I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,12 @@
from .interval_arithmetic import interval
from .lib_interval import (Abs, exp, log, log10, sin, cos, tan, sqrt,
imin, imax, sinh, cosh, tanh, acosh, asinh, atanh,
asin, acos, atan, ceil, floor, And, Or)
__all__ = [
'interval',
'Abs', 'exp', 'log', 'log10', 'sin', 'cos', 'tan', 'sqrt', 'imin', 'imax',
'sinh', 'cosh', 'tanh', 'acosh', 'asinh', 'atanh', 'asin', 'acos', 'atan',
'ceil', 'floor', 'And', 'Or',
]

View File

@ -0,0 +1,413 @@
"""
Interval Arithmetic for plotting.
This module does not implement interval arithmetic accurately and
hence cannot be used for purposes other than plotting. If you want
to use interval arithmetic, use mpmath's interval arithmetic.
The module implements interval arithmetic using numpy and
python floating points. The rounding up and down is not handled
and hence this is not an accurate implementation of interval
arithmetic.
The module uses numpy for speed which cannot be achieved with mpmath.
"""
# Q: Why use numpy? Why not simply use mpmath's interval arithmetic?
# A: mpmath's interval arithmetic simulates a floating point unit
# and hence is slow, while numpy evaluations are orders of magnitude
# faster.
# Q: Why create a separate class for intervals? Why not use SymPy's
# Interval Sets?
# A: The functionalities that will be required for plotting is quite
# different from what Interval Sets implement.
# Q: Why is rounding up and down according to IEEE754 not handled?
# A: It is not possible to do it in both numpy and python. An external
# library has to used, which defeats the whole purpose i.e., speed. Also
# rounding is handled for very few functions in those libraries.
# Q Will my plots be affected?
# A It will not affect most of the plots. The interval arithmetic
# module based suffers the same problems as that of floating point
# arithmetic.
from sympy.core.numbers import int_valued
from sympy.core.logic import fuzzy_and
from sympy.simplify.simplify import nsimplify
from .interval_membership import intervalMembership
class interval:
""" Represents an interval containing floating points as start and
end of the interval
The is_valid variable tracks whether the interval obtained as the
result of the function is in the domain and is continuous.
- True: Represents the interval result of a function is continuous and
in the domain of the function.
- False: The interval argument of the function was not in the domain of
the function, hence the is_valid of the result interval is False
- None: The function was not continuous over the interval or
the function's argument interval is partly in the domain of the
function
A comparison between an interval and a real number, or a
comparison between two intervals may return ``intervalMembership``
of two 3-valued logic values.
"""
def __init__(self, *args, is_valid=True, **kwargs):
self.is_valid = is_valid
if len(args) == 1:
if isinstance(args[0], interval):
self.start, self.end = args[0].start, args[0].end
else:
self.start = float(args[0])
self.end = float(args[0])
elif len(args) == 2:
if args[0] < args[1]:
self.start = float(args[0])
self.end = float(args[1])
else:
self.start = float(args[1])
self.end = float(args[0])
else:
raise ValueError("interval takes a maximum of two float values "
"as arguments")
@property
def mid(self):
return (self.start + self.end) / 2.0
@property
def width(self):
return self.end - self.start
def __repr__(self):
return "interval(%f, %f)" % (self.start, self.end)
def __str__(self):
return "[%f, %f]" % (self.start, self.end)
def __lt__(self, other):
if isinstance(other, (int, float)):
if self.end < other:
return intervalMembership(True, self.is_valid)
elif self.start > other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
elif isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.end < other. start:
return intervalMembership(True, valid)
if self.start > other.end:
return intervalMembership(False, valid)
return intervalMembership(None, valid)
else:
return NotImplemented
def __gt__(self, other):
if isinstance(other, (int, float)):
if self.start > other:
return intervalMembership(True, self.is_valid)
elif self.end < other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
elif isinstance(other, interval):
return other.__lt__(self)
else:
return NotImplemented
def __eq__(self, other):
if isinstance(other, (int, float)):
if self.start == other and self.end == other:
return intervalMembership(True, self.is_valid)
if other in self:
return intervalMembership(None, self.is_valid)
else:
return intervalMembership(False, self.is_valid)
if isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.start == other.start and self.end == other.end:
return intervalMembership(True, valid)
elif self.__lt__(other)[0] is not None:
return intervalMembership(False, valid)
else:
return intervalMembership(None, valid)
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, (int, float)):
if self.start == other and self.end == other:
return intervalMembership(False, self.is_valid)
if other in self:
return intervalMembership(None, self.is_valid)
else:
return intervalMembership(True, self.is_valid)
if isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.start == other.start and self.end == other.end:
return intervalMembership(False, valid)
if not self.__lt__(other)[0] is None:
return intervalMembership(True, valid)
return intervalMembership(None, valid)
else:
return NotImplemented
def __le__(self, other):
if isinstance(other, (int, float)):
if self.end <= other:
return intervalMembership(True, self.is_valid)
if self.start > other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
if isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.end <= other.start:
return intervalMembership(True, valid)
if self.start > other.end:
return intervalMembership(False, valid)
return intervalMembership(None, valid)
else:
return NotImplemented
def __ge__(self, other):
if isinstance(other, (int, float)):
if self.start >= other:
return intervalMembership(True, self.is_valid)
elif self.end < other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
elif isinstance(other, interval):
return other.__le__(self)
def __add__(self, other):
if isinstance(other, (int, float)):
if self.is_valid:
return interval(self.start + other, self.end + other)
else:
start = self.start + other
end = self.end + other
return interval(start, end, is_valid=self.is_valid)
elif isinstance(other, interval):
start = self.start + other.start
end = self.end + other.end
valid = fuzzy_and([self.is_valid, other.is_valid])
return interval(start, end, is_valid=valid)
else:
return NotImplemented
__radd__ = __add__
def __sub__(self, other):
if isinstance(other, (int, float)):
start = self.start - other
end = self.end - other
return interval(start, end, is_valid=self.is_valid)
elif isinstance(other, interval):
start = self.start - other.end
end = self.end - other.start
valid = fuzzy_and([self.is_valid, other.is_valid])
return interval(start, end, is_valid=valid)
else:
return NotImplemented
def __rsub__(self, other):
if isinstance(other, (int, float)):
start = other - self.end
end = other - self.start
return interval(start, end, is_valid=self.is_valid)
elif isinstance(other, interval):
return other.__sub__(self)
else:
return NotImplemented
def __neg__(self):
if self.is_valid:
return interval(-self.end, -self.start)
else:
return interval(-self.end, -self.start, is_valid=self.is_valid)
def __mul__(self, other):
if isinstance(other, interval):
if self.is_valid is False or other.is_valid is False:
return interval(-float('inf'), float('inf'), is_valid=False)
elif self.is_valid is None or other.is_valid is None:
return interval(-float('inf'), float('inf'), is_valid=None)
else:
inters = []
inters.append(self.start * other.start)
inters.append(self.end * other.start)
inters.append(self.start * other.end)
inters.append(self.end * other.end)
start = min(inters)
end = max(inters)
return interval(start, end)
elif isinstance(other, (int, float)):
return interval(self.start*other, self.end*other, is_valid=self.is_valid)
else:
return NotImplemented
__rmul__ = __mul__
def __contains__(self, other):
if isinstance(other, (int, float)):
return self.start <= other and self.end >= other
else:
return self.start <= other.start and other.end <= self.end
def __rtruediv__(self, other):
if isinstance(other, (int, float)):
other = interval(other)
return other.__truediv__(self)
elif isinstance(other, interval):
return other.__truediv__(self)
else:
return NotImplemented
def __truediv__(self, other):
# Both None and False are handled
if not self.is_valid:
# Don't divide as the value is not valid
return interval(-float('inf'), float('inf'), is_valid=self.is_valid)
if isinstance(other, (int, float)):
if other == 0:
# Divide by zero encountered. valid nowhere
return interval(-float('inf'), float('inf'), is_valid=False)
else:
return interval(self.start / other, self.end / other)
elif isinstance(other, interval):
if other.is_valid is False or self.is_valid is False:
return interval(-float('inf'), float('inf'), is_valid=False)
elif other.is_valid is None or self.is_valid is None:
return interval(-float('inf'), float('inf'), is_valid=None)
else:
# denominator contains both signs, i.e. being divided by zero
# return the whole real line with is_valid = None
if 0 in other:
return interval(-float('inf'), float('inf'), is_valid=None)
# denominator negative
this = self
if other.end < 0:
this = -this
other = -other
# denominator positive
inters = []
inters.append(this.start / other.start)
inters.append(this.end / other.start)
inters.append(this.start / other.end)
inters.append(this.end / other.end)
start = max(inters)
end = min(inters)
return interval(start, end)
else:
return NotImplemented
def __pow__(self, other):
# Implements only power to an integer.
from .lib_interval import exp, log
if not self.is_valid:
return self
if isinstance(other, interval):
return exp(other * log(self))
elif isinstance(other, (float, int)):
if other < 0:
return 1 / self.__pow__(abs(other))
else:
if int_valued(other):
return _pow_int(self, other)
else:
return _pow_float(self, other)
else:
return NotImplemented
def __rpow__(self, other):
if isinstance(other, (float, int)):
if not self.is_valid:
#Don't do anything
return self
elif other < 0:
if self.width > 0:
return interval(-float('inf'), float('inf'), is_valid=False)
else:
power_rational = nsimplify(self.start)
num, denom = power_rational.as_numer_denom()
if denom % 2 == 0:
return interval(-float('inf'), float('inf'),
is_valid=False)
else:
start = -abs(other)**self.start
end = start
return interval(start, end)
else:
return interval(other**self.start, other**self.end)
elif isinstance(other, interval):
return other.__pow__(self)
else:
return NotImplemented
def __hash__(self):
return hash((self.is_valid, self.start, self.end))
def _pow_float(inter, power):
"""Evaluates an interval raised to a floating point."""
power_rational = nsimplify(power)
num, denom = power_rational.as_numer_denom()
if num % 2 == 0:
start = abs(inter.start)**power
end = abs(inter.end)**power
if start < 0:
ret = interval(0, max(start, end))
else:
ret = interval(start, end)
return ret
elif denom % 2 == 0:
if inter.end < 0:
return interval(-float('inf'), float('inf'), is_valid=False)
elif inter.start < 0:
return interval(0, inter.end**power, is_valid=None)
else:
return interval(inter.start**power, inter.end**power)
else:
if inter.start < 0:
start = -abs(inter.start)**power
else:
start = inter.start**power
if inter.end < 0:
end = -abs(inter.end)**power
else:
end = inter.end**power
return interval(start, end, is_valid=inter.is_valid)
def _pow_int(inter, power):
"""Evaluates an interval raised to an integer power"""
power = int(power)
if power & 1:
return interval(inter.start**power, inter.end**power)
else:
if inter.start < 0 and inter.end > 0:
start = 0
end = max(inter.start**power, inter.end**power)
return interval(start, end)
else:
return interval(inter.start**power, inter.end**power)

View File

@ -0,0 +1,78 @@
from sympy.core.logic import fuzzy_and, fuzzy_or, fuzzy_not, fuzzy_xor
class intervalMembership:
"""Represents a boolean expression returned by the comparison of
the interval object.
Parameters
==========
(a, b) : (bool, bool)
The first value determines the comparison as follows:
- True: If the comparison is True throughout the intervals.
- False: If the comparison is False throughout the intervals.
- None: If the comparison is True for some part of the intervals.
The second value is determined as follows:
- True: If both the intervals in comparison are valid.
- False: If at least one of the intervals is False, else
- None
"""
def __init__(self, a, b):
self._wrapped = (a, b)
def __getitem__(self, i):
try:
return self._wrapped[i]
except IndexError:
raise IndexError(
"{} must be a valid indexing for the 2-tuple."
.format(i))
def __len__(self):
return 2
def __iter__(self):
return iter(self._wrapped)
def __str__(self):
return "intervalMembership({}, {})".format(*self)
__repr__ = __str__
def __and__(self, other):
if not isinstance(other, intervalMembership):
raise ValueError(
"The comparison is not supported for {}.".format(other))
a1, b1 = self
a2, b2 = other
return intervalMembership(fuzzy_and([a1, a2]), fuzzy_and([b1, b2]))
def __or__(self, other):
if not isinstance(other, intervalMembership):
raise ValueError(
"The comparison is not supported for {}.".format(other))
a1, b1 = self
a2, b2 = other
return intervalMembership(fuzzy_or([a1, a2]), fuzzy_and([b1, b2]))
def __invert__(self):
a, b = self
return intervalMembership(fuzzy_not(a), b)
def __xor__(self, other):
if not isinstance(other, intervalMembership):
raise ValueError(
"The comparison is not supported for {}.".format(other))
a1, b1 = self
a2, b2 = other
return intervalMembership(fuzzy_xor([a1, a2]), fuzzy_and([b1, b2]))
def __eq__(self, other):
return self._wrapped == other
def __ne__(self, other):
return self._wrapped != other

View File

@ -0,0 +1,452 @@
""" The module contains implemented functions for interval arithmetic."""
from functools import reduce
from sympy.plotting.intervalmath import interval
from sympy.external import import_module
def Abs(x):
if isinstance(x, (int, float)):
return interval(abs(x))
elif isinstance(x, interval):
if x.start < 0 and x.end > 0:
return interval(0, max(abs(x.start), abs(x.end)), is_valid=x.is_valid)
else:
return interval(abs(x.start), abs(x.end))
else:
raise NotImplementedError
#Monotonic
def exp(x):
"""evaluates the exponential of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.exp(x), np.exp(x))
elif isinstance(x, interval):
return interval(np.exp(x.start), np.exp(x.end), is_valid=x.is_valid)
else:
raise NotImplementedError
#Monotonic
def log(x):
"""evaluates the natural logarithm of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
if x <= 0:
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(np.log(x))
elif isinstance(x, interval):
if not x.is_valid:
return interval(-np.inf, np.inf, is_valid=x.is_valid)
elif x.end <= 0:
return interval(-np.inf, np.inf, is_valid=False)
elif x.start <= 0:
return interval(-np.inf, np.inf, is_valid=None)
return interval(np.log(x.start), np.log(x.end))
else:
raise NotImplementedError
#Monotonic
def log10(x):
"""evaluates the logarithm to the base 10 of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
if x <= 0:
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(np.log10(x))
elif isinstance(x, interval):
if not x.is_valid:
return interval(-np.inf, np.inf, is_valid=x.is_valid)
elif x.end <= 0:
return interval(-np.inf, np.inf, is_valid=False)
elif x.start <= 0:
return interval(-np.inf, np.inf, is_valid=None)
return interval(np.log10(x.start), np.log10(x.end))
else:
raise NotImplementedError
#Monotonic
def atan(x):
"""evaluates the tan inverse of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.arctan(x))
elif isinstance(x, interval):
start = np.arctan(x.start)
end = np.arctan(x.end)
return interval(start, end, is_valid=x.is_valid)
else:
raise NotImplementedError
#periodic
def sin(x):
"""evaluates the sine of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.sin(x))
elif isinstance(x, interval):
if not x.is_valid:
return interval(-1, 1, is_valid=x.is_valid)
na, __ = divmod(x.start, np.pi / 2.0)
nb, __ = divmod(x.end, np.pi / 2.0)
start = min(np.sin(x.start), np.sin(x.end))
end = max(np.sin(x.start), np.sin(x.end))
if nb - na > 4:
return interval(-1, 1, is_valid=x.is_valid)
elif na == nb:
return interval(start, end, is_valid=x.is_valid)
else:
if (na - 1) // 4 != (nb - 1) // 4:
#sin has max
end = 1
if (na - 3) // 4 != (nb - 3) // 4:
#sin has min
start = -1
return interval(start, end)
else:
raise NotImplementedError
#periodic
def cos(x):
"""Evaluates the cos of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.sin(x))
elif isinstance(x, interval):
if not (np.isfinite(x.start) and np.isfinite(x.end)):
return interval(-1, 1, is_valid=x.is_valid)
na, __ = divmod(x.start, np.pi / 2.0)
nb, __ = divmod(x.end, np.pi / 2.0)
start = min(np.cos(x.start), np.cos(x.end))
end = max(np.cos(x.start), np.cos(x.end))
if nb - na > 4:
#differ more than 2*pi
return interval(-1, 1, is_valid=x.is_valid)
elif na == nb:
#in the same quadarant
return interval(start, end, is_valid=x.is_valid)
else:
if (na) // 4 != (nb) // 4:
#cos has max
end = 1
if (na - 2) // 4 != (nb - 2) // 4:
#cos has min
start = -1
return interval(start, end, is_valid=x.is_valid)
else:
raise NotImplementedError
def tan(x):
"""Evaluates the tan of an interval"""
return sin(x) / cos(x)
#Monotonic
def sqrt(x):
"""Evaluates the square root of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
if x > 0:
return interval(np.sqrt(x))
else:
return interval(-np.inf, np.inf, is_valid=False)
elif isinstance(x, interval):
#Outside the domain
if x.end < 0:
return interval(-np.inf, np.inf, is_valid=False)
#Partially outside the domain
elif x.start < 0:
return interval(-np.inf, np.inf, is_valid=None)
else:
return interval(np.sqrt(x.start), np.sqrt(x.end),
is_valid=x.is_valid)
else:
raise NotImplementedError
def imin(*args):
"""Evaluates the minimum of a list of intervals"""
np = import_module('numpy')
if not all(isinstance(arg, (int, float, interval)) for arg in args):
return NotImplementedError
else:
new_args = [a for a in args if isinstance(a, (int, float))
or a.is_valid]
if len(new_args) == 0:
if all(a.is_valid is False for a in args):
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(-np.inf, np.inf, is_valid=None)
start_array = [a if isinstance(a, (int, float)) else a.start
for a in new_args]
end_array = [a if isinstance(a, (int, float)) else a.end
for a in new_args]
return interval(min(start_array), min(end_array))
def imax(*args):
"""Evaluates the maximum of a list of intervals"""
np = import_module('numpy')
if not all(isinstance(arg, (int, float, interval)) for arg in args):
return NotImplementedError
else:
new_args = [a for a in args if isinstance(a, (int, float))
or a.is_valid]
if len(new_args) == 0:
if all(a.is_valid is False for a in args):
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(-np.inf, np.inf, is_valid=None)
start_array = [a if isinstance(a, (int, float)) else a.start
for a in new_args]
end_array = [a if isinstance(a, (int, float)) else a.end
for a in new_args]
return interval(max(start_array), max(end_array))
#Monotonic
def sinh(x):
"""Evaluates the hyperbolic sine of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.sinh(x), np.sinh(x))
elif isinstance(x, interval):
return interval(np.sinh(x.start), np.sinh(x.end), is_valid=x.is_valid)
else:
raise NotImplementedError
def cosh(x):
"""Evaluates the hyperbolic cos of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.cosh(x), np.cosh(x))
elif isinstance(x, interval):
#both signs
if x.start < 0 and x.end > 0:
end = max(np.cosh(x.start), np.cosh(x.end))
return interval(1, end, is_valid=x.is_valid)
else:
#Monotonic
start = np.cosh(x.start)
end = np.cosh(x.end)
return interval(start, end, is_valid=x.is_valid)
else:
raise NotImplementedError
#Monotonic
def tanh(x):
"""Evaluates the hyperbolic tan of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.tanh(x), np.tanh(x))
elif isinstance(x, interval):
return interval(np.tanh(x.start), np.tanh(x.end), is_valid=x.is_valid)
else:
raise NotImplementedError
def asin(x):
"""Evaluates the inverse sine of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
#Outside the domain
if abs(x) > 1:
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(np.arcsin(x), np.arcsin(x))
elif isinstance(x, interval):
#Outside the domain
if x.is_valid is False or x.start > 1 or x.end < -1:
return interval(-np.inf, np.inf, is_valid=False)
#Partially outside the domain
elif x.start < -1 or x.end > 1:
return interval(-np.inf, np.inf, is_valid=None)
else:
start = np.arcsin(x.start)
end = np.arcsin(x.end)
return interval(start, end, is_valid=x.is_valid)
def acos(x):
"""Evaluates the inverse cos of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
if abs(x) > 1:
#Outside the domain
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(np.arccos(x), np.arccos(x))
elif isinstance(x, interval):
#Outside the domain
if x.is_valid is False or x.start > 1 or x.end < -1:
return interval(-np.inf, np.inf, is_valid=False)
#Partially outside the domain
elif x.start < -1 or x.end > 1:
return interval(-np.inf, np.inf, is_valid=None)
else:
start = np.arccos(x.start)
end = np.arccos(x.end)
return interval(start, end, is_valid=x.is_valid)
def ceil(x):
"""Evaluates the ceiling of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.ceil(x))
elif isinstance(x, interval):
if x.is_valid is False:
return interval(-np.inf, np.inf, is_valid=False)
else:
start = np.ceil(x.start)
end = np.ceil(x.end)
#Continuous over the interval
if start == end:
return interval(start, end, is_valid=x.is_valid)
else:
#Not continuous over the interval
return interval(start, end, is_valid=None)
else:
return NotImplementedError
def floor(x):
"""Evaluates the floor of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.floor(x))
elif isinstance(x, interval):
if x.is_valid is False:
return interval(-np.inf, np.inf, is_valid=False)
else:
start = np.floor(x.start)
end = np.floor(x.end)
#continuous over the argument
if start == end:
return interval(start, end, is_valid=x.is_valid)
else:
#not continuous over the interval
return interval(start, end, is_valid=None)
else:
return NotImplementedError
def acosh(x):
"""Evaluates the inverse hyperbolic cosine of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
#Outside the domain
if x < 1:
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(np.arccosh(x))
elif isinstance(x, interval):
#Outside the domain
if x.end < 1:
return interval(-np.inf, np.inf, is_valid=False)
#Partly outside the domain
elif x.start < 1:
return interval(-np.inf, np.inf, is_valid=None)
else:
start = np.arccosh(x.start)
end = np.arccosh(x.end)
return interval(start, end, is_valid=x.is_valid)
else:
return NotImplementedError
#Monotonic
def asinh(x):
"""Evaluates the inverse hyperbolic sine of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
return interval(np.arcsinh(x))
elif isinstance(x, interval):
start = np.arcsinh(x.start)
end = np.arcsinh(x.end)
return interval(start, end, is_valid=x.is_valid)
else:
return NotImplementedError
def atanh(x):
"""Evaluates the inverse hyperbolic tangent of an interval"""
np = import_module('numpy')
if isinstance(x, (int, float)):
#Outside the domain
if abs(x) >= 1:
return interval(-np.inf, np.inf, is_valid=False)
else:
return interval(np.arctanh(x))
elif isinstance(x, interval):
#outside the domain
if x.is_valid is False or x.start >= 1 or x.end <= -1:
return interval(-np.inf, np.inf, is_valid=False)
#partly outside the domain
elif x.start <= -1 or x.end >= 1:
return interval(-np.inf, np.inf, is_valid=None)
else:
start = np.arctanh(x.start)
end = np.arctanh(x.end)
return interval(start, end, is_valid=x.is_valid)
else:
return NotImplementedError
#Three valued logic for interval plotting.
def And(*args):
"""Defines the three valued ``And`` behaviour for a 2-tuple of
three valued logic values"""
def reduce_and(cmp_intervala, cmp_intervalb):
if cmp_intervala[0] is False or cmp_intervalb[0] is False:
first = False
elif cmp_intervala[0] is None or cmp_intervalb[0] is None:
first = None
else:
first = True
if cmp_intervala[1] is False or cmp_intervalb[1] is False:
second = False
elif cmp_intervala[1] is None or cmp_intervalb[1] is None:
second = None
else:
second = True
return (first, second)
return reduce(reduce_and, args)
def Or(*args):
"""Defines the three valued ``Or`` behaviour for a 2-tuple of
three valued logic values"""
def reduce_or(cmp_intervala, cmp_intervalb):
if cmp_intervala[0] is True or cmp_intervalb[0] is True:
first = True
elif cmp_intervala[0] is None or cmp_intervalb[0] is None:
first = None
else:
first = False
if cmp_intervala[1] is True or cmp_intervalb[1] is True:
second = True
elif cmp_intervala[1] is None or cmp_intervalb[1] is None:
second = None
else:
second = False
return (first, second)
return reduce(reduce_or, args)

View File

@ -0,0 +1,415 @@
from sympy.external import import_module
from sympy.plotting.intervalmath import (
Abs, acos, acosh, And, asin, asinh, atan, atanh, ceil, cos, cosh,
exp, floor, imax, imin, interval, log, log10, Or, sin, sinh, sqrt,
tan, tanh,
)
np = import_module('numpy')
if not np:
disabled = True
#requires Numpy. Hence included in interval_functions
def test_interval_pow():
a = 2**interval(1, 2) == interval(2, 4)
assert a == (True, True)
a = interval(1, 2)**interval(1, 2) == interval(1, 4)
assert a == (True, True)
a = interval(-1, 1)**interval(0.5, 2)
assert a.is_valid is None
a = interval(-2, -1) ** interval(1, 2)
assert a.is_valid is False
a = interval(-2, -1) ** (1.0 / 2)
assert a.is_valid is False
a = interval(-1, 1)**(1.0 / 2)
assert a.is_valid is None
a = interval(-1, 1)**(1.0 / 3) == interval(-1, 1)
assert a == (True, True)
a = interval(-1, 1)**2 == interval(0, 1)
assert a == (True, True)
a = interval(-1, 1) ** (1.0 / 29) == interval(-1, 1)
assert a == (True, True)
a = -2**interval(1, 1) == interval(-2, -2)
assert a == (True, True)
a = interval(1, 2, is_valid=False)**2
assert a.is_valid is False
a = (-3)**interval(1, 2)
assert a.is_valid is False
a = (-4)**interval(0.5, 0.5)
assert a.is_valid is False
assert ((-3)**interval(1, 1) == interval(-3, -3)) == (True, True)
a = interval(8, 64)**(2.0 / 3)
assert abs(a.start - 4) < 1e-10 # eps
assert abs(a.end - 16) < 1e-10
a = interval(-8, 64)**(2.0 / 3)
assert abs(a.start - 4) < 1e-10 # eps
assert abs(a.end - 16) < 1e-10
def test_exp():
a = exp(interval(-np.inf, 0))
assert a.start == np.exp(-np.inf)
assert a.end == np.exp(0)
a = exp(interval(1, 2))
assert a.start == np.exp(1)
assert a.end == np.exp(2)
a = exp(1)
assert a.start == np.exp(1)
assert a.end == np.exp(1)
def test_log():
a = log(interval(1, 2))
assert a.start == 0
assert a.end == np.log(2)
a = log(interval(-1, 1))
assert a.is_valid is None
a = log(interval(-3, -1))
assert a.is_valid is False
a = log(-3)
assert a.is_valid is False
a = log(2)
assert a.start == np.log(2)
assert a.end == np.log(2)
def test_log10():
a = log10(interval(1, 2))
assert a.start == 0
assert a.end == np.log10(2)
a = log10(interval(-1, 1))
assert a.is_valid is None
a = log10(interval(-3, -1))
assert a.is_valid is False
a = log10(-3)
assert a.is_valid is False
a = log10(2)
assert a.start == np.log10(2)
assert a.end == np.log10(2)
def test_atan():
a = atan(interval(0, 1))
assert a.start == np.arctan(0)
assert a.end == np.arctan(1)
a = atan(1)
assert a.start == np.arctan(1)
assert a.end == np.arctan(1)
def test_sin():
a = sin(interval(0, np.pi / 4))
assert a.start == np.sin(0)
assert a.end == np.sin(np.pi / 4)
a = sin(interval(-np.pi / 4, np.pi / 4))
assert a.start == np.sin(-np.pi / 4)
assert a.end == np.sin(np.pi / 4)
a = sin(interval(np.pi / 4, 3 * np.pi / 4))
assert a.start == np.sin(np.pi / 4)
assert a.end == 1
a = sin(interval(7 * np.pi / 6, 7 * np.pi / 4))
assert a.start == -1
assert a.end == np.sin(7 * np.pi / 6)
a = sin(interval(0, 3 * np.pi))
assert a.start == -1
assert a.end == 1
a = sin(interval(np.pi / 3, 7 * np.pi / 4))
assert a.start == -1
assert a.end == 1
a = sin(np.pi / 4)
assert a.start == np.sin(np.pi / 4)
assert a.end == np.sin(np.pi / 4)
a = sin(interval(1, 2, is_valid=False))
assert a.is_valid is False
def test_cos():
a = cos(interval(0, np.pi / 4))
assert a.start == np.cos(np.pi / 4)
assert a.end == 1
a = cos(interval(-np.pi / 4, np.pi / 4))
assert a.start == np.cos(-np.pi / 4)
assert a.end == 1
a = cos(interval(np.pi / 4, 3 * np.pi / 4))
assert a.start == np.cos(3 * np.pi / 4)
assert a.end == np.cos(np.pi / 4)
a = cos(interval(3 * np.pi / 4, 5 * np.pi / 4))
assert a.start == -1
assert a.end == np.cos(3 * np.pi / 4)
a = cos(interval(0, 3 * np.pi))
assert a.start == -1
assert a.end == 1
a = cos(interval(- np.pi / 3, 5 * np.pi / 4))
assert a.start == -1
assert a.end == 1
a = cos(interval(1, 2, is_valid=False))
assert a.is_valid is False
def test_tan():
a = tan(interval(0, np.pi / 4))
assert a.start == 0
# must match lib_interval definition of tan:
assert a.end == np.sin(np.pi / 4)/np.cos(np.pi / 4)
a = tan(interval(np.pi / 4, 3 * np.pi / 4))
#discontinuity
assert a.is_valid is None
def test_sqrt():
a = sqrt(interval(1, 4))
assert a.start == 1
assert a.end == 2
a = sqrt(interval(0.01, 1))
assert a.start == np.sqrt(0.01)
assert a.end == 1
a = sqrt(interval(-1, 1))
assert a.is_valid is None
a = sqrt(interval(-3, -1))
assert a.is_valid is False
a = sqrt(4)
assert (a == interval(2, 2)) == (True, True)
a = sqrt(-3)
assert a.is_valid is False
def test_imin():
a = imin(interval(1, 3), interval(2, 5), interval(-1, 3))
assert a.start == -1
assert a.end == 3
a = imin(-2, interval(1, 4))
assert a.start == -2
assert a.end == -2
a = imin(5, interval(3, 4), interval(-2, 2, is_valid=False))
assert a.start == 3
assert a.end == 4
def test_imax():
a = imax(interval(-2, 2), interval(2, 7), interval(-3, 9))
assert a.start == 2
assert a.end == 9
a = imax(8, interval(1, 4))
assert a.start == 8
assert a.end == 8
a = imax(interval(1, 2), interval(3, 4), interval(-2, 2, is_valid=False))
assert a.start == 3
assert a.end == 4
def test_sinh():
a = sinh(interval(-1, 1))
assert a.start == np.sinh(-1)
assert a.end == np.sinh(1)
a = sinh(1)
assert a.start == np.sinh(1)
assert a.end == np.sinh(1)
def test_cosh():
a = cosh(interval(1, 2))
assert a.start == np.cosh(1)
assert a.end == np.cosh(2)
a = cosh(interval(-2, -1))
assert a.start == np.cosh(-1)
assert a.end == np.cosh(-2)
a = cosh(interval(-2, 1))
assert a.start == 1
assert a.end == np.cosh(-2)
a = cosh(1)
assert a.start == np.cosh(1)
assert a.end == np.cosh(1)
def test_tanh():
a = tanh(interval(-3, 3))
assert a.start == np.tanh(-3)
assert a.end == np.tanh(3)
a = tanh(3)
assert a.start == np.tanh(3)
assert a.end == np.tanh(3)
def test_asin():
a = asin(interval(-0.5, 0.5))
assert a.start == np.arcsin(-0.5)
assert a.end == np.arcsin(0.5)
a = asin(interval(-1.5, 1.5))
assert a.is_valid is None
a = asin(interval(-2, -1.5))
assert a.is_valid is False
a = asin(interval(0, 2))
assert a.is_valid is None
a = asin(interval(2, 5))
assert a.is_valid is False
a = asin(0.5)
assert a.start == np.arcsin(0.5)
assert a.end == np.arcsin(0.5)
a = asin(1.5)
assert a.is_valid is False
def test_acos():
a = acos(interval(-0.5, 0.5))
assert a.start == np.arccos(0.5)
assert a.end == np.arccos(-0.5)
a = acos(interval(-1.5, 1.5))
assert a.is_valid is None
a = acos(interval(-2, -1.5))
assert a.is_valid is False
a = acos(interval(0, 2))
assert a.is_valid is None
a = acos(interval(2, 5))
assert a.is_valid is False
a = acos(0.5)
assert a.start == np.arccos(0.5)
assert a.end == np.arccos(0.5)
a = acos(1.5)
assert a.is_valid is False
def test_ceil():
a = ceil(interval(0.2, 0.5))
assert a.start == 1
assert a.end == 1
a = ceil(interval(0.5, 1.5))
assert a.start == 1
assert a.end == 2
assert a.is_valid is None
a = ceil(interval(-5, 5))
assert a.is_valid is None
a = ceil(5.4)
assert a.start == 6
assert a.end == 6
def test_floor():
a = floor(interval(0.2, 0.5))
assert a.start == 0
assert a.end == 0
a = floor(interval(0.5, 1.5))
assert a.start == 0
assert a.end == 1
assert a.is_valid is None
a = floor(interval(-5, 5))
assert a.is_valid is None
a = floor(5.4)
assert a.start == 5
assert a.end == 5
def test_asinh():
a = asinh(interval(1, 2))
assert a.start == np.arcsinh(1)
assert a.end == np.arcsinh(2)
a = asinh(0.5)
assert a.start == np.arcsinh(0.5)
assert a.end == np.arcsinh(0.5)
def test_acosh():
a = acosh(interval(3, 5))
assert a.start == np.arccosh(3)
assert a.end == np.arccosh(5)
a = acosh(interval(0, 3))
assert a.is_valid is None
a = acosh(interval(-3, 0.5))
assert a.is_valid is False
a = acosh(0.5)
assert a.is_valid is False
a = acosh(2)
assert a.start == np.arccosh(2)
assert a.end == np.arccosh(2)
def test_atanh():
a = atanh(interval(-0.5, 0.5))
assert a.start == np.arctanh(-0.5)
assert a.end == np.arctanh(0.5)
a = atanh(interval(0, 3))
assert a.is_valid is None
a = atanh(interval(-3, -2))
assert a.is_valid is False
a = atanh(0.5)
assert a.start == np.arctanh(0.5)
assert a.end == np.arctanh(0.5)
a = atanh(1.5)
assert a.is_valid is False
def test_Abs():
assert (Abs(interval(-0.5, 0.5)) == interval(0, 0.5)) == (True, True)
assert (Abs(interval(-3, -2)) == interval(2, 3)) == (True, True)
assert (Abs(-3) == interval(3, 3)) == (True, True)
def test_And():
args = [(True, True), (True, False), (True, None)]
assert And(*args) == (True, False)
args = [(False, True), (None, None), (True, True)]
assert And(*args) == (False, None)
def test_Or():
args = [(True, True), (True, False), (False, None)]
assert Or(*args) == (True, True)
args = [(None, None), (False, None), (False, False)]
assert Or(*args) == (None, None)

View File

@ -0,0 +1,150 @@
from sympy.core.symbol import Symbol
from sympy.plotting.intervalmath import interval
from sympy.plotting.intervalmath.interval_membership import intervalMembership
from sympy.plotting.experimental_lambdify import experimental_lambdify
from sympy.testing.pytest import raises
def test_creation():
assert intervalMembership(True, True)
raises(TypeError, lambda: intervalMembership(True))
raises(TypeError, lambda: intervalMembership(True, True, True))
def test_getitem():
a = intervalMembership(True, False)
assert a[0] is True
assert a[1] is False
raises(IndexError, lambda: a[2])
def test_str():
a = intervalMembership(True, False)
assert str(a) == 'intervalMembership(True, False)'
assert repr(a) == 'intervalMembership(True, False)'
def test_equivalence():
a = intervalMembership(True, True)
b = intervalMembership(True, False)
assert (a == b) is False
assert (a != b) is True
a = intervalMembership(True, False)
b = intervalMembership(True, False)
assert (a == b) is True
assert (a != b) is False
def test_not():
x = Symbol('x')
r1 = x > -1
r2 = x <= -1
i = interval
f1 = experimental_lambdify((x,), r1)
f2 = experimental_lambdify((x,), r2)
tt = i(-0.1, 0.1, is_valid=True)
tn = i(-0.1, 0.1, is_valid=None)
tf = i(-0.1, 0.1, is_valid=False)
assert f1(tt) == ~f2(tt)
assert f1(tn) == ~f2(tn)
assert f1(tf) == ~f2(tf)
nt = i(0.9, 1.1, is_valid=True)
nn = i(0.9, 1.1, is_valid=None)
nf = i(0.9, 1.1, is_valid=False)
assert f1(nt) == ~f2(nt)
assert f1(nn) == ~f2(nn)
assert f1(nf) == ~f2(nf)
ft = i(1.9, 2.1, is_valid=True)
fn = i(1.9, 2.1, is_valid=None)
ff = i(1.9, 2.1, is_valid=False)
assert f1(ft) == ~f2(ft)
assert f1(fn) == ~f2(fn)
assert f1(ff) == ~f2(ff)
def test_boolean():
# There can be 9*9 test cases in full mapping of the cartesian product.
# But we only consider 3*3 cases for simplicity.
s = [
intervalMembership(False, False),
intervalMembership(None, None),
intervalMembership(True, True)
]
# Reduced tests for 'And'
a1 = [
intervalMembership(False, False),
intervalMembership(False, False),
intervalMembership(False, False),
intervalMembership(False, False),
intervalMembership(None, None),
intervalMembership(None, None),
intervalMembership(False, False),
intervalMembership(None, None),
intervalMembership(True, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
for j in range(len(s)):
assert s[i] & s[j] == next(a1_iter)
# Reduced tests for 'Or'
a1 = [
intervalMembership(False, False),
intervalMembership(None, False),
intervalMembership(True, False),
intervalMembership(None, False),
intervalMembership(None, None),
intervalMembership(True, None),
intervalMembership(True, False),
intervalMembership(True, None),
intervalMembership(True, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
for j in range(len(s)):
assert s[i] | s[j] == next(a1_iter)
# Reduced tests for 'Xor'
a1 = [
intervalMembership(False, False),
intervalMembership(None, False),
intervalMembership(True, False),
intervalMembership(None, False),
intervalMembership(None, None),
intervalMembership(None, None),
intervalMembership(True, False),
intervalMembership(None, None),
intervalMembership(False, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
for j in range(len(s)):
assert s[i] ^ s[j] == next(a1_iter)
# Reduced tests for 'Not'
a1 = [
intervalMembership(True, False),
intervalMembership(None, None),
intervalMembership(False, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
assert ~s[i] == next(a1_iter)
def test_boolean_errors():
a = intervalMembership(True, True)
raises(ValueError, lambda: a & 1)
raises(ValueError, lambda: a | 1)
raises(ValueError, lambda: a ^ 1)

View File

@ -0,0 +1,213 @@
from sympy.plotting.intervalmath import interval
from sympy.testing.pytest import raises
def test_interval():
assert (interval(1, 1) == interval(1, 1, is_valid=True)) == (True, True)
assert (interval(1, 1) == interval(1, 1, is_valid=False)) == (True, False)
assert (interval(1, 1) == interval(1, 1, is_valid=None)) == (True, None)
assert (interval(1, 1.5) == interval(1, 2)) == (None, True)
assert (interval(0, 1) == interval(2, 3)) == (False, True)
assert (interval(0, 1) == interval(1, 2)) == (None, True)
assert (interval(1, 2) != interval(1, 2)) == (False, True)
assert (interval(1, 3) != interval(2, 3)) == (None, True)
assert (interval(1, 3) != interval(-5, -3)) == (True, True)
assert (
interval(1, 3, is_valid=False) != interval(-5, -3)) == (True, False)
assert (interval(1, 3, is_valid=None) != interval(-5, 3)) == (None, None)
assert (interval(4, 4) != 4) == (False, True)
assert (interval(1, 1) == 1) == (True, True)
assert (interval(1, 3, is_valid=False) == interval(1, 3)) == (True, False)
assert (interval(1, 3, is_valid=None) == interval(1, 3)) == (True, None)
inter = interval(-5, 5)
assert (interval(inter) == interval(-5, 5)) == (True, True)
assert inter.width == 10
assert 0 in inter
assert -5 in inter
assert 5 in inter
assert interval(0, 3) in inter
assert interval(-6, 2) not in inter
assert -5.05 not in inter
assert 5.3 not in inter
interb = interval(-float('inf'), float('inf'))
assert 0 in inter
assert inter in interb
assert interval(0, float('inf')) in interb
assert interval(-float('inf'), 5) in interb
assert interval(-1e50, 1e50) in interb
assert (
-interval(-1, -2, is_valid=False) == interval(1, 2)) == (True, False)
raises(ValueError, lambda: interval(1, 2, 3))
def test_interval_add():
assert (interval(1, 2) + interval(2, 3) == interval(3, 5)) == (True, True)
assert (1 + interval(1, 2) == interval(2, 3)) == (True, True)
assert (interval(1, 2) + 1 == interval(2, 3)) == (True, True)
compare = (1 + interval(0, float('inf')) == interval(1, float('inf')))
assert compare == (True, True)
a = 1 + interval(2, 5, is_valid=False)
assert a.is_valid is False
a = 1 + interval(2, 5, is_valid=None)
assert a.is_valid is None
a = interval(2, 5, is_valid=False) + interval(3, 5, is_valid=None)
assert a.is_valid is False
a = interval(3, 5) + interval(-1, 1, is_valid=None)
assert a.is_valid is None
a = interval(2, 5, is_valid=False) + 1
assert a.is_valid is False
def test_interval_sub():
assert (interval(1, 2) - interval(1, 5) == interval(-4, 1)) == (True, True)
assert (interval(1, 2) - 1 == interval(0, 1)) == (True, True)
assert (1 - interval(1, 2) == interval(-1, 0)) == (True, True)
a = 1 - interval(1, 2, is_valid=False)
assert a.is_valid is False
a = interval(1, 4, is_valid=None) - 1
assert a.is_valid is None
a = interval(1, 3, is_valid=False) - interval(1, 3)
assert a.is_valid is False
a = interval(1, 3, is_valid=None) - interval(1, 3)
assert a.is_valid is None
def test_interval_inequality():
assert (interval(1, 2) < interval(3, 4)) == (True, True)
assert (interval(1, 2) < interval(2, 4)) == (None, True)
assert (interval(1, 2) < interval(-2, 0)) == (False, True)
assert (interval(1, 2) <= interval(2, 4)) == (True, True)
assert (interval(1, 2) <= interval(1.5, 6)) == (None, True)
assert (interval(2, 3) <= interval(1, 2)) == (None, True)
assert (interval(2, 3) <= interval(1, 1.5)) == (False, True)
assert (
interval(1, 2, is_valid=False) <= interval(-2, 0)) == (False, False)
assert (interval(1, 2, is_valid=None) <= interval(-2, 0)) == (False, None)
assert (interval(1, 2) <= 1.5) == (None, True)
assert (interval(1, 2) <= 3) == (True, True)
assert (interval(1, 2) <= 0) == (False, True)
assert (interval(5, 8) > interval(2, 3)) == (True, True)
assert (interval(2, 5) > interval(1, 3)) == (None, True)
assert (interval(2, 3) > interval(3.1, 5)) == (False, True)
assert (interval(-1, 1) == 0) == (None, True)
assert (interval(-1, 1) == 2) == (False, True)
assert (interval(-1, 1) != 0) == (None, True)
assert (interval(-1, 1) != 2) == (True, True)
assert (interval(3, 5) > 2) == (True, True)
assert (interval(3, 5) < 2) == (False, True)
assert (interval(1, 5) < 2) == (None, True)
assert (interval(1, 5) > 2) == (None, True)
assert (interval(0, 1) > 2) == (False, True)
assert (interval(1, 2) >= interval(0, 1)) == (True, True)
assert (interval(1, 2) >= interval(0, 1.5)) == (None, True)
assert (interval(1, 2) >= interval(3, 4)) == (False, True)
assert (interval(1, 2) >= 0) == (True, True)
assert (interval(1, 2) >= 1.2) == (None, True)
assert (interval(1, 2) >= 3) == (False, True)
assert (2 > interval(0, 1)) == (True, True)
a = interval(-1, 1, is_valid=False) < interval(2, 5, is_valid=None)
assert a == (True, False)
a = interval(-1, 1, is_valid=None) < interval(2, 5, is_valid=False)
assert a == (True, False)
a = interval(-1, 1, is_valid=None) < interval(2, 5, is_valid=None)
assert a == (True, None)
a = interval(-1, 1, is_valid=False) > interval(-5, -2, is_valid=None)
assert a == (True, False)
a = interval(-1, 1, is_valid=None) > interval(-5, -2, is_valid=False)
assert a == (True, False)
a = interval(-1, 1, is_valid=None) > interval(-5, -2, is_valid=None)
assert a == (True, None)
def test_interval_mul():
assert (
interval(1, 5) * interval(2, 10) == interval(2, 50)) == (True, True)
a = interval(-1, 1) * interval(2, 10) == interval(-10, 10)
assert a == (True, True)
a = interval(-1, 1) * interval(-5, 3) == interval(-5, 5)
assert a == (True, True)
assert (interval(1, 3) * 2 == interval(2, 6)) == (True, True)
assert (3 * interval(-1, 2) == interval(-3, 6)) == (True, True)
a = 3 * interval(1, 2, is_valid=False)
assert a.is_valid is False
a = 3 * interval(1, 2, is_valid=None)
assert a.is_valid is None
a = interval(1, 5, is_valid=False) * interval(1, 2, is_valid=None)
assert a.is_valid is False
def test_interval_div():
div = interval(1, 2, is_valid=False) / 3
assert div == interval(-float('inf'), float('inf'), is_valid=False)
div = interval(1, 2, is_valid=None) / 3
assert div == interval(-float('inf'), float('inf'), is_valid=None)
div = 3 / interval(1, 2, is_valid=None)
assert div == interval(-float('inf'), float('inf'), is_valid=None)
a = interval(1, 2) / 0
assert a.is_valid is False
a = interval(0.5, 1) / interval(-1, 0)
assert a.is_valid is None
a = interval(0, 1) / interval(0, 1)
assert a.is_valid is None
a = interval(-1, 1) / interval(-1, 1)
assert a.is_valid is None
a = interval(-1, 2) / interval(0.5, 1) == interval(-2.0, 4.0)
assert a == (True, True)
a = interval(0, 1) / interval(0.5, 1) == interval(0.0, 2.0)
assert a == (True, True)
a = interval(-1, 0) / interval(0.5, 1) == interval(-2.0, 0.0)
assert a == (True, True)
a = interval(-0.5, -0.25) / interval(0.5, 1) == interval(-1.0, -0.25)
assert a == (True, True)
a = interval(0.5, 1) / interval(0.5, 1) == interval(0.5, 2.0)
assert a == (True, True)
a = interval(0.5, 4) / interval(0.5, 1) == interval(0.5, 8.0)
assert a == (True, True)
a = interval(-1, -0.5) / interval(0.5, 1) == interval(-2.0, -0.5)
assert a == (True, True)
a = interval(-4, -0.5) / interval(0.5, 1) == interval(-8.0, -0.5)
assert a == (True, True)
a = interval(-1, 2) / interval(-2, -0.5) == interval(-4.0, 2.0)
assert a == (True, True)
a = interval(0, 1) / interval(-2, -0.5) == interval(-2.0, 0.0)
assert a == (True, True)
a = interval(-1, 0) / interval(-2, -0.5) == interval(0.0, 2.0)
assert a == (True, True)
a = interval(-0.5, -0.25) / interval(-2, -0.5) == interval(0.125, 1.0)
assert a == (True, True)
a = interval(0.5, 1) / interval(-2, -0.5) == interval(-2.0, -0.25)
assert a == (True, True)
a = interval(0.5, 4) / interval(-2, -0.5) == interval(-8.0, -0.25)
assert a == (True, True)
a = interval(-1, -0.5) / interval(-2, -0.5) == interval(0.25, 2.0)
assert a == (True, True)
a = interval(-4, -0.5) / interval(-2, -0.5) == interval(0.25, 8.0)
assert a == (True, True)
a = interval(-5, 5, is_valid=False) / 2
assert a.is_valid is False
def test_hashable():
'''
test that interval objects are hashable.
this is required in order to be able to put them into the cache, which
appears to be necessary for plotting in py3k. For details, see:
https://github.com/sympy/sympy/pull/2101
https://github.com/sympy/sympy/issues/6533
'''
hash(interval(1, 1))
hash(interval(1, 1, is_valid=True))
hash(interval(-4, -0.5))
hash(interval(-2, -0.5))
hash(interval(0.25, 8.0))