a Tensor"',
)
# Operations like eq and log do not handle scalar values, so we convert them to scalar_tensors.
if isinstance(a, TensorLike) and isinstance(b, Number):
b = refs.scalar_tensor(b, dtype=a.dtype, device=a.device)
elif isinstance(b, TensorLike) and isinstance(a, Number):
a = refs.scalar_tensor(a, dtype=b.dtype, device=b.device)
# mypy: expected "Tensor"
assert isinstance(a, TensorLike)
assert isinstance(b, TensorLike)
rhs = torch.where(torch.eq(a, 0), 0, torch.mul(a, torch.log1p(b)))
return torch.where(torch.isnan(b), float("nan"), rhs)
@register_decomposition(aten.mvlgamma)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def multigammaln(a: TensorLikeType, p: int) -> TensorLikeType:
c = 0.25 * p * (p - 1) * math.log(math.pi)
b = 0.5 * torch.arange(start=(1 - p), end=1, step=1, dtype=a.dtype, device=a.device)
return torch.sum(torch.lgamma(a.unsqueeze(-1) + b), dim=-1) + c
@register_decomposition(aten.special_ndtr)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def ndtr(a: TensorLikeType) -> TensorLikeType:
# Note: M_SQRT1_2 is the value of 1 / sqrt(2)
M_SQRT1_2 = 0.707106781186547524400844362104849039
a_sqrt_2 = a * M_SQRT1_2
return (1 + torch.erf(a_sqrt_2)) * 0.5
@register_decomposition(aten.special_ndtri)
@out_wrapper()
@elementwise_type_promotion_wrapper(
type_promoting_args=("a",),
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def ndtri(a: TensorLikeType) -> TensorLikeType:
return prims.ndtri(a)
# Forwarding alias: the special variant doesn't support the out kwarg
# CompositeImplicitAutograd - don't register decomp
def log_softmax(
a: TensorLikeType,
dim: int,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
return torch.log_softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
# Forwarding alias: the special variant doesn't support the out kwarg
# CompositeImplicitAutograd - don't register decomp
def softmax(
a: TensorLikeType,
dim: int,
dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
return torch.softmax(a=a, dim=dim, dtype=dtype) # type: ignore[call-overload]
@_make_elementwise_unary_reference(
ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def spherical_bessel_j0(a: TensorLikeType) -> TensorLikeType:
return prims.spherical_bessel_j0(a)
# TODO: add docstring
@_make_elementwise_binary_reference(
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
def zeta(a: TensorLikeType, b: TensorLikeType) -> TensorLikeType:
return prims.zeta(a, b)