I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,484 @@
# mypy: allow-untyped-defs
import inspect
from collections import defaultdict
from functools import wraps
from itertools import chain
from typing import Callable, Dict, List, Sequence, TypeVar, Union
from typing_extensions import ParamSpec
import torch
import torch.library
from torch._ops import HigherOrderOperator, OpOverload, OpOverloadPacket
from torch._prims_common import CustomOutParamAnnotation
from torch.utils import _pytree as pytree
__all__ = [
"decomposition_table",
"pre_autograd_decomposition_table",
"meta_table",
"register_decomposition",
"get_decompositions",
"core_aten_decompositions",
]
_T = TypeVar("_T")
_P = ParamSpec("_P")
# TODO: relax key type here; torch registrations should be possible to; but
# right now this type is accurate
global_decomposition_table: Dict[
str, Dict[torch._ops.OperatorBase, Callable]
] = defaultdict(dict)
decomposition_table = global_decomposition_table["post_autograd"]
pre_autograd_decomposition_table = global_decomposition_table["pre_autograd"]
meta_table = global_decomposition_table["meta"]
def _add_op_to_registry(registry, op, fn):
"""
This is an internal API for adding an op to the decomposition table.
If op is OpOverload, it will be added to the registry directly.
If op is OpOverloadPacket, all the valid op_overloads in the packet will be added to the registry.
"""
overloads: List[Union[torch._ops.OperatorBase]] = []
if isinstance(op, HigherOrderOperator):
# There's no concept of overloads for HigherOrderOperator
registry[op] = fn
return
elif isinstance(op, OpOverload):
overloads.append(op)
else:
assert isinstance(op, OpOverloadPacket)
for ol in op.overloads():
overloads.append(getattr(op, ol))
for op_overload in overloads:
if op_overload in registry:
raise RuntimeError(f"duplicate registrations for {op_overload}")
# TorchScript dumps a bunch of extra nonsense overloads
# which don't have corresponding dispatcher entries, we need
# to filter those out, e.g aten.add.float_int
if torch._C._dispatch_has_kernel(op_overload.name()):
registry[op_overload] = fn
def _convert_out_params(f):
out_annotation = f.__annotations__.get("out")
# If there are no out params, do not wrap the function.
if not out_annotation:
return f
# Hack to detect when out is a Tuple. There seems to be no pretty way of doing this
if getattr(out_annotation, "__origin__", None) is tuple:
sig = inspect.signature(f)
out_names = sig.return_annotation._fields
# If out is a tuple, we need to register a function that unpacks all the out
# elements as this is what native_functions.yaml expects
@wraps(f)
def _fn(*args, **kwargs):
out_kwargs = tuple(kwargs.pop(o, None) for o in out_names)
# Either all of the out kwargs are set or none of them
is_none = out_kwargs[0] is None
assert all((o is None) == is_none for o in out_kwargs)
return f(*args, **kwargs, out=None if is_none else out_kwargs)
out_params = [
inspect.Parameter(
o,
kind=inspect.Parameter.KEYWORD_ONLY,
default=None,
annotation=t,
)
for o, t in zip(out_names, out_annotation.__args__)
]
# Drop the out parameter and concatenate the new kwargs in the signature
params = chain((v for k, v in sig.parameters.items() if k != "out"), out_params)
_fn.__signature__ = inspect.Signature( # type: ignore[attr-defined]
parameters=params, return_annotation=sig.return_annotation # type: ignore[arg-type]
)
# Drop the out parameter and concatenate the new kwargs in the annotations
_fn.__annotations__ = {k: v for k, v in f.__annotations__.items() if k != "out"}
for o in out_params:
_fn.__annotations__[o.name] = o.annotation
# Propagate that this function is wrapped by `out_wrapper`
_fn._torch_decompositions_out_wrapper = f._torch_decompositions_out_wrapper # type: ignore[attr-defined]
return _fn
# Alternatively, there may be a single tensor out parameter with a name
# other than "out". This will need special treatment and is indicated by an
# annotation, which we will remove here so it is not exposed after wrapping.
custom_out_param_name = f.__annotations__.pop(CustomOutParamAnnotation, None)
if custom_out_param_name:
@wraps(f)
def _fn(*args, **kwargs):
out_kwarg = kwargs.pop(custom_out_param_name, None)
return f(*args, **kwargs, out=out_kwarg)
out_param = inspect.Parameter(
custom_out_param_name,
kind=inspect.Parameter.KEYWORD_ONLY,
default=None,
annotation=out_annotation,
)
# Drop the out parameter and concatenate the new kwarg in the signature
sig = inspect.signature(f)
params = chain(
(v for k, v in sig.parameters.items() if k != "out"), (out_param,)
)
_fn.__signature__ = inspect.Signature( # type: ignore[attr-defined]
parameters=params, return_annotation=sig.return_annotation # type: ignore[arg-type]
)
# Drop the out parameter and concatenate the new kwargs in the annotations
_fn.__annotations__ = {k: v for k, v in f.__annotations__.items() if k != "out"}
_fn.__annotations__[out_param.name] = out_param.annotation
return _fn
return f
def register_decomposition(
aten_op, registry=None, *, type="post_autograd", unsafe=False
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
"""
A decorator to register a function as a decomposition to the Python
decomposition table. Use it like this::
@register_decomposition(torch.ops.aten.clamp_min)
def clamp_min(x):
return torch.clamp(self, min=min)
If you are writing a new decomposition, consider contributing it
directly to PyTorch in torch._decomp.decompositions.
This API is experimental; we are almost certainly going to extend
the API when we make decompositions eligible for use in transforms (e.g.,
autograd) and not just backend tracing, where we then need to know if a
decomposition can be used to simulate a transform.
By default, we also will register it to the Meta key of dispatcher,
and replace the c++ Meta implementation if there is already one.
unsafe kwarg is for reuse of this function for registering non-function
things
"""
assert type in {"post_autograd", "pre_autograd", "meta"}
def decomposition_decorator(fn: Callable[_P, _T]) -> Callable[_P, _T]:
orig_fn = fn
if not unsafe:
fn = _convert_out_params(fn)
nonlocal registry
if registry is None:
registry = global_decomposition_table[type]
def register(op):
_add_op_to_registry(registry, op, fn)
# To handle allowing multiple aten_ops at once
pytree.tree_map_(register, aten_op)
return orig_fn
return decomposition_decorator
def get_decompositions(
aten_ops: Sequence[Union[torch._ops.OperatorBase, OpOverloadPacket]],
type: str = "post_autograd",
) -> Dict[torch._ops.OperatorBase, Callable]:
"""
Retrieve a dictionary of decompositions corresponding to the list of
operator overloads and overload packets passed as input. Overload
packets will include all decomposed overloads in the packet. If there is
no decomposition for a requested operator, it is silently ignored.
This API is experimental; we are almost certainly going to give an alternate,
more recommended formulation, where a user provides the set of operators
they know how to implement, and we provide decompositions for everything
not in this set.
"""
assert type in {"post_autograd", "pre_autograd", "meta"}
registry = global_decomposition_table[type]
packets_to_overloads = defaultdict(list)
for opo in registry:
if isinstance(opo, (OpOverload, OpOverloadPacket)):
packets_to_overloads[opo.overloadpacket].append(opo)
decompositions: Dict[torch._ops.OperatorBase, Callable] = {}
for op in aten_ops:
if isinstance(op, OpOverloadPacket) and op in packets_to_overloads:
for op_overload in packets_to_overloads[op]:
decompositions[op_overload] = registry[op_overload]
elif isinstance(op, (torch._ops.OperatorBase)) and op in registry:
decompositions[op] = registry[op]
return decompositions
def remove_decompositions(
decompositions: Dict[torch._ops.OperatorBase, Callable],
aten_ops: Sequence[Union[OpOverload, OpOverloadPacket]],
) -> None:
"""
Given a dictionary of decompositions obtained from get_decompositions(), removes
operators associated with a list of operator overloads and overload packets passed
as input. If the decomposition dictionary does not contain a decomposition that is
specified to be removed, it is silently ignored.
"""
for op in aten_ops:
if isinstance(op, OpOverloadPacket):
for overload_name in op.overloads():
opo = getattr(op, overload_name)
decompositions.pop(opo, None)
elif isinstance(op, OpOverload):
decompositions.pop(op, None)
# populate the table
import torch._decomp.decompositions
import torch._refs
# See NOTE [Core ATen Ops]
#
# list was copied from torch/_inductor/decomposition.py
# excluding decompositions that results in prim ops
# Resulting opset of decomposition is core aten ops
def core_aten_decompositions() -> Dict[torch._ops.OperatorBase, Callable]:
aten = torch.ops.aten
return get_decompositions(
[
aten.addcdiv,
aten.addcdiv_,
aten.addcmul,
aten.addcmul_,
aten.addr,
aten.affine_grid_generator,
aten.alias_copy,
aten.all,
aten.aminmax,
aten.arange.default,
aten.arange.start,
aten.avg_pool2d_backward,
aten.baddbmm,
aten.binary_cross_entropy,
aten.binary_cross_entropy_backward,
aten.binary_cross_entropy_with_logits,
aten.block_diag,
aten.celu,
aten.celu_,
aten.channel_shuffle,
aten.clamp_max,
aten.clamp_min,
aten.col2im,
aten.count_nonzero,
aten.linalg_cross,
aten.cudnn_batch_norm,
aten.cudnn_batch_norm_backward,
aten.miopen_batch_norm_backward,
aten.deg2rad,
aten.deg2rad_,
aten.detach,
aten.diag_embed,
aten.diagonal_backward,
aten.dot,
aten.vdot,
aten.elu,
aten.elu_,
aten.elu_backward,
aten._embedding_bag,
aten.embedding_dense_backward,
aten.empty_like,
aten._euclidean_dist.default,
aten.expand_as,
aten.expand_copy,
aten.eye,
aten.fill,
aten.fill_,
aten.floor_divide,
aten.frac,
aten.frac_,
aten._fused_moving_avg_obs_fq_helper,
aten.gelu_,
aten.gelu_backward,
aten.glu,
aten.glu_backward,
aten.hardshrink,
aten.hardsigmoid,
aten.hardsigmoid_,
aten.hardsigmoid_backward,
aten.hardswish,
aten.hardswish_,
aten.hardswish_backward,
aten.hardtanh_,
aten.hardtanh_backward,
aten.heaviside,
aten.heaviside_,
aten.huber_loss,
aten.huber_loss_backward,
aten.im2col,
aten.index_add,
aten.index_add_,
aten.index_copy,
aten.index_copy_,
aten.index_fill,
aten.index_fill_,
aten.isin,
aten.isneginf,
aten.isposinf,
aten.l1_loss,
aten._lazy_clone,
aten._test_parallel_materialize,
aten.leaky_relu_,
aten.leaky_relu_backward,
aten.lerp,
aten.lerp_,
aten.linspace,
aten.logaddexp,
aten.logaddexp2,
aten.logit,
aten.logit_,
aten.logit_backward,
aten.log_sigmoid_backward,
aten.log_sigmoid_forward,
aten._log_softmax_backward_data,
aten.logspace,
aten.logsumexp.default,
aten.masked_fill,
aten.masked_fill_,
aten.mish,
aten.mish_,
aten.mse_loss,
aten.mse_loss_backward,
aten.multi_margin_loss,
aten.multilabel_margin_loss_forward,
aten.mv,
aten.mvlgamma,
aten.mvlgamma_,
aten.nansum,
aten.nan_to_num,
aten.nan_to_num_,
aten.narrow,
aten.native_batch_norm_backward,
aten.native_dropout_backward,
aten.native_group_norm_backward,
aten.native_layer_norm_backward,
aten.new_empty,
aten.new_full,
aten.new_ones,
aten.new_zeros,
aten.nll_loss2d_forward,
aten.nll_loss2d_backward,
aten.nll_loss_backward,
aten.nll_loss_forward,
aten.norm,
aten.ones,
aten.ones_like,
aten.pixel_shuffle,
aten.pixel_unshuffle,
aten._prelu_kernel,
aten._prelu_kernel_backward,
aten._reshape_alias,
aten.rad2deg,
aten.rad2deg_,
aten.reflection_pad1d,
aten.reflection_pad1d_backward,
aten.reflection_pad2d,
aten.reflection_pad2d_backward,
aten.reflection_pad3d,
aten.reflection_pad3d_backward,
aten.replication_pad1d,
aten.replication_pad2d,
aten.replication_pad3d,
aten.renorm,
aten.renorm_,
aten.replication_pad2d,
aten.resize_as,
aten.roll,
aten.rot90,
aten.rrelu_with_noise,
aten.rrelu_with_noise_,
aten.rsub,
aten._safe_softmax,
aten._scaled_dot_product_flash_attention_for_cpu.default,
aten.select_backward,
aten.select_scatter,
aten.sgn,
aten.sgn_,
aten.sigmoid_backward,
aten.silu,
aten.silu_,
aten.silu_backward,
aten.sinc,
aten.sinc_,
aten.slice_backward,
aten.smooth_l1_loss,
aten.smooth_l1_loss_backward,
aten.soft_margin_loss,
aten.soft_margin_loss_backward,
aten._softmax_backward_data,
aten.softplus,
aten.softplus_backward,
aten.softshrink,
aten.special_entr,
aten.special_log_ndtr,
aten.special_xlog1py,
aten.split.Tensor,
aten.split_with_sizes_copy,
aten.squeeze.default,
aten.squeeze.dim,
aten.std,
aten.std_mean,
aten.stack,
aten.sum.default,
aten.sum.out,
aten.t,
aten.t_copy,
aten.take,
aten.tanh_backward,
aten.threshold,
aten.threshold_,
aten.threshold_backward,
aten.trace,
aten.transpose.int,
aten.tril,
aten.tril_,
aten.triu,
aten.triu_,
aten.unbind,
aten.unfold_backward,
aten.unfold_copy,
aten._unsafe_index,
aten._unsafe_index_put,
aten._unsafe_masked_index,
aten._unsafe_masked_index_put_accumulate,
aten.unsafe_split.Tensor,
aten.unsafe_split_with_sizes,
aten.unsqueeze_copy,
aten._unsafe_view,
aten.upsample_linear1d,
aten.upsample_bilinear2d,
aten.upsample_trilinear3d,
aten.upsample_nearest2d_backward,
aten.view_as_complex,
aten.xlogy,
aten.xlogy_,
aten.zero,
aten.zero_,
aten.zeros,
aten.zeros_like,
aten._chunk_cat,
aten._weight_norm_interface,
]
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,335 @@
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import inspect
from typing import Callable, Dict, List, Optional, Tuple
import torch
import torch._decomp
from torch import Tensor
from torch._prims_common.wrappers import _maybe_remove_out_wrapper
decomposition_table = torch._decomp.decomposition_table
decomposition_table_for_jvp: Dict[torch._ops.OperatorBase, Callable] = {}
register_decomposition = torch._decomp.register_decomposition
aten = torch.ops.aten
# NOTE: [forward-mode AD decompositions mechanism]
#
# The mechanism is in VariableType,
# IF any inputs have forward grad
# AND there is no forward AD formula implemented
# AND the functions is actually differentiable
# run the decomposition
# See run_jit_decomposition_with_args_for_jvp
# We currently use python decompositions that we torchscript.
#
# Note that we would be building the backward graph at the decomposed level
# too, but that is OK, because we would've errored out otherwise anyway.
#
# TODO: The mechanism we are using to register decompositions doesn't
# seem to be exclusively used for jvp. So open question here is whether
# torch/csrc/jit/runtime/decomposition_registry.cpp is being used for other things.
# If that is the case, we may go down the decomposition path unexpectedly
# (and possibly produce an unintelligible error) vs erroring out earlier and
# printing that the forward AD formula is not implemented.
#
# The solution to this may be to have a explicitly white list control when
# to enable the decomposition.
def maybe_register_decomposition(op):
def decorator(f):
try:
return register_decomposition(op)(f)
except Exception:
return f
return decorator
# Functions where we need a special decomposition for jvp but there's another version that
# should be used more generally (ex. for jvp we need to recompute the mean and variance for
# the backwards of a normalization function. Without jvp, it should use the saved value)
decomposition_table_for_jvp = {}
def register_decomposition_for_jvp(fn):
return register_decomposition(fn, registry=decomposition_table_for_jvp)
def _register_jit_decomposition_for_jvp(decomp, use_python=False):
if decomp in decomposition_table_for_jvp:
decomposition_table_used = decomposition_table_for_jvp
elif decomp in decomposition_table:
decomposition_table_used = decomposition_table
else:
raise RuntimeError(f"could not find decomposition for {decomp}")
decomp_fn = decomposition_table_used[decomp]
# `out_wrapper` extends a decompositions signature with
# an `out` parameter. However jit will use the unwrapped function's
# signature instead so we need to unwrap here to prevent an error
decomp_fn = _maybe_remove_out_wrapper(decomp_fn)
if use_python:
decomp_fn = torch.jit.ignore(decomp_fn)
sig = inspect.signature(decomp_fn)
# Create a string wrapping the function from the signature
# example output:
# def wrapped_decomp(x: torch.Tensor, y: int, z: int):
# return decomp_fn(x, y, z)
# Thanks copilot!
def get_function_def(sig):
param_def = [f"{param_str}" for param_str in sig.parameters.values()]
param_use = [f"{param_str}" for param_str in sig.parameters.keys()]
return f"def wrapped_decomp({', '.join(param_def)}):\n return decomp_fn({', '.join(param_use)})\n"
f_str = get_function_def(sig)
graph = torch.jit.CompilationUnit(f_str).wrapped_decomp.graph
else:
graph = torch.jit.script(decomp_fn).graph
torch.jit._register_decomposition(decomp, graph)
# The only decompositions here are temporary or hacks for the purposes of jvp
# TODO: do these also belong here?
@maybe_register_decomposition(aten.trace.default)
def trace(self: Tensor) -> Tensor:
return torch.sum(torch.diag(self))
@maybe_register_decomposition(aten.log_sigmoid_forward.default)
def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]:
min = torch.minimum(self.new_zeros(()), self)
z = torch.exp(-torch.abs(self))
if self.is_cuda:
buffer = self.new_zeros((0,))
else:
buffer = z
return min - torch.log1p(z), buffer
def recompute_mean_var(
input: Tensor, rstd: Tensor, inner_dim_indices: List[int], keepdim: bool
):
# for most norm decompositions, it will be the same as the core version except for here.
# We recompute the mean and variance so that they track gradients through input
mean = torch.mean(input, dim=inner_dim_indices, keepdim=keepdim)
var = torch.var(input, dim=inner_dim_indices, unbiased=False, keepdim=keepdim)
eps = torch.pow(1 / rstd, 2) - var # this makes me so sad inside
eps = eps.detach()
rstd = 1 / torch.sqrt(var + eps)
return mean, rstd
@register_decomposition_for_jvp(aten.native_layer_norm_backward)
def native_layer_norm_backward(
grad_out: Tensor,
input: Tensor,
normalized_shape: List[int],
mean: Tensor,
rstd: Tensor,
weight: Optional[Tensor],
bias: Optional[Tensor],
output_mask: List[bool],
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
input_shape = input.shape
input_ndim = input.dim()
axis = input_ndim - len(normalized_shape)
inner_dims = input_shape[axis:]
outer_dims = input_shape[:axis]
inner_dim_indices = list(range(axis, input_ndim))
outer_dim_indices = list(range(0, axis))
N = 1
for i in inner_dims:
N *= i
M = 1
for i in outer_dims:
M *= i
if M <= 0 or N <= 0:
return (
input.new_zeros(input_shape),
input.new_zeros(input_shape[axis:]),
input.new_zeros(input_shape[axis:]),
)
mean_, rstd_ = recompute_mean_var(input, rstd, inner_dim_indices, keepdim=True)
x_hat = (input - mean_) * rstd_
if weight is not None:
grad_x_hat = grad_out * weight
else:
grad_x_hat = grad_out
a = grad_x_hat * N
b = torch.sum(grad_x_hat, inner_dim_indices, True)
c1 = torch.mul(grad_x_hat, x_hat)
c2 = torch.sum(c1, inner_dim_indices, True)
c3 = torch.mul(x_hat, c2)
inner = a - b - c3
if output_mask[0]:
d_input: Optional[Tensor] = (rstd_ / N) * inner
else:
d_input = torch.zeros_like(input) # should be None but doesn't work with vjp
if output_mask[1] and weight is not None:
if len(outer_dim_indices) > 0:
d_weight: Optional[Tensor] = torch.sum(
grad_out * x_hat, outer_dim_indices, False
)
else:
d_weight = grad_out * x_hat
elif weight is not None:
d_weight = torch.zeros_like(weight) # should be None but doesn't work with vjp
else:
d_weight = torch.zeros(()) # should be None but doesn't work with vjp
if output_mask[2] and bias is not None:
if len(outer_dim_indices) > 0:
d_bias: Optional[Tensor] = torch.sum(grad_out, outer_dim_indices, False)
else:
d_bias = grad_out.clone()
elif bias is not None:
d_bias = torch.zeros_like(bias) # should be None but doesn't work with vjp
else:
d_bias = torch.zeros(()) # should be None but doesn't work with vjp
return (d_input, d_weight, d_bias)
def prod(x: List[int]):
r = 1
for i in x:
r *= i
return r
@register_decomposition_for_jvp(aten.native_batch_norm_backward)
def native_batch_norm_backward(
grad_out: Tensor,
input: Tensor,
weight: Optional[Tensor],
running_mean: Optional[Tensor],
running_var: Optional[Tensor],
save_mean: Optional[Tensor],
save_invstd: Optional[Tensor],
train: bool,
eps: float,
output_mask: List[bool],
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
input_shape = input.shape
input_rank = input.dim()
assert input_rank >= 2, "rank of the input must be at least 2"
axis = 1
num_features = prod(input_shape) / input_shape[axis] # type: ignore[arg-type]
mean = save_mean
invstd = save_invstd
if train:
assert (
save_mean is not None and save_invstd is not None
), "when train=True, save_mean and save_invstd are required"
reduciton_dims = [0] + list(range(2, input.dim()))
assert invstd is not None # for typing
mean, invstd = recompute_mean_var(input, invstd, reduciton_dims, keepdim=False)
else:
assert running_mean is not None and running_var is not None
mean = running_mean
invstd = torch.rsqrt(running_var + eps)
assert invstd is not None and mean is not None
broadcast_mask = [1] * input_rank
broadcast_mask[axis] = input_shape[axis]
reduction_axes: List[int] = []
for i in range(input_rank):
if i != axis:
reduction_axes.append(i)
mean = torch.reshape(mean, broadcast_mask)
norm = 1.0 / num_features
grad_output_sum = torch.sum(grad_out, reduction_axes)
dot_p = torch.sum(grad_out * (input - mean), reduction_axes)
grad_mean = torch.reshape(grad_output_sum * norm, broadcast_mask)
proj_scale = torch.reshape(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask)
if weight is None:
grad_scale = torch.reshape(invstd, broadcast_mask) * 1.0
else:
grad_scale = torch.reshape(invstd * weight, broadcast_mask)
if train:
proj = (input - mean) * proj_scale
grad_input = ((grad_out - proj) - grad_mean) * grad_scale
else:
grad_input = grad_out * grad_scale
if output_mask[1]:
grad_weight = dot_p * invstd
elif weight is not None:
grad_weight = torch.zeros_like(
weight
) # should be None but doesn't work with vjp
else:
grad_weight = torch.zeros(()) # should be None but doesn't work with vjp
if output_mask[2]:
grad_bias = grad_output_sum
else:
grad_bias = torch.zeros_like(
grad_output_sum
) # should be None but doesn't work with vjp
return (grad_input, grad_weight, grad_bias)
@register_decomposition_for_jvp(aten.batch_norm_backward)
def batch_norm_backward(
grad_out: Tensor,
input: Tensor,
weight: Tensor,
running_mean: Optional[Tensor],
running_var: Optional[Tensor],
save_mean: Optional[Tensor],
save_var: Optional[Tensor],
update: bool,
eps: float,
output_mask: List[bool],
reserve: Tensor,
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
return native_batch_norm_backward(
grad_out,
input,
weight,
running_mean,
running_var,
save_mean,
save_var,
update,
eps,
output_mask,
)
_register_jit_decomposition_for_jvp(torch.ops.aten.trace.default, use_python=True)
_register_jit_decomposition_for_jvp(torch.ops.aten.nll_loss_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.nll_loss2d_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten._log_softmax_backward_data.default)
_register_jit_decomposition_for_jvp(torch.ops.aten._softmax_backward_data.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.log_sigmoid_forward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.native_layer_norm_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.native_batch_norm_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.cudnn_batch_norm_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.batch_norm_backward.default)
_register_jit_decomposition_for_jvp(torch.ops.aten.miopen_batch_norm_backward.default)

View File

@ -0,0 +1,266 @@
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
from collections import defaultdict
from typing import Callable, Dict
import torch
import torch._decomp as decomp
from torch._decomp import get_decompositions
from torch._ops import OpOverload
aten = torch.ops.aten
rng_decompositions: Dict[str, Dict[OpOverload, Callable]] = defaultdict(dict)
def register_rng_decomposition(aten_op):
return decomp.register_decomposition(aten_op, rng_decompositions)
def throw_on_non_cuda(device):
raise RuntimeError(
f"You are trying to functionalize a {device.type} RNG operator but {device.type} does not "
f"use Philox/counter-based RNG. Therefore, functionalizing a {device.type} RNG operator is "
"not supported. We are discussing the possibility of a Philox-based RNG implementation for CPU."
)
# TODO - We have to register many more distributions here, and also higher level
# ops like dropout which have fused implementation and can hide the rand inside.
@register_rng_decomposition(aten.rand)
def rand(shape, dtype=None, layout=torch.strided, device=None, pin_memory=False):
if device and device.type != "cuda":
throw_on_non_cuda(device)
seed, offset = PhiloxStateTracker.get_state_as_tuple()
dtype = dtype or torch.float32
out, offset_jump = torch.ops.rngprims.philox_rand(
shape, seed, offset, None, device, dtype
)
PhiloxStateTracker.advance_offset(offset_jump)
return out
@register_rng_decomposition(aten.rand_like)
def rand_like(
x: torch.Tensor,
dtype=None,
layout=None,
device=None,
pin_memory=False,
memory_format=torch.preserve_format,
):
device = device or x.device
if device.type != "cuda":
throw_on_non_cuda(device)
dtype = dtype or x.dtype
seed, offset = PhiloxStateTracker.get_state_as_tuple()
out, offset_jump = torch.ops.rngprims.philox_rand(
x.shape, seed, offset, None, device, dtype
)
PhiloxStateTracker.advance_offset(offset_jump)
return out
class PhiloxState:
"""
Represents a PhiloxRngState - (seed, offset) where offset = base_offset +
relative_offset. seed and base_offset basically point to the rng state just
before tracing starts. relative offset tracks the totally consumed offset at
trace time.
"""
def __init__(self) -> None:
self.reset()
def reset(self):
self.seed = torch.tensor(())
self.base_offset = torch.tensor(())
self.relative_offset = 0
self.offset_advanced_alteast_once = False
def validate_state(self):
assert self.seed.numel() != 0 and self.base_offset.numel() != 0
def advance_offset(self, consumed_offset):
self.offset_advanced_alteast_once = True
self.relative_offset = self.relative_offset + consumed_offset
def set_state(self, seed, base_offset, relative_offset=0):
self.seed = seed
self.base_offset = base_offset
self.relative_offset = relative_offset
def get_state_as_tuple(self):
self.validate_state()
return (self.seed, self.base_offset + self.relative_offset)
def get_state_as_tensor(self):
# Only needed because we override get_rng_state.
self.validate_state()
return torch.stack([self.seed, self.base_offset + self.relative_offset])
def set_state_from_tensor(self, state):
# Only needed because we override set_rng_state.
self.seed, self.base_offset = torch.unbind(state)
self.relative_offset = 0
class PhiloxStateTracker:
"""
Singleton class to track the philox rng state during AOT Autograd tracing.
For each aot tracing instance, AOT Autograd resets this tracker and keeps
track of both forward and backward offsets. At runtime, we only care about
the total consumed forward and backward offsets. For dynamic shapes, these
offsets are a function of input shapes. Therefore, the AOT generated graphs
have additional outputs that compute total consumed forward and backward
offsets.
"""
running_state: PhiloxState
fwd_state: PhiloxState
bwd_state: PhiloxState
def __enter__(self):
PhiloxStateTracker.reset()
return self
def __exit__(self, exc_type, exc_cal, exc_tb):
PhiloxStateTracker.reset()
@classmethod
def reset(cls):
cls.running_state = PhiloxState()
cls.fwd_state = PhiloxState()
cls.bwd_state = PhiloxState()
@classmethod
def mark_beginning_of_forward(cls):
# Tells the tracker to use fwd_state as the running state
cls.running_state = cls.fwd_state
@classmethod
def mark_beginning_of_backward(cls):
# Tells the tracker to use bwd_state as the running state
cls.running_state = cls.bwd_state
@classmethod
def record_state(cls, seed, offset, mode):
# Records the seed and offset tensors. These tensors are used to invoke
# the philox_rand functional primitives.
if mode == "forward":
cls.fwd_state.set_state(seed, offset)
cls.mark_beginning_of_forward()
else:
assert mode == "backward"
cls.bwd_state.set_state(seed, offset)
@classmethod
def get_state_as_tensor(cls):
# The only reason this exists is because we override get_rng_state and
# set_rng_state during tracing. get_rng_state expects a tensor output,
# so return (seed, offset) tuple upset other parts of the program like
# ctx.saved_tensors.
# A bad consequence is that if user saves and restores rng state, we
# have little bit of ugliness in the generated code, where we first
# concat the (seed, offset) to create a tensor for get_rng_state, and
# then split it back to get (seed, offset) tuple in set_rng_state.
# TODO: Investigate if there is be a better way to wrap the tuple in a
# false Tensor object, and then desugar it later on.
return cls.running_state.get_state_as_tensor()
@classmethod
def get_state_as_tuple(cls):
return cls.running_state.get_state_as_tuple()
@classmethod
def set_state_from_tensor(cls, x):
# This is only needed because we override set_rng_state. Look at the
# comment in get_state_from_tensor method.
cls.running_state.set_state_from_tensor(x)
@classmethod
def advance_offset(cls, consumed_offset):
cls.running_state.advance_offset(consumed_offset)
@classmethod
def get_current_relative_offset(cls):
return cls.running_state.relative_offset
@staticmethod
def multiple_of_4(offset):
# torch cuda rng state offset must be a multiple of 4. For inductor, as
# we sum up all the numel, the result might not be a multiple of 4. This
# method achieves that.
return (offset + 3) // 4 * 4
@classmethod
def get_updated_fwd_offset(cls):
# Short circuit if no rand ops were observed
if not cls.fwd_state.offset_advanced_alteast_once:
return cls.fwd_state.base_offset
return cls.multiple_of_4(
cls.fwd_state.base_offset + cls.fwd_state.relative_offset
)
@classmethod
def get_updated_bwd_offset(cls):
# Short circuit if no rand ops were observed
if not cls.bwd_state.offset_advanced_alteast_once:
return cls.bwd_state.base_offset
return cls.multiple_of_4(
cls.bwd_state.base_offset + cls.bwd_state.relative_offset
)
# Adding more decompositions which eventually use rand_like inside decomps.
# Adding these in rng_decompositions ensures the functionalization of rand_like
# ops used in these decomps. The list is copied from inductor codebase, which
# uses it for similar purpose.
#
# Caution - These decomps do not have same accuracy as that of eager. However,
# we can't just disable them with a config flag like fallback_random, because
# for functionalization of rng ops, we have to decompose these ops.
extra_random_decomps = get_decompositions(
[
aten.cauchy,
aten.cauchy_,
aten.exponential,
aten.exponential_,
aten.geometric,
aten.geometric_,
aten.native_dropout,
aten.normal,
aten.normal_,
aten.normal_functional,
aten.log_normal,
aten.log_normal_,
aten.rrelu_with_noise,
aten.rrelu_with_noise_,
aten.uniform_,
]
)
register_extra_random_decomp = functools.partial(
decomp.register_decomposition, registry=extra_random_decomps
)
@register_extra_random_decomp([aten.bernoulli_])
def bernoulli_(self, p=0.5):
if self.device == torch.device("cpu"):
return NotImplemented
return self.copy_(torch.rand_like(self, dtype=torch.float32) < p)
@register_extra_random_decomp([aten.bernoulli.p])
def bernoulli_p(self, p=0.5, *, generator=None):
if self.device == torch.device("cpu"):
return NotImplemented
assert generator is None
return torch.rand_like(self, dtype=torch.float32) < p
rng_decompositions.update(extra_random_decomps) # type: ignore[arg-type]