I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,33 @@
CONSTANTS G,LB,W,H
MOTIONVARIABLES' THETA'',PHI'',OMEGA',ALPHA'
NEWTONIAN N
BODIES A,B
SIMPROT(N,A,2,THETA)
SIMPROT(A,B,3,PHI)
POINT O
LA = (LB-H/2)/2
P_O_AO> = LA*A3>
P_O_BO> = LB*A3>
OMEGA = THETA'
ALPHA = PHI'
W_A_N> = OMEGA*N2>
W_B_A> = ALPHA*A3>
V_O_N> = 0>
V2PTS(N, A, O, AO)
V2PTS(N, A, O, BO)
MASS A=MA, B=MB
IAXX = 1/12*MA*(2*LA)^2
IAYY = IAXX
IAZZ = 0
IBXX = 1/12*MB*H^2
IBYY = 1/12*MB*(W^2+H^2)
IBZZ = 1/12*MB*W^2
INERTIA A, IAXX, IAYY, IAZZ
INERTIA B, IBXX, IBYY, IBZZ
GRAVITY(G*N3>)
ZERO = FR() + FRSTAR()
KANE()
INPUT LB=0.2,H=0.1,W=0.2,MA=0.01,MB=0.1,G=9.81
INPUT THETA = 90 DEG, PHI = 0.5 DEG, OMEGA=0, ALPHA=0
INPUT TFINAL=10, INTEGSTP=0.02
CODE DYNAMICS() some_filename.c

View File

@ -0,0 +1,55 @@
import sympy.physics.mechanics as _me
import sympy as _sm
import math as m
import numpy as _np
g, lb, w, h = _sm.symbols('g lb w h', real=True)
theta, phi, omega, alpha = _me.dynamicsymbols('theta phi omega alpha')
theta_d, phi_d, omega_d, alpha_d = _me.dynamicsymbols('theta_ phi_ omega_ alpha_', 1)
theta_dd, phi_dd = _me.dynamicsymbols('theta_ phi_', 2)
frame_n = _me.ReferenceFrame('n')
body_a_cm = _me.Point('a_cm')
body_a_cm.set_vel(frame_n, 0)
body_a_f = _me.ReferenceFrame('a_f')
body_a = _me.RigidBody('a', body_a_cm, body_a_f, _sm.symbols('m'), (_me.outer(body_a_f.x,body_a_f.x),body_a_cm))
body_b_cm = _me.Point('b_cm')
body_b_cm.set_vel(frame_n, 0)
body_b_f = _me.ReferenceFrame('b_f')
body_b = _me.RigidBody('b', body_b_cm, body_b_f, _sm.symbols('m'), (_me.outer(body_b_f.x,body_b_f.x),body_b_cm))
body_a_f.orient(frame_n, 'Axis', [theta, frame_n.y])
body_b_f.orient(body_a_f, 'Axis', [phi, body_a_f.z])
point_o = _me.Point('o')
la = (lb-h/2)/2
body_a_cm.set_pos(point_o, la*body_a_f.z)
body_b_cm.set_pos(point_o, lb*body_a_f.z)
body_a_f.set_ang_vel(frame_n, omega*frame_n.y)
body_b_f.set_ang_vel(body_a_f, alpha*body_a_f.z)
point_o.set_vel(frame_n, 0)
body_a_cm.v2pt_theory(point_o,frame_n,body_a_f)
body_b_cm.v2pt_theory(point_o,frame_n,body_a_f)
ma = _sm.symbols('ma')
body_a.mass = ma
mb = _sm.symbols('mb')
body_b.mass = mb
iaxx = 1/12*ma*(2*la)**2
iayy = iaxx
iazz = 0
ibxx = 1/12*mb*h**2
ibyy = 1/12*mb*(w**2+h**2)
ibzz = 1/12*mb*w**2
body_a.inertia = (_me.inertia(body_a_f, iaxx, iayy, iazz, 0, 0, 0), body_a_cm)
body_b.inertia = (_me.inertia(body_b_f, ibxx, ibyy, ibzz, 0, 0, 0), body_b_cm)
force_a = body_a.mass*(g*frame_n.z)
force_b = body_b.mass*(g*frame_n.z)
kd_eqs = [theta_d - omega, phi_d - alpha]
forceList = [(body_a.masscenter,body_a.mass*(g*frame_n.z)), (body_b.masscenter,body_b.mass*(g*frame_n.z))]
kane = _me.KanesMethod(frame_n, q_ind=[theta,phi], u_ind=[omega, alpha], kd_eqs = kd_eqs)
fr, frstar = kane.kanes_equations([body_a, body_b], forceList)
zero = fr+frstar
from pydy.system import System
sys = System(kane, constants = {g:9.81, lb:0.2, w:0.2, h:0.1, ma:0.01, mb:0.1},
specifieds={},
initial_conditions={theta:_np.deg2rad(90), phi:_np.deg2rad(0.5), omega:0, alpha:0},
times = _np.linspace(0.0, 10, 10/0.02))
y=sys.integrate()

View File

@ -0,0 +1,25 @@
MOTIONVARIABLES' Q{2}', U{2}'
CONSTANTS L,M,G
NEWTONIAN N
FRAMES A,B
SIMPROT(N, A, 3, Q1)
SIMPROT(N, B, 3, Q2)
W_A_N>=U1*N3>
W_B_N>=U2*N3>
POINT O
PARTICLES P,R
P_O_P> = L*A1>
P_P_R> = L*B1>
V_O_N> = 0>
V2PTS(N, A, O, P)
V2PTS(N, B, P, R)
MASS P=M, R=M
Q1' = U1
Q2' = U2
GRAVITY(G*N1>)
ZERO = FR() + FRSTAR()
KANE()
INPUT M=1,G=9.81,L=1
INPUT Q1=.1,Q2=.2,U1=0,U2=0
INPUT TFINAL=10, INTEGSTP=.01
CODE DYNAMICS() some_filename.c

View File

@ -0,0 +1,39 @@
import sympy.physics.mechanics as _me
import sympy as _sm
import math as m
import numpy as _np
q1, q2, u1, u2 = _me.dynamicsymbols('q1 q2 u1 u2')
q1_d, q2_d, u1_d, u2_d = _me.dynamicsymbols('q1_ q2_ u1_ u2_', 1)
l, m, g = _sm.symbols('l m g', real=True)
frame_n = _me.ReferenceFrame('n')
frame_a = _me.ReferenceFrame('a')
frame_b = _me.ReferenceFrame('b')
frame_a.orient(frame_n, 'Axis', [q1, frame_n.z])
frame_b.orient(frame_n, 'Axis', [q2, frame_n.z])
frame_a.set_ang_vel(frame_n, u1*frame_n.z)
frame_b.set_ang_vel(frame_n, u2*frame_n.z)
point_o = _me.Point('o')
particle_p = _me.Particle('p', _me.Point('p_pt'), _sm.Symbol('m'))
particle_r = _me.Particle('r', _me.Point('r_pt'), _sm.Symbol('m'))
particle_p.point.set_pos(point_o, l*frame_a.x)
particle_r.point.set_pos(particle_p.point, l*frame_b.x)
point_o.set_vel(frame_n, 0)
particle_p.point.v2pt_theory(point_o,frame_n,frame_a)
particle_r.point.v2pt_theory(particle_p.point,frame_n,frame_b)
particle_p.mass = m
particle_r.mass = m
force_p = particle_p.mass*(g*frame_n.x)
force_r = particle_r.mass*(g*frame_n.x)
kd_eqs = [q1_d - u1, q2_d - u2]
forceList = [(particle_p.point,particle_p.mass*(g*frame_n.x)), (particle_r.point,particle_r.mass*(g*frame_n.x))]
kane = _me.KanesMethod(frame_n, q_ind=[q1,q2], u_ind=[u1, u2], kd_eqs = kd_eqs)
fr, frstar = kane.kanes_equations([particle_p, particle_r], forceList)
zero = fr+frstar
from pydy.system import System
sys = System(kane, constants = {l:1, m:1, g:9.81},
specifieds={},
initial_conditions={q1:.1, q2:.2, u1:0, u2:0},
times = _np.linspace(0.0, 10, 10/.01))
y=sys.integrate()

View File

@ -0,0 +1,19 @@
CONSTANTS M,K,B,G
MOTIONVARIABLES' POSITION',SPEED'
VARIABLES O
FORCE = O*SIN(T)
NEWTONIAN CEILING
POINTS ORIGIN
V_ORIGIN_CEILING> = 0>
PARTICLES BLOCK
P_ORIGIN_BLOCK> = POSITION*CEILING1>
MASS BLOCK=M
V_BLOCK_CEILING>=SPEED*CEILING1>
POSITION' = SPEED
FORCE_MAGNITUDE = M*G-K*POSITION-B*SPEED+FORCE
FORCE_BLOCK>=EXPLICIT(FORCE_MAGNITUDE*CEILING1>)
ZERO = FR() + FRSTAR()
KANE()
INPUT TFINAL=10.0, INTEGSTP=0.01
INPUT M=1.0, K=1.0, B=0.2, G=9.8, POSITION=0.1, SPEED=-1.0, O=2
CODE DYNAMICS() dummy_file.c

View File

@ -0,0 +1,31 @@
import sympy.physics.mechanics as _me
import sympy as _sm
import math as m
import numpy as _np
m, k, b, g = _sm.symbols('m k b g', real=True)
position, speed = _me.dynamicsymbols('position speed')
position_d, speed_d = _me.dynamicsymbols('position_ speed_', 1)
o = _me.dynamicsymbols('o')
force = o*_sm.sin(_me.dynamicsymbols._t)
frame_ceiling = _me.ReferenceFrame('ceiling')
point_origin = _me.Point('origin')
point_origin.set_vel(frame_ceiling, 0)
particle_block = _me.Particle('block', _me.Point('block_pt'), _sm.Symbol('m'))
particle_block.point.set_pos(point_origin, position*frame_ceiling.x)
particle_block.mass = m
particle_block.point.set_vel(frame_ceiling, speed*frame_ceiling.x)
force_magnitude = m*g-k*position-b*speed+force
force_block = (force_magnitude*frame_ceiling.x).subs({position_d:speed})
kd_eqs = [position_d - speed]
forceList = [(particle_block.point,(force_magnitude*frame_ceiling.x).subs({position_d:speed}))]
kane = _me.KanesMethod(frame_ceiling, q_ind=[position], u_ind=[speed], kd_eqs = kd_eqs)
fr, frstar = kane.kanes_equations([particle_block], forceList)
zero = fr+frstar
from pydy.system import System
sys = System(kane, constants = {m:1.0, k:1.0, b:0.2, g:9.8},
specifieds={_me.dynamicsymbols('t'):lambda x, t: t, o:2},
initial_conditions={position:0.1, speed:-1*1.0},
times = _np.linspace(0.0, 10.0, 10.0/0.01))
y=sys.integrate()

View File

@ -0,0 +1,20 @@
MOTIONVARIABLES' Q{2}''
CONSTANTS L,M,G
NEWTONIAN N
POINT PN
V_PN_N> = 0>
THETA1 = ATAN(Q2/Q1)
FRAMES A
SIMPROT(N, A, 3, THETA1)
PARTICLES P
P_PN_P> = Q1*N1>+Q2*N2>
MASS P=M
V_P_N>=DT(P_P_PN>, N)
F_V = DOT(EXPRESS(V_P_N>,A), A1>)
GRAVITY(G*N1>)
DEPENDENT[1] = F_V
CONSTRAIN(DEPENDENT[Q1'])
ZERO=FR()+FRSTAR()
F_C = MAG(P_P_PN>)-L
CONFIG[1]=F_C
ZERO[2]=CONFIG[1]

View File

@ -0,0 +1,36 @@
import sympy.physics.mechanics as _me
import sympy as _sm
import math as m
import numpy as _np
q1, q2 = _me.dynamicsymbols('q1 q2')
q1_d, q2_d = _me.dynamicsymbols('q1_ q2_', 1)
q1_dd, q2_dd = _me.dynamicsymbols('q1_ q2_', 2)
l, m, g = _sm.symbols('l m g', real=True)
frame_n = _me.ReferenceFrame('n')
point_pn = _me.Point('pn')
point_pn.set_vel(frame_n, 0)
theta1 = _sm.atan(q2/q1)
frame_a = _me.ReferenceFrame('a')
frame_a.orient(frame_n, 'Axis', [theta1, frame_n.z])
particle_p = _me.Particle('p', _me.Point('p_pt'), _sm.Symbol('m'))
particle_p.point.set_pos(point_pn, q1*frame_n.x+q2*frame_n.y)
particle_p.mass = m
particle_p.point.set_vel(frame_n, (point_pn.pos_from(particle_p.point)).dt(frame_n))
f_v = _me.dot((particle_p.point.vel(frame_n)).express(frame_a), frame_a.x)
force_p = particle_p.mass*(g*frame_n.x)
dependent = _sm.Matrix([[0]])
dependent[0] = f_v
velocity_constraints = [i for i in dependent]
u_q1_d = _me.dynamicsymbols('u_q1_d')
u_q2_d = _me.dynamicsymbols('u_q2_d')
kd_eqs = [q1_d-u_q1_d, q2_d-u_q2_d]
forceList = [(particle_p.point,particle_p.mass*(g*frame_n.x))]
kane = _me.KanesMethod(frame_n, q_ind=[q1,q2], u_ind=[u_q2_d], u_dependent=[u_q1_d], kd_eqs = kd_eqs, velocity_constraints = velocity_constraints)
fr, frstar = kane.kanes_equations([particle_p], forceList)
zero = fr+frstar
f_c = point_pn.pos_from(particle_p.point).magnitude()-l
config = _sm.Matrix([[0]])
config[0] = f_c
zero = zero.row_insert(zero.shape[0], _sm.Matrix([[0]]))
zero[zero.shape[0]-1] = config[0]