I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,17 @@
# Top level logging module for torch logging
# Design doc: https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#
# Simple setup for onboarding (see above doc for more detail):
# 1. register any top-level log qualified name for your module in torch._logging._registrations (see there for examples)
# 2. register any artifacts (<artifact_name> below) in torch._logging._registrations
# a. call getArtifactLogger(__name__, <artifact_name>) at your logging site instead of the standard logger to log your artifact
import torch._logging._registrations
from ._internal import (
_init_logs,
DEFAULT_LOGGING,
getArtifactLogger,
LazyString,
set_logs,
trace_structured,
warning_once,
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,192 @@
# flake8: noqa: B950
from ._internal import register_artifact, register_log
DYNAMIC = [
"torch.fx.experimental.symbolic_shapes",
"torch.fx.experimental.sym_node",
"torch.fx.experimental.recording",
]
DISTRIBUTED = [
"torch.distributed",
"torch._dynamo.backends.distributed",
"torch.nn.parallel.distributed",
]
register_log("dynamo", ["torch._dynamo", *DYNAMIC])
register_log("fake_tensor", ["torch._subclasses.fake_tensor"])
register_log("aot", ["torch._functorch.aot_autograd", "torch._functorch._aot_autograd"])
register_log("autograd", "torch.autograd")
register_log("inductor", ["torch._inductor", "torch._inductor.cudagraph_trees"])
register_artifact(
"cudagraphs",
"Logs information from wrapping inductor generated code with cudagraphs.",
)
register_log("dynamic", DYNAMIC)
register_log("torch", "torch")
register_log("distributed", DISTRIBUTED)
register_log(
"c10d", ["torch.distributed.distributed_c10d", "torch.distributed.rendezvous"]
)
register_log(
"ddp", ["torch.nn.parallel.distributed", "torch._dynamo.backends.distributed"]
)
register_log("pp", ["torch.distributed.pipelining"])
register_log("fsdp", ["torch.distributed.fsdp", "torch.distributed._composable.fsdp"])
register_log("dtensor", ["torch.distributed._tensor", "torch.distributed.tensor"])
register_log("onnx", "torch.onnx")
register_log(
"export",
[
"torch._dynamo",
"torch.export",
"torch.export.dynamic_shapes",
*DYNAMIC,
"torch._export.converter",
"torch._export.non_strict_utils",
],
)
register_artifact(
"guards",
"This prints the guards for every compiled Dynamo frame. It does not tell you where the guards come from.",
visible=True,
)
register_artifact("verbose_guards", "", off_by_default=True)
register_artifact(
"bytecode",
"Prints the original and modified bytecode from Dynamo. Mostly useful if you're debugging our bytecode generation in Dynamo.",
off_by_default=True,
)
register_artifact(
"graph",
"Prints the dynamo traced graph (prior to AOTDispatch) in a table. If you prefer python code use `graph_code` instead. ",
)
register_artifact("graph_code", "Like `graph`, but gives you the Python code instead.")
register_artifact(
"graph_sizes", "Prints the sizes of all FX nodes in the dynamo graph."
)
register_artifact(
"trace_source",
"As we execute bytecode, prints the file name / line number we are processing and the actual source code. Useful with `bytecode`",
)
register_artifact(
"trace_call",
"Like trace_source, but it will give you the per-expression blow-by-blow if your Python is recent enough.",
)
register_artifact(
"trace_bytecode",
"As we trace bytecode, prints the instruction and the current stack.",
)
register_artifact(
"aot_graphs",
"Prints the FX forward and backward graph generated by AOTDispatch, after partitioning. Useful to understand what's being given to Inductor",
visible=True,
)
register_artifact(
"aot_joint_graph",
"Print FX joint graph from AOTAutograd, prior to partitioning. Useful for debugging partitioning",
)
register_artifact(
"aot_graphs_effects",
"Prints the FX forward and backward graph generated by AOTDispatch, useful for debugging effects processing.",
visible=True,
)
register_artifact(
"post_grad_graphs",
"Prints the FX graph generated by post grad passes. Useful to understand what's being given to Inductor after post grad passes",
)
register_artifact(
"compiled_autograd",
"Prints various logs in compiled_autograd, including but not limited to the graphs. Useful for debugging compiled_autograd.",
visible=True,
)
register_artifact(
"compiled_autograd_verbose",
"Will affect performance. Prints compiled_autograd logs with C++ info e.g. autograd node -> fx node mapping",
off_by_default=True,
)
register_artifact(
"ddp_graphs",
"Only relevant for compiling DDP. DDP splits into multiple graphs to trigger comms early. This will print each individual graph here.",
)
register_artifact(
"recompiles",
"Prints the reason why we recompiled a graph. Very, very useful.",
visible=True,
)
register_artifact(
"recompiles_verbose",
"Prints all guard checks that fail during a recompilation. "
"At runtime, Dynamo will stop at the first failed check for each failing guard. "
"So not all logged failing checks are actually ran by Dynamo.",
visible=True,
off_by_default=True,
)
register_artifact(
"graph_breaks",
"Prints whenever Dynamo decides that it needs to graph break (i.e. create a new graph). Useful for debugging why torch.compile has poor performance",
visible=True,
)
register_artifact(
"not_implemented",
"Prints log messages whenever we return NotImplemented in a multi-dispatch, letting you trace through each object we attempted to dispatch to",
)
register_artifact(
"output_code",
"Prints the code that Inductor generates (either Triton or C++)",
off_by_default=True,
visible=True,
)
register_artifact(
"kernel_code",
"Prints the code that Inductor generates (on a per-kernel basis)",
off_by_default=True,
visible=True,
)
register_artifact(
"schedule",
"Inductor scheduler information. Useful if working on Inductor fusion algo",
off_by_default=True,
)
register_artifact("perf_hints", "", off_by_default=True)
register_artifact("onnx_diagnostics", "", off_by_default=True)
register_artifact(
"fusion",
"Detailed Inductor fusion decisions. More detailed than 'schedule'",
off_by_default=True,
)
register_artifact(
"loop_ordering",
"Logs related to loop ordering",
off_by_default=True,
)
register_artifact(
"overlap",
"Detailed Inductor compute/comm overlap decisions",
off_by_default=True,
)
register_artifact(
"sym_node",
"Logs extra info for various SymNode operations",
off_by_default=True,
)
register_artifact(
"trace_shape_events",
"Logs traces for every ShapeEnv operation that we record for replay",
off_by_default=True,
)
register_artifact(
"cudagraph_static_inputs",
"Logs static inputs handling in dynamo, AOT, and cudagraphs",
off_by_default=True,
)
register_artifact(
"benchmarking",
"Detailed Inductor benchmarking information.",
off_by_default=True,
)
register_artifact("custom_format_test_artifact", "Testing only", log_format="")

View File

@ -0,0 +1,61 @@
from typing import Callable, List, Union
from typing_extensions import TypeAlias
try:
from fbscribelogger import make_scribe_logger # type: ignore[import-untyped]
except ImportError:
TAtom: TypeAlias = Union[int, float, bool, str]
TField: TypeAlias = Union[TAtom, List[TAtom]]
TLazyField: TypeAlias = Union[TField, Callable[[], TField]]
def make_scribe_logger(name: str, thrift_src: str) -> Callable[..., None]:
def inner(**kwargs: TLazyField) -> None:
pass
return inner
open_source_signpost = make_scribe_logger(
"TorchOpenSourceSignpost",
"""
struct TorchOpenSourceSignpostLogEntry {
# The commit SHA that triggered the workflow, e.g., 02a6b1d30f338206a71d0b75bfa09d85fac0028a. Derived from GITHUB_SHA.
4: optional string commit_sha;
# Commit date (not author date) of the commit in commit_sha as timestamp, e.g., 1724208105. Increasing if merge bot is used, though not monotonic; duplicates occur when stack is landed.
5: optional i64 commit_date;
# The fully-formed ref of the branch or tag that triggered the workflow run, e.g., refs/pull/133891/merge or refs/heads/main. Derived from GITHUB_REF.
6: optional string github_ref;
# Indicates if branch protections or rulesets are configured for the ref that triggered the workflow run. Derived from GITHUB_REF_PROTECTED.
7: optional bool github_ref_protected;
# A unique number for each attempt of a particular workflow run in a repository, e.g., 1. Derived from GITHUB_RUN_ATTEMPT.
8: optional string github_run_attempt;
# A unique number for each workflow run within a repository, e.g., 19471190684. Derived from GITHUB_RUN_ID.
9: optional string github_run_id;
# A unique number for each run of a particular workflow in a repository, e.g., 238742. Derived from GITHUB_RUN_NUMBER.
10: optional string github_run_number_str;
# The name of the current job. Derived from JOB_NAME, e.g., linux-jammy-py3.8-gcc11 / test (default, 3, 4, amz2023.linux.2xlarge).
11: optional string job_name;
# The GitHub user who triggered the job. Derived from GITHUB_TRIGGERING_ACTOR.
12: optional string github_triggering_actor;
13: optional string name; # Event name
14: optional string parameters; # Parameters (JSON data)
16: optional string subsystem; # Subsystem the event is associated with
# The unit timestamp in second for the Scuba Time Column override
17: optional i64 time;
# The weight of the record according to current sampling rate
18: optional i64 weight;
}
""", # noqa: B950
)

View File

@ -0,0 +1,57 @@
"""
Utilities for converting data types into structured JSON for dumping.
"""
import traceback
from typing import Any, Dict, List, Sequence, Set
import torch._logging._internal
INTERN_TABLE: Dict[str, int] = {}
DUMPED_FILES: Set[str] = set()
def intern_string(s: str) -> int:
r = INTERN_TABLE.get(s, None)
if r is None:
r = len(INTERN_TABLE)
INTERN_TABLE[s] = r
torch._logging._internal.trace_structured(
"str", lambda: (s, r), suppress_context=True
)
return r
def dump_file(filename: str) -> None:
if "eval_with_key" not in filename:
return
if filename in DUMPED_FILES:
return
DUMPED_FILES.add(filename)
from torch.fx.graph_module import _loader
torch._logging._internal.trace_structured(
"dump_file",
metadata_fn=lambda: {
"name": filename,
},
payload_fn=lambda: _loader.get_source(filename),
)
def from_traceback(tb: Sequence[traceback.FrameSummary]) -> List[Dict[str, Any]]:
r = []
for frame in tb:
# dict naming convention here coincides with
# python/combined_traceback.cpp
r.append(
{
"line": frame.lineno,
"name": frame.name,
"filename": intern_string(frame.filename),
}
)
return r