I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,34 @@
from sympy.core import symbols, S
from sympy.functions import adjoint, conjugate, transpose
from sympy.matrices.expressions import MatrixSymbol, Adjoint, trace, Transpose
from sympy.matrices import eye, Matrix
n, m, l, k, p = symbols('n m l k p', integer=True)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
def test_adjoint():
Sq = MatrixSymbol('Sq', n, n)
assert Adjoint(A).shape == (m, n)
assert Adjoint(A*B).shape == (l, n)
assert adjoint(Adjoint(A)) == A
assert isinstance(Adjoint(Adjoint(A)), Adjoint)
assert conjugate(Adjoint(A)) == Transpose(A)
assert transpose(Adjoint(A)) == Adjoint(Transpose(A))
assert Adjoint(eye(3)).doit() == eye(3)
assert Adjoint(S(5)).doit() == S(5)
assert Adjoint(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])
assert adjoint(trace(Sq)) == conjugate(trace(Sq))
assert trace(adjoint(Sq)) == conjugate(trace(Sq))
assert Adjoint(Sq)[0, 1] == conjugate(Sq[1, 0])
assert Adjoint(A*B).doit() == Adjoint(B) * Adjoint(A)

View File

@ -0,0 +1,118 @@
from sympy.core.symbol import symbols, Dummy
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.core.function import Lambda
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.trigonometric import sin
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.matmul import MatMul
from sympy.simplify.simplify import simplify
X = MatrixSymbol("X", 3, 3)
Y = MatrixSymbol("Y", 3, 3)
k = symbols("k")
Xk = MatrixSymbol("X", k, k)
Xd = X.as_explicit()
x, y, z, t = symbols("x y z t")
def test_applyfunc_matrix():
x = Dummy('x')
double = Lambda(x, x**2)
expr = ElementwiseApplyFunction(double, Xd)
assert isinstance(expr, ElementwiseApplyFunction)
assert expr.doit() == Xd.applyfunc(lambda x: x**2)
assert expr.shape == (3, 3)
assert expr.func(*expr.args) == expr
assert simplify(expr) == expr
assert expr[0, 0] == double(Xd[0, 0])
expr = ElementwiseApplyFunction(double, X)
assert isinstance(expr, ElementwiseApplyFunction)
assert isinstance(expr.doit(), ElementwiseApplyFunction)
assert expr == X.applyfunc(double)
assert expr.func(*expr.args) == expr
expr = ElementwiseApplyFunction(exp, X*Y)
assert expr.expr == X*Y
assert expr.function.dummy_eq(Lambda(x, exp(x)))
assert expr.dummy_eq((X*Y).applyfunc(exp))
assert expr.func(*expr.args) == expr
assert isinstance(X*expr, MatMul)
assert (X*expr).shape == (3, 3)
Z = MatrixSymbol("Z", 2, 3)
assert (Z*expr).shape == (2, 3)
expr = ElementwiseApplyFunction(exp, Z.T)*ElementwiseApplyFunction(exp, Z)
assert expr.shape == (3, 3)
expr = ElementwiseApplyFunction(exp, Z)*ElementwiseApplyFunction(exp, Z.T)
assert expr.shape == (2, 2)
M = Matrix([[x, y], [z, t]])
expr = ElementwiseApplyFunction(sin, M)
assert isinstance(expr, ElementwiseApplyFunction)
assert expr.function.dummy_eq(Lambda(x, sin(x)))
assert expr.expr == M
assert expr.doit() == M.applyfunc(sin)
assert expr.doit() == Matrix([[sin(x), sin(y)], [sin(z), sin(t)]])
assert expr.func(*expr.args) == expr
expr = ElementwiseApplyFunction(double, Xk)
assert expr.doit() == expr
assert expr.subs(k, 2).shape == (2, 2)
assert (expr*expr).shape == (k, k)
M = MatrixSymbol("M", k, t)
expr2 = M.T*expr*M
assert isinstance(expr2, MatMul)
assert expr2.args[1] == expr
assert expr2.shape == (t, t)
expr3 = expr*M
assert expr3.shape == (k, t)
expr1 = ElementwiseApplyFunction(lambda x: x+1, Xk)
expr2 = ElementwiseApplyFunction(lambda x: x, Xk)
assert expr1 != expr2
def test_applyfunc_entry():
af = X.applyfunc(sin)
assert af[0, 0] == sin(X[0, 0])
af = Xd.applyfunc(sin)
assert af[0, 0] == sin(X[0, 0])
def test_applyfunc_as_explicit():
af = X.applyfunc(sin)
assert af.as_explicit() == Matrix([
[sin(X[0, 0]), sin(X[0, 1]), sin(X[0, 2])],
[sin(X[1, 0]), sin(X[1, 1]), sin(X[1, 2])],
[sin(X[2, 0]), sin(X[2, 1]), sin(X[2, 2])],
])
def test_applyfunc_transpose():
af = Xk.applyfunc(sin)
assert af.T.dummy_eq(Xk.T.applyfunc(sin))
def test_applyfunc_shape_11_matrices():
M = MatrixSymbol("M", 1, 1)
double = Lambda(x, x*2)
expr = M.applyfunc(sin)
assert isinstance(expr, ElementwiseApplyFunction)
expr = M.applyfunc(double)
assert isinstance(expr, MatMul)
assert expr == 2*M

View File

@ -0,0 +1,469 @@
from sympy.matrices.expressions.trace import Trace
from sympy.testing.pytest import raises, slow
from sympy.matrices.expressions.blockmatrix import (
block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
blockcut, reblock_2x2, deblock)
from sympy.matrices.expressions import (
MatrixSymbol, Identity, trace, det, ZeroMatrix, OneMatrix)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.exceptions import NonInvertibleMatrixError
from sympy.matrices import (
Matrix, ImmutableMatrix, ImmutableSparseMatrix, zeros)
from sympy.core import Tuple, Expr, S, Function
from sympy.core.symbol import Symbol, symbols
from sympy.functions import transpose, im, re
i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
G = MatrixSymbol('G', n, n)
H = MatrixSymbol('H', n, n)
b1 = BlockMatrix([[G, H]])
b2 = BlockMatrix([[G], [H]])
def test_bc_matmul():
assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
def test_bc_matadd():
assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
BlockMatrix([[G+H, H+H]])
def test_bc_transpose():
assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
BlockMatrix([[A.T, C.T], [B.T, D.T]])
def test_bc_dist_diag():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', m, m)
C = MatrixSymbol('C', l, l)
X = BlockDiagMatrix(A, B, C)
assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
def test_block_plus_ident():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
Z = MatrixSymbol('Z', n + m, n + m)
assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
def test_BlockMatrix():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, k)
C = MatrixSymbol('C', l, m)
D = MatrixSymbol('D', l, k)
M = MatrixSymbol('M', m + k, p)
N = MatrixSymbol('N', l + n, k + m)
X = BlockMatrix(Matrix([[A, B], [C, D]]))
assert X.__class__(*X.args) == X
# block_collapse does nothing on normal inputs
E = MatrixSymbol('E', n, m)
assert block_collapse(A + 2*E) == A + 2*E
F = MatrixSymbol('F', m, m)
assert block_collapse(E.T*A*F) == E.T*A*F
assert X.shape == (l + n, k + m)
assert X.blockshape == (2, 2)
assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
assert transpose(X).shape == X.shape[::-1]
# Test that BlockMatrices and MatrixSymbols can still mix
assert (X*M).is_MatMul
assert X._blockmul(M).is_MatMul
assert (X*M).shape == (n + l, p)
assert (X + N).is_MatAdd
assert X._blockadd(N).is_MatAdd
assert (X + N).shape == X.shape
E = MatrixSymbol('E', m, 1)
F = MatrixSymbol('F', k, 1)
Y = BlockMatrix(Matrix([[E], [F]]))
assert (X*Y).shape == (l + n, 1)
assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
# block_collapse passes down into container objects, transposes, and inverse
assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
assert block_collapse(Tuple(X*Y, 2*X)) == (
block_collapse(X*Y), block_collapse(2*X))
# Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
Ab = BlockMatrix([[A]])
Z = MatrixSymbol('Z', *A.shape)
assert block_collapse(Ab + Z) == A + Z
def test_block_collapse_explicit_matrices():
A = Matrix([[1, 2], [3, 4]])
assert block_collapse(BlockMatrix([[A]])) == A
A = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert block_collapse(BlockMatrix([[A]])) == A
def test_issue_17624():
a = MatrixSymbol("a", 2, 2)
z = ZeroMatrix(2, 2)
b = BlockMatrix([[a, z], [z, z]])
assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
def test_issue_18618():
A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
assert A == Matrix(BlockDiagMatrix(A))
def test_BlockMatrix_trace():
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
X = BlockMatrix([[A, B], [C, D]])
assert trace(X) == trace(A) + trace(D)
assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
def test_BlockMatrix_Determinant():
A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
X = BlockMatrix([[A, B], [C, D]])
from sympy.assumptions.ask import Q
from sympy.assumptions.assume import assuming
with assuming(Q.invertible(A)):
assert det(X) == det(A) * det(X.schur('A'))
assert isinstance(det(X), Expr)
assert det(BlockMatrix([A])) == det(A)
assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
def test_squareBlockMatrix():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
Y = BlockMatrix([[A]])
assert X.is_square
Q = X + Identity(m + n)
assert (block_collapse(Q) ==
BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
assert block_collapse(Y.I) == A.I
assert isinstance(X.inverse(), Inverse)
assert not X.is_Identity
Z = BlockMatrix([[Identity(n), B], [C, D]])
assert not Z.is_Identity
def test_BlockMatrix_2x2_inverse_symbolic():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, k - m)
C = MatrixSymbol('C', k - n, m)
D = MatrixSymbol('D', k - n, k - m)
X = BlockMatrix([[A, B], [C, D]])
assert X.is_square and X.shape == (k, k)
assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
# test code path where only A is invertible
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = ZeroMatrix(m, m)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
[-X.schur('A').I * C * A.I, X.schur('A').I],
])
# test code path where only B is invertible
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, n)
C = ZeroMatrix(m, m)
D = MatrixSymbol('D', m, n)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[-X.schur('B').I * D * B.I, X.schur('B').I],
[B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
])
# test code path where only C is invertible
A = MatrixSymbol('A', n, m)
B = ZeroMatrix(n, n)
C = MatrixSymbol('C', m, m)
D = MatrixSymbol('D', m, n)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
[X.schur('C').I, -X.schur('C').I * A * C.I],
])
# test code path where only D is invertible
A = ZeroMatrix(n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
assert block_collapse(X.inverse()) == BlockMatrix([
[X.schur('D').I, -X.schur('D').I * B * D.I],
[-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
])
def test_BlockMatrix_2x2_inverse_numeric():
"""Test 2x2 block matrix inversion numerically for all 4 formulas"""
M = Matrix([[1, 2], [3, 4]])
# rank deficient matrices that have full rank when two of them combined
D1 = Matrix([[1, 2], [2, 4]])
D2 = Matrix([[1, 3], [3, 9]])
D3 = Matrix([[1, 4], [4, 16]])
assert D1.rank() == D2.rank() == D3.rank() == 1
assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
# Only A is invertible
K = BlockMatrix([[M, D1], [D2, D3]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
# Only B is invertible
K = BlockMatrix([[D1, M], [D2, D3]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
# Only C is invertible
K = BlockMatrix([[D1, D2], [M, D3]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
# Only D is invertible
K = BlockMatrix([[D1, D2], [D3, M]])
assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
@slow
def test_BlockMatrix_3x3_symbolic():
# Only test one of these, instead of all permutations, because it's slow
rowblocksizes = (n, m, k)
colblocksizes = (m, k, n)
K = BlockMatrix([
[MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
for rows in rowblocksizes
])
collapse = block_collapse(K.I)
assert isinstance(collapse, BlockMatrix)
def test_BlockDiagMatrix():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', m, m)
C = MatrixSymbol('C', l, l)
M = MatrixSymbol('M', n + m + l, n + m + l)
X = BlockDiagMatrix(A, B, C)
Y = BlockDiagMatrix(A, 2*B, 3*C)
assert X.blocks[1, 1] == B
assert X.shape == (n + m + l, n + m + l)
assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
for i in range(3) for j in range(3))
assert X.__class__(*X.args) == X
assert X.get_diag_blocks() == (A, B, C)
assert isinstance(block_collapse(X.I * X), Identity)
assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
#XXX: should be == ??
assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
# Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
assert (X*(2*M)).is_MatMul
assert (X + (2*M)).is_MatAdd
assert (X._blockmul(M)).is_MatMul
assert (X._blockadd(M)).is_MatAdd
def test_BlockDiagMatrix_nonsquare():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', k, l)
X = BlockDiagMatrix(A, B)
assert X.shape == (n + k, m + l)
assert X.shape == (n + k, m + l)
assert X.rowblocksizes == [n, k]
assert X.colblocksizes == [m, l]
C = MatrixSymbol('C', n, m)
D = MatrixSymbol('D', k, l)
Y = BlockDiagMatrix(C, D)
assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
def test_BlockDiagMatrix_determinant():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', m, m)
assert det(BlockDiagMatrix()) == 1
assert det(BlockDiagMatrix(A)) == det(A)
assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
# non-square blocks
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', n, m)
assert det(BlockDiagMatrix(C, D)) == 0
def test_BlockDiagMatrix_trace():
assert trace(BlockDiagMatrix()) == 0
assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
A = MatrixSymbol('A', n, n)
assert trace(BlockDiagMatrix(A)) == trace(A)
B = MatrixSymbol('B', m, m)
assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
# non-square blocks
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', n, m)
assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
def test_BlockDiagMatrix_transpose():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', k, l)
assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
def test_issue_2460():
bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
def test_blockcut():
A = MatrixSymbol('A', n, m)
B = blockcut(A, (n/2, n/2), (m/2, m/2))
assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
[A[n/2:, :m/2], A[n/2:, m/2:]]])
M = ImmutableMatrix(4, 4, range(16))
B = blockcut(M, (2, 2), (2, 2))
assert M == ImmutableMatrix(B)
B = blockcut(M, (1, 3), (2, 2))
assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
def test_reblock_2x2():
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
for j in range(3)]
for i in range(3)])
assert B.blocks.shape == (3, 3)
BB = reblock_2x2(B)
assert BB.blocks.shape == (2, 2)
assert B.shape == BB.shape
assert B.as_explicit() == BB.as_explicit()
def test_deblock():
B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
for j in range(4)]
for i in range(4)])
assert deblock(reblock_2x2(B)) == B
def test_block_collapse_type():
bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
assert bm1.T.__class__ == BlockDiagMatrix
assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
def test_invalid_block_matrix():
raises(ValueError, lambda: BlockMatrix([
[Identity(2), Identity(5)],
]))
raises(ValueError, lambda: BlockMatrix([
[Identity(n), Identity(m)],
]))
raises(ValueError, lambda: BlockMatrix([
[ZeroMatrix(n, n), ZeroMatrix(n, n)],
[ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
]))
raises(ValueError, lambda: BlockMatrix([
[ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
[ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
]))
def test_block_lu_decomposition():
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, n)
D = MatrixSymbol('D', m, m)
X = BlockMatrix([[A, B], [C, D]])
#LDU decomposition
L, D, U = X.LDUdecomposition()
assert block_collapse(L*D*U) == X
#UDL decomposition
U, D, L = X.UDLdecomposition()
assert block_collapse(U*D*L) == X
#LU decomposition
L, U = X.LUdecomposition()
assert block_collapse(L*U) == X
def test_issue_21866():
n = 10
I = Identity(n)
O = ZeroMatrix(n, n)
A = BlockMatrix([[ I, O, O, O ],
[ O, I, O, O ],
[ O, O, I, O ],
[ I, O, O, I ]])
Ainv = block_collapse(A.inv())
AinvT = BlockMatrix([[ I, O, O, O ],
[ O, I, O, O ],
[ O, O, I, O ],
[ -I, O, O, I ]])
assert Ainv == AinvT
def test_adjoint_and_special_matrices():
A = Identity(3)
B = OneMatrix(3, 2)
C = ZeroMatrix(2, 3)
D = Identity(2)
X = BlockMatrix([[A, B], [C, D]])
X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
assert re(X) == X
assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])
def test_block_matrix_derivative():
x = symbols('x')
A = Matrix(3, 3, [Function(f'a{i}')(x) for i in range(9)])
bc = BlockMatrix([[A[:2, :2], A[:2, 2]], [A[2, :2], A[2:, 2]]])
assert Matrix(bc.diff(x)) - A.diff(x) == zeros(3, 3)
def test_transpose_inverse_commute():
n = Symbol('n')
I = Identity(n)
Z = ZeroMatrix(n, n)
A = BlockMatrix([[I, Z], [Z, I]])
assert block_collapse(A.transpose().inverse()) == A
assert block_collapse(A.inverse().transpose()) == A
assert block_collapse(MatPow(A.transpose(), -2)) == MatPow(A, -2)
assert block_collapse(MatPow(A, -2).transpose()) == MatPow(A, -2)

View File

@ -0,0 +1,48 @@
from sympy.core.expr import unchanged
from sympy.core.symbol import Symbol, symbols
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.matrices.expressions.companion import CompanionMatrix
from sympy.polys.polytools import Poly
from sympy.testing.pytest import raises
def test_creation():
x = Symbol('x')
y = Symbol('y')
raises(ValueError, lambda: CompanionMatrix(1))
raises(ValueError, lambda: CompanionMatrix(Poly([1], x)))
raises(ValueError, lambda: CompanionMatrix(Poly([2, 1], x)))
raises(ValueError, lambda: CompanionMatrix(Poly(x*y, [x, y])))
assert unchanged(CompanionMatrix, Poly([1, 2, 3], x))
def test_shape():
c0, c1, c2 = symbols('c0:3')
x = Symbol('x')
assert CompanionMatrix(Poly([1, c0], x)).shape == (1, 1)
assert CompanionMatrix(Poly([1, c1, c0], x)).shape == (2, 2)
assert CompanionMatrix(Poly([1, c2, c1, c0], x)).shape == (3, 3)
def test_entry():
c0, c1, c2 = symbols('c0:3')
x = Symbol('x')
A = CompanionMatrix(Poly([1, c2, c1, c0], x))
assert A[0, 0] == 0
assert A[1, 0] == 1
assert A[1, 1] == 0
assert A[2, 1] == 1
assert A[0, 2] == -c0
assert A[1, 2] == -c1
assert A[2, 2] == -c2
def test_as_explicit():
c0, c1, c2 = symbols('c0:3')
x = Symbol('x')
assert CompanionMatrix(Poly([1, c0], x)).as_explicit() == \
ImmutableDenseMatrix([-c0])
assert CompanionMatrix(Poly([1, c1, c0], x)).as_explicit() == \
ImmutableDenseMatrix([[0, -c0], [1, -c1]])
assert CompanionMatrix(Poly([1, c2, c1, c0], x)).as_explicit() == \
ImmutableDenseMatrix([[0, 0, -c0], [1, 0, -c1], [0, 1, -c2]])

View File

@ -0,0 +1,477 @@
"""
Some examples have been taken from:
http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
"""
from sympy import KroneckerProduct
from sympy.combinatorics import Permutation
from sympy.concrete.summations import Sum
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import OneMatrix
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
from sympy.tensor.array.array_derivatives import ArrayDerivative
from sympy.matrices.expressions import hadamard_power
from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
i, j, k = symbols("i j k")
m, n = symbols("m n")
X = MatrixSymbol("X", k, k)
x = MatrixSymbol("x", k, 1)
y = MatrixSymbol("y", k, 1)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
# TODO: this is commented because it slows down the tests.
return
expr = expr.xreplace({k: dim})
x = x.xreplace({k: dim})
diffexpr = diffexpr.xreplace({k: dim})
expr = expr.as_explicit()
x = x.as_explicit()
diffexpr = diffexpr.as_explicit()
assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
def test_matrix_derivative_by_scalar():
assert A.diff(i) == ZeroMatrix(k, k)
assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
assert x.diff(i) == ZeroMatrix(k, 1)
assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
assert (x*x.T).diff(i) == ZeroMatrix(k, k)
assert (x + y).diff(i) == ZeroMatrix(k, 1)
assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
assert hadamard_power(x, i).diff(i).dummy_eq(
HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
assert (i*x).diff(i) == x
assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
mu = symbols("mu")
expr = (2*mu*x)
assert expr.diff(x) == 2*mu*Identity(k)
def test_one_matrix():
assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)
def test_matrix_derivative_non_matrix_result():
# This is a 4-dimensional array:
I = Identity(k)
AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
assert A.diff(A) == AdA
assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
assert (A + B).diff(A) == AdA
def test_matrix_derivative_trivial_cases():
# Cookbook example 33:
# TODO: find a way to represent a four-dimensional zero-array:
assert X.diff(A) == ArrayDerivative(X, A)
def test_matrix_derivative_with_inverse():
# Cookbook example 61:
expr = a.T*Inverse(X)*b
assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
# Cookbook example 62:
expr = Determinant(Inverse(X))
# Not implemented yet:
# assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
# Cookbook example 63:
expr = Trace(A*Inverse(X)*B)
assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
# Cookbook example 64:
expr = Trace(Inverse(X + A))
assert expr.diff(X) == -(Inverse(X + A)).T**2
def test_matrix_derivative_vectors_and_scalars():
assert x.diff(x) == Identity(k)
assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
assert x.T.diff(x) == Identity(k)
# Cookbook example 69:
expr = x.T*a
assert expr.diff(x) == a
assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
expr = a.T*x
assert expr.diff(x) == a
# Cookbook example 70:
expr = a.T*X*b
assert expr.diff(X) == a*b.T
# Cookbook example 71:
expr = a.T*X.T*b
assert expr.diff(X) == b*a.T
# Cookbook example 72:
expr = a.T*X*a
assert expr.diff(X) == a*a.T
expr = a.T*X.T*a
assert expr.diff(X) == a*a.T
# Cookbook example 77:
expr = b.T*X.T*X*c
assert expr.diff(X) == X*b*c.T + X*c*b.T
# Cookbook example 78:
expr = (B*x + b).T*C*(D*x + d)
assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
# Cookbook example 81:
expr = x.T*B*x
assert expr.diff(x) == B*x + B.T*x
# Cookbook example 82:
expr = b.T*X.T*D*X*c
assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
# Cookbook example 83:
expr = (X*b + c).T*D*(X*b + c)
assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
assert str(expr[0, 0].diff(X[m, n]).doit()) == \
'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
# See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
expr = x*x.T*x
I = Identity(k)
assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
def test_matrix_derivatives_of_traces():
expr = Trace(A)*A
I = Identity(k)
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
assert expr[i, j].diff(A[m, n]).doit() == (
KDelta(i, m)*KDelta(j, n)*Trace(A) +
KDelta(m, n)*A[i, j]
)
## First order:
# Cookbook example 99:
expr = Trace(X)
assert expr.diff(X) == Identity(k)
assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
# Cookbook example 100:
expr = Trace(X*A)
assert expr.diff(X) == A.T
assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
# Cookbook example 101:
expr = Trace(A*X*B)
assert expr.diff(X) == A.T*B.T
assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
# Cookbook example 102:
expr = Trace(A*X.T*B)
assert expr.diff(X) == B*A
# Cookbook example 103:
expr = Trace(X.T*A)
assert expr.diff(X) == A
# Cookbook example 104:
expr = Trace(A*X.T)
assert expr.diff(X) == A
# Cookbook example 105:
# TODO: TensorProduct is not supported
#expr = Trace(TensorProduct(A, X))
#assert expr.diff(X) == Trace(A)*Identity(k)
## Second order:
# Cookbook example 106:
expr = Trace(X**2)
assert expr.diff(X) == 2*X.T
# Cookbook example 107:
expr = Trace(X**2*B)
assert expr.diff(X) == (X*B + B*X).T
expr = Trace(MatMul(X, X, B))
assert expr.diff(X) == (X*B + B*X).T
# Cookbook example 108:
expr = Trace(X.T*B*X)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 109:
expr = Trace(B*X*X.T)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 110:
expr = Trace(X*X.T*B)
assert expr.diff(X) == B*X + B.T*X
# Cookbook example 111:
expr = Trace(X*B*X.T)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 112:
expr = Trace(B*X.T*X)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 113:
expr = Trace(X.T*X*B)
assert expr.diff(X) == X*B.T + X*B
# Cookbook example 114:
expr = Trace(A*X*B*X)
assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
# Cookbook example 115:
expr = Trace(X.T*X)
assert expr.diff(X) == 2*X
expr = Trace(X*X.T)
assert expr.diff(X) == 2*X
# Cookbook example 116:
expr = Trace(B.T*X.T*C*X*B)
assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
# Cookbook example 117:
expr = Trace(X.T*B*X*C)
assert expr.diff(X) == B*X*C + B.T*X*C.T
# Cookbook example 118:
expr = Trace(A*X*B*X.T*C)
assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
# Cookbook example 119:
expr = Trace((A*X*B + C)*(A*X*B + C).T)
assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
# Cookbook example 120:
# TODO: no support for TensorProduct.
# expr = Trace(TensorProduct(X, X))
# expr = Trace(X)*Trace(X)
# expr.diff(X) == 2*Trace(X)*Identity(k)
# Higher Order
# Cookbook example 121:
expr = Trace(X**k)
#assert expr.diff(X) == k*(X**(k-1)).T
# Cookbook example 122:
expr = Trace(A*X**k)
#assert expr.diff(X) == # Needs indices
# Cookbook example 123:
expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
# Other
# Cookbook example 124:
expr = Trace(A*X**(-1)*B)
assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
# Cookbook example 125:
expr = Trace(Inverse(X.T*C*X)*A)
# Warning: result in the cookbook is equivalent if B and C are symmetric:
assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
# Cookbook example 126:
expr = Trace((X.T*C*X).inv()*(X.T*B*X))
assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
# Cookbook example 127:
expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
# Warning: result in the cookbook is equivalent if B and C are symmetric:
assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
def test_derivatives_of_complicated_matrix_expr():
expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
assert expr.diff(X) == result
def test_mixed_deriv_mixed_expressions():
expr = 3*Trace(A)
assert expr.diff(A) == 3*Identity(k)
expr = k
deriv = expr.diff(A)
assert isinstance(deriv, ZeroMatrix)
assert deriv == ZeroMatrix(k, k)
expr = Trace(A)**2
assert expr.diff(A) == (2*Trace(A))*Identity(k)
expr = Trace(A)*A
I = Identity(k)
assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
expr = Trace(Trace(A)*A)
assert expr.diff(A) == (2*Trace(A))*Identity(k)
expr = Trace(Trace(Trace(A)*A)*A)
assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
def test_derivatives_matrix_norms():
expr = x.T*y
assert expr.diff(x) == y
assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
expr = (x.T*y)**S.Half
assert expr.diff(x) == y/(2*sqrt(x.T*y))
expr = (x.T*x)**S.Half
assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
expr = (c.T*a*x.T*b)**S.Half
assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
expr = (c.T*a*x.T*b)**Rational(1, 3)
assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
expr = (a.T*X*b)**S.Half
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
def test_derivatives_elementwise_applyfunc():
expr = x.applyfunc(tan)
assert expr.diff(x).dummy_eq(
DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = (i**2*x).applyfunc(sin)
assert expr.diff(i).dummy_eq(
HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
expr = (log(i)*A*B).applyfunc(sin)
assert expr.diff(i).dummy_eq(
HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
_check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
expr = A*x.applyfunc(exp)
# TODO: restore this result (currently returning the transpose):
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = x.T*A*x + k*y.applyfunc(sin).T*x
assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = x.applyfunc(sin).T*y
# TODO: restore (currently returning the transpose):
# assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
_check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
expr = (a.T * X * b).applyfunc(sin)
assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * X.applyfunc(sin) * b
assert expr.diff(X).dummy_eq(
DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * (A*X*B).applyfunc(sin) * b
assert expr.diff(X).dummy_eq(
A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T * (A*X*b).applyfunc(sin) * b.T
# TODO: not implemented
#assert expr.diff(X) == ...
#_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
expr = a.T*A*X.applyfunc(sin)*B*b
assert expr.diff(X).dummy_eq(
HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
# TODO: wrong
# assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
# TODO: wrong
# assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
def test_derivatives_of_hadamard_expressions():
# Hadamard Product
expr = hadamard_product(a, x, b)
assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
expr = a.T*hadamard_product(A, X, B)*b
assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
# Hadamard Power
expr = hadamard_power(x, 2)
assert expr.diff(x).doit() == 2*DiagMatrix(x)
expr = hadamard_power(x.T, 2)
assert expr.diff(x).doit() == 2*DiagMatrix(x)
expr = hadamard_power(x, S.Half)
assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
expr = hadamard_power(a.T*X*b, 2)
assert expr.diff(X) == 2*a*a.T*X*b*b.T
expr = hadamard_power(a.T*X*b, S.Half)
assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T

View File

@ -0,0 +1,65 @@
from sympy.core import S, symbols
from sympy.matrices import eye, ones, Matrix, ShapeError
from sympy.matrices.expressions import (
Identity, MatrixExpr, MatrixSymbol, Determinant,
det, per, ZeroMatrix, Transpose,
Permanent, MatMul
)
from sympy.matrices.expressions.special import OneMatrix
from sympy.testing.pytest import raises
from sympy.assumptions.ask import Q
from sympy.assumptions.refine import refine
n = symbols('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', 3, 4)
def test_det():
assert isinstance(Determinant(A), Determinant)
assert not isinstance(Determinant(A), MatrixExpr)
raises(ShapeError, lambda: Determinant(C))
assert det(eye(3)) == 1
assert det(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 17
_ = A / det(A) # Make sure this is possible
raises(TypeError, lambda: Determinant(S.One))
assert Determinant(A).arg is A
def test_eval_determinant():
assert det(Identity(n)) == 1
assert det(ZeroMatrix(n, n)) == 0
assert det(OneMatrix(n, n)) == Determinant(OneMatrix(n, n))
assert det(OneMatrix(1, 1)) == 1
assert det(OneMatrix(2, 2)) == 0
assert det(Transpose(A)) == det(A)
assert Determinant(MatMul(eye(2), eye(2))).doit(deep=True) == 1
def test_refine():
assert refine(det(A), Q.orthogonal(A)) == 1
assert refine(det(A), Q.singular(A)) == 0
assert refine(det(A), Q.unit_triangular(A)) == 1
assert refine(det(A), Q.normal(A)) == det(A)
def test_commutative():
det_a = Determinant(A)
det_b = Determinant(B)
assert det_a.is_commutative
assert det_b.is_commutative
assert det_a * det_b == det_b * det_a
def test_permanent():
assert isinstance(Permanent(A), Permanent)
assert not isinstance(Permanent(A), MatrixExpr)
assert isinstance(Permanent(C), Permanent)
assert Permanent(ones(3, 3)).doit() == 6
_ = C / per(C)
assert per(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 103
raises(TypeError, lambda: Permanent(S.One))
assert Permanent(A).arg is A

View File

@ -0,0 +1,156 @@
from sympy.matrices.expressions import MatrixSymbol
from sympy.matrices.expressions.diagonal import DiagonalMatrix, DiagonalOf, DiagMatrix, diagonalize_vector
from sympy.assumptions.ask import (Q, ask)
from sympy.core.symbol import Symbol
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions.special import Identity
from sympy.testing.pytest import raises
n = Symbol('n')
m = Symbol('m')
def test_DiagonalMatrix():
x = MatrixSymbol('x', n, m)
D = DiagonalMatrix(x)
assert D.diagonal_length is None
assert D.shape == (n, m)
x = MatrixSymbol('x', n, n)
D = DiagonalMatrix(x)
assert D.diagonal_length == n
assert D.shape == (n, n)
assert D[1, 2] == 0
assert D[1, 1] == x[1, 1]
i = Symbol('i')
j = Symbol('j')
x = MatrixSymbol('x', 3, 3)
ij = DiagonalMatrix(x)[i, j]
assert ij != 0
assert ij.subs({i:0, j:0}) == x[0, 0]
assert ij.subs({i:0, j:1}) == 0
assert ij.subs({i:1, j:1}) == x[1, 1]
assert ask(Q.diagonal(D)) # affirm that D is diagonal
x = MatrixSymbol('x', n, 3)
D = DiagonalMatrix(x)
assert D.diagonal_length == 3
assert D.shape == (n, 3)
assert D[2, m] == KroneckerDelta(2, m)*x[2, m]
assert D[3, m] == 0
raises(IndexError, lambda: D[m, 3])
x = MatrixSymbol('x', 3, n)
D = DiagonalMatrix(x)
assert D.diagonal_length == 3
assert D.shape == (3, n)
assert D[m, 2] == KroneckerDelta(m, 2)*x[m, 2]
assert D[m, 3] == 0
raises(IndexError, lambda: D[3, m])
x = MatrixSymbol('x', n, m)
D = DiagonalMatrix(x)
assert D.diagonal_length is None
assert D.shape == (n, m)
assert D[m, 4] != 0
x = MatrixSymbol('x', 3, 4)
assert [DiagonalMatrix(x)[i] for i in range(12)] == [
x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0]
# shape is retained, issue 12427
assert (
DiagonalMatrix(MatrixSymbol('x', 3, 4))*
DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
def test_DiagonalOf():
x = MatrixSymbol('x', n, n)
d = DiagonalOf(x)
assert d.shape == (n, 1)
assert d.diagonal_length == n
assert d[2, 0] == d[2] == x[2, 2]
x = MatrixSymbol('x', n, m)
d = DiagonalOf(x)
assert d.shape == (None, 1)
assert d.diagonal_length is None
assert d[2, 0] == d[2] == x[2, 2]
d = DiagonalOf(MatrixSymbol('x', 4, 3))
assert d.shape == (3, 1)
d = DiagonalOf(MatrixSymbol('x', n, 3))
assert d.shape == (3, 1)
d = DiagonalOf(MatrixSymbol('x', 3, n))
assert d.shape == (3, 1)
x = MatrixSymbol('x', n, m)
assert [DiagonalOf(x)[i] for i in range(4)] ==[
x[0, 0], x[1, 1], x[2, 2], x[3, 3]]
def test_DiagMatrix():
x = MatrixSymbol('x', n, 1)
d = DiagMatrix(x)
assert d.shape == (n, n)
assert d[0, 1] == 0
assert d[0, 0] == x[0, 0]
a = MatrixSymbol('a', 1, 1)
d = diagonalize_vector(a)
assert isinstance(d, MatrixSymbol)
assert a == d
assert diagonalize_vector(Identity(3)) == Identity(3)
assert DiagMatrix(Identity(3)).doit() == Identity(3)
assert isinstance(DiagMatrix(Identity(3)), DiagMatrix)
# A diagonal matrix is equal to its transpose:
assert DiagMatrix(x).T == DiagMatrix(x)
assert diagonalize_vector(x.T) == DiagMatrix(x)
dx = DiagMatrix(x)
assert dx[0, 0] == x[0, 0]
assert dx[1, 1] == x[1, 0]
assert dx[0, 1] == 0
assert dx[0, m] == x[0, 0]*KroneckerDelta(0, m)
z = MatrixSymbol('z', 1, n)
dz = DiagMatrix(z)
assert dz[0, 0] == z[0, 0]
assert dz[1, 1] == z[0, 1]
assert dz[0, 1] == 0
assert dz[0, m] == z[0, m]*KroneckerDelta(0, m)
v = MatrixSymbol('v', 3, 1)
dv = DiagMatrix(v)
assert dv.as_explicit() == Matrix([
[v[0, 0], 0, 0],
[0, v[1, 0], 0],
[0, 0, v[2, 0]],
])
v = MatrixSymbol('v', 1, 3)
dv = DiagMatrix(v)
assert dv.as_explicit() == Matrix([
[v[0, 0], 0, 0],
[0, v[0, 1], 0],
[0, 0, v[0, 2]],
])
dv = DiagMatrix(3*v)
assert dv.args == (3*v,)
assert dv.doit() == 3*DiagMatrix(v)
assert isinstance(dv.doit(), MatMul)
a = MatrixSymbol("a", 3, 1).as_explicit()
expr = DiagMatrix(a)
result = Matrix([
[a[0, 0], 0, 0],
[0, a[1, 0], 0],
[0, 0, a[2, 0]],
])
assert expr.doit() == result
expr = DiagMatrix(a.T)
assert expr.doit() == result

View File

@ -0,0 +1,35 @@
from sympy.core.expr import unchanged
from sympy.core.mul import Mul
from sympy.matrices import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.testing.pytest import raises
A = Matrix(3, 1, [1, 2, 3])
B = Matrix(3, 1, [1, 3, 5])
C = Matrix(4, 1, [1, 2, 4, 5])
D = Matrix(2, 2, [1, 2, 3, 4])
def test_docproduct():
assert DotProduct(A, B).doit() == 22
assert DotProduct(A.T, B).doit() == 22
assert DotProduct(A, B.T).doit() == 22
assert DotProduct(A.T, B.T).doit() == 22
raises(TypeError, lambda: DotProduct(1, A))
raises(TypeError, lambda: DotProduct(A, 1))
raises(TypeError, lambda: DotProduct(A, D))
raises(TypeError, lambda: DotProduct(D, A))
raises(TypeError, lambda: DotProduct(B, C).doit())
def test_dotproduct_symbolic():
A = MatrixSymbol('A', 3, 1)
B = MatrixSymbol('B', 3, 1)
dot = DotProduct(A, B)
assert dot.is_scalar == True
assert unchanged(Mul, 2, dot)
# XXX Fix forced evaluation for arithmetics with matrix expressions
assert dot * A == (A[0, 0]*B[0, 0] + A[1, 0]*B[1, 0] + A[2, 0]*B[2, 0])*A

View File

@ -0,0 +1,29 @@
from sympy.matrices.expressions.factorizations import lu, LofCholesky, qr, svd
from sympy.assumptions.ask import (Q, ask)
from sympy.core.symbol import Symbol
from sympy.matrices.expressions.matexpr import MatrixSymbol
n = Symbol('n')
X = MatrixSymbol('X', n, n)
def test_LU():
L, U = lu(X)
assert L.shape == U.shape == X.shape
assert ask(Q.lower_triangular(L))
assert ask(Q.upper_triangular(U))
def test_Cholesky():
LofCholesky(X)
def test_QR():
Q_, R = qr(X)
assert Q_.shape == R.shape == X.shape
assert ask(Q.orthogonal(Q_))
assert ask(Q.upper_triangular(R))
def test_svd():
U, S, V = svd(X)
assert U.shape == S.shape == V.shape == X.shape
assert ask(Q.orthogonal(U))
assert ask(Q.orthogonal(V))
assert ask(Q.diagonal(S))

View File

@ -0,0 +1,44 @@
from sympy.assumptions.ask import (Q, ask)
from sympy.core.numbers import (I, Rational)
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.simplify.simplify import simplify
from sympy.core.symbol import symbols
from sympy.matrices.expressions.fourier import DFT, IDFT
from sympy.matrices import det, Matrix, Identity
from sympy.testing.pytest import raises
def test_dft_creation():
assert DFT(2)
assert DFT(0)
raises(ValueError, lambda: DFT(-1))
raises(ValueError, lambda: DFT(2.0))
raises(ValueError, lambda: DFT(2 + 1j))
n = symbols('n')
assert DFT(n)
n = symbols('n', integer=False)
raises(ValueError, lambda: DFT(n))
n = symbols('n', negative=True)
raises(ValueError, lambda: DFT(n))
def test_dft():
n, i, j = symbols('n i j')
assert DFT(4).shape == (4, 4)
assert ask(Q.unitary(DFT(4)))
assert Abs(simplify(det(Matrix(DFT(4))))) == 1
assert DFT(n)*IDFT(n) == Identity(n)
assert DFT(n)[i, j] == exp(-2*S.Pi*I/n)**(i*j) / sqrt(n)
def test_dft2():
assert DFT(1).as_explicit() == Matrix([[1]])
assert DFT(2).as_explicit() == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
assert DFT(4).as_explicit() == Matrix([[S.Half, S.Half, S.Half, S.Half],
[S.Half, -I/2, Rational(-1,2), I/2],
[S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
[S.Half, I/2, Rational(-1,2), -I/2]])

View File

@ -0,0 +1,54 @@
from sympy.core import symbols, Lambda
from sympy.core.sympify import SympifyError
from sympy.functions import KroneckerDelta
from sympy.matrices import Matrix
from sympy.matrices.expressions import FunctionMatrix, MatrixExpr, Identity
from sympy.testing.pytest import raises
def test_funcmatrix_creation():
i, j, k = symbols('i j k')
assert FunctionMatrix(2, 2, Lambda((i, j), 0))
assert FunctionMatrix(0, 0, Lambda((i, j), 0))
raises(ValueError, lambda: FunctionMatrix(-1, 0, Lambda((i, j), 0)))
raises(ValueError, lambda: FunctionMatrix(2.0, 0, Lambda((i, j), 0)))
raises(ValueError, lambda: FunctionMatrix(2j, 0, Lambda((i, j), 0)))
raises(ValueError, lambda: FunctionMatrix(0, -1, Lambda((i, j), 0)))
raises(ValueError, lambda: FunctionMatrix(0, 2.0, Lambda((i, j), 0)))
raises(ValueError, lambda: FunctionMatrix(0, 2j, Lambda((i, j), 0)))
raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda(i, 0)))
raises(SympifyError, lambda: FunctionMatrix(2, 2, lambda i, j: 0))
raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i,), 0)))
raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i, j, k), 0)))
raises(ValueError, lambda: FunctionMatrix(2, 2, i+j))
assert FunctionMatrix(2, 2, "lambda i, j: 0") == \
FunctionMatrix(2, 2, Lambda((i, j), 0))
m = FunctionMatrix(2, 2, KroneckerDelta)
assert m.as_explicit() == Identity(2).as_explicit()
assert m.args[2].dummy_eq(Lambda((i, j), KroneckerDelta(i, j)))
n = symbols('n')
assert FunctionMatrix(n, n, Lambda((i, j), 0))
n = symbols('n', integer=False)
raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
n = symbols('n', negative=True)
raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
def test_funcmatrix():
i, j = symbols('i,j')
X = FunctionMatrix(3, 3, Lambda((i, j), i - j))
assert X[1, 1] == 0
assert X[1, 2] == -1
assert X.shape == (3, 3)
assert X.rows == X.cols == 3
assert Matrix(X) == Matrix(3, 3, lambda i, j: i - j)
assert isinstance(X*X + X, MatrixExpr)
def test_replace_issue():
X = FunctionMatrix(3, 3, KroneckerDelta)
assert X.replace(lambda x: True, lambda x: x) == X

View File

@ -0,0 +1,141 @@
from sympy.matrices.dense import Matrix, eye
from sympy.matrices.exceptions import ShapeError
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.special import Identity, OneMatrix, ZeroMatrix
from sympy.core import symbols
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy.matrices import MatrixSymbol
from sympy.matrices.expressions import (HadamardProduct, hadamard_product, HadamardPower, hadamard_power)
n, m, k = symbols('n,m,k')
Z = MatrixSymbol('Z', n, n)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, k)
def test_HadamardProduct():
assert HadamardProduct(A, B, A).shape == A.shape
raises(TypeError, lambda: HadamardProduct(A, n))
raises(TypeError, lambda: HadamardProduct(A, 1))
assert HadamardProduct(A, 2*B, -A)[1, 1] == \
-2 * A[1, 1] * B[1, 1] * A[1, 1]
mix = HadamardProduct(Z*A, B)*C
assert mix.shape == (n, k)
assert set(HadamardProduct(A, B, A).T.args) == {A.T, A.T, B.T}
def test_HadamardProduct_isnt_commutative():
assert HadamardProduct(A, B) != HadamardProduct(B, A)
def test_mixed_indexing():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
Z = MatrixSymbol('Z', 2, 2)
assert (X*HadamardProduct(Y, Z))[0, 0] == \
X[0, 0]*Y[0, 0]*Z[0, 0] + X[0, 1]*Y[1, 0]*Z[1, 0]
def test_canonicalize():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
with warns_deprecated_sympy():
expr = HadamardProduct(X, check=False)
assert isinstance(expr, HadamardProduct)
expr2 = expr.doit() # unpack is called
assert isinstance(expr2, MatrixSymbol)
Z = ZeroMatrix(2, 2)
U = OneMatrix(2, 2)
assert HadamardProduct(Z, X).doit() == Z
assert HadamardProduct(U, X, X, U).doit() == HadamardPower(X, 2)
assert HadamardProduct(X, U, Y).doit() == HadamardProduct(X, Y)
assert HadamardProduct(X, Z, U, Y).doit() == Z
def test_hadamard():
m, n, p = symbols('m, n, p', integer=True)
A = MatrixSymbol('A', m, n)
B = MatrixSymbol('B', m, n)
X = MatrixSymbol('X', m, m)
I = Identity(m)
raises(TypeError, lambda: hadamard_product())
assert hadamard_product(A) == A
assert isinstance(hadamard_product(A, B), HadamardProduct)
assert hadamard_product(A, B).doit() == hadamard_product(A, B)
assert hadamard_product(X, I) == HadamardProduct(I, X)
assert isinstance(hadamard_product(X, I), HadamardProduct)
a = MatrixSymbol("a", k, 1)
expr = MatAdd(ZeroMatrix(k, 1), OneMatrix(k, 1))
expr = HadamardProduct(expr, a)
assert expr.doit() == a
raises(ValueError, lambda: HadamardProduct())
def test_hadamard_product_with_explicit_mat():
A = MatrixSymbol("A", 3, 3).as_explicit()
B = MatrixSymbol("B", 3, 3).as_explicit()
X = MatrixSymbol("X", 3, 3)
expr = hadamard_product(A, B)
ret = Matrix([i*j for i, j in zip(A, B)]).reshape(3, 3)
assert expr == ret
expr = hadamard_product(A, X, B)
assert expr == HadamardProduct(ret, X)
expr = hadamard_product(eye(3), A)
assert expr == Matrix([[A[0, 0], 0, 0], [0, A[1, 1], 0], [0, 0, A[2, 2]]])
expr = hadamard_product(eye(3), eye(3))
assert expr == eye(3)
def test_hadamard_power():
m, n, p = symbols('m, n, p', integer=True)
A = MatrixSymbol('A', m, n)
assert hadamard_power(A, 1) == A
assert isinstance(hadamard_power(A, 2), HadamardPower)
assert hadamard_power(A, n).T == hadamard_power(A.T, n)
assert hadamard_power(A, n)[0, 0] == A[0, 0]**n
assert hadamard_power(m, n) == m**n
raises(ValueError, lambda: hadamard_power(A, A))
def test_hadamard_power_explicit():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
a, b = symbols('a b')
assert HadamardPower(a, b) == a**b
assert HadamardPower(a, B).as_explicit() == \
Matrix([
[a**B[0, 0], a**B[0, 1]],
[a**B[1, 0], a**B[1, 1]]])
assert HadamardPower(A, b).as_explicit() == \
Matrix([
[A[0, 0]**b, A[0, 1]**b],
[A[1, 0]**b, A[1, 1]**b]])
assert HadamardPower(A, B).as_explicit() == \
Matrix([
[A[0, 0]**B[0, 0], A[0, 1]**B[0, 1]],
[A[1, 0]**B[1, 0], A[1, 1]**B[1, 1]]])
def test_shape_error():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 3, 3)
raises(ShapeError, lambda: HadamardProduct(A, B))
raises(ShapeError, lambda: HadamardPower(A, B))
A = MatrixSymbol('A', 3, 2)
raises(ShapeError, lambda: HadamardProduct(A, B))
raises(ShapeError, lambda: HadamardPower(A, B))

View File

@ -0,0 +1,299 @@
from sympy.concrete.summations import Sum
from sympy.core.symbol import symbols, Symbol, Dummy
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions.matexpr import (MatrixSymbol,
MatrixExpr, MatrixElement)
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.special import (ZeroMatrix, Identity,
OneMatrix)
from sympy.matrices.expressions.trace import Trace, trace
from sympy.matrices.immutable import ImmutableMatrix
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.testing.pytest import XFAIL, raises
k, l, m, n = symbols('k l m n', integer=True)
i, j = symbols('i j', integer=True)
W = MatrixSymbol('W', k, l)
X = MatrixSymbol('X', l, m)
Y = MatrixSymbol('Y', l, m)
Z = MatrixSymbol('Z', m, n)
X1 = MatrixSymbol('X1', m, m)
X2 = MatrixSymbol('X2', m, m)
X3 = MatrixSymbol('X3', m, m)
X4 = MatrixSymbol('X4', m, m)
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
x = MatrixSymbol('x', 1, 2)
y = MatrixSymbol('x', 2, 1)
def test_symbolic_indexing():
x12 = X[1, 2]
assert all(s in str(x12) for s in ['1', '2', X.name])
# We don't care about the exact form of this. We do want to make sure
# that all of these features are present
def test_add_index():
assert (X + Y)[i, j] == X[i, j] + Y[i, j]
def test_mul_index():
assert (A*y)[0, 0] == A[0, 0]*y[0, 0] + A[0, 1]*y[1, 0]
assert (A*B).as_mutable() == (A.as_mutable() * B.as_mutable())
X = MatrixSymbol('X', n, m)
Y = MatrixSymbol('Y', m, k)
result = (X*Y)[4,2]
expected = Sum(X[4, i]*Y[i, 2], (i, 0, m - 1))
assert result.args[0].dummy_eq(expected.args[0], i)
assert result.args[1][1:] == expected.args[1][1:]
def test_pow_index():
Q = MatPow(A, 2)
assert Q[0, 0] == A[0, 0]**2 + A[0, 1]*A[1, 0]
n = symbols("n")
Q2 = A**n
assert Q2[0, 0] == 2*(
-sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
)**n * \
A[0, 1]*A[1, 0]/(
(sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
A[1, 1]**2) + A[0, 0] - A[1, 1])*
sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
) - 2*(
sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
)**n * A[0, 1]*A[1, 0]/(
(-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
A[1, 1]**2) + A[0, 0] - A[1, 1])*
sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
)
def test_transpose_index():
assert X.T[i, j] == X[j, i]
def test_Identity_index():
I = Identity(3)
assert I[0, 0] == I[1, 1] == I[2, 2] == 1
assert I[1, 0] == I[0, 1] == I[2, 1] == 0
assert I[i, 0].delta_range == (0, 2)
raises(IndexError, lambda: I[3, 3])
def test_block_index():
I = Identity(3)
Z = ZeroMatrix(3, 3)
B = BlockMatrix([[I, I], [I, I]])
e3 = ImmutableMatrix(eye(3))
BB = BlockMatrix([[e3, e3], [e3, e3]])
assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
assert B[4, 3] == B[5, 1] == 0
BB = BlockMatrix([[e3, e3], [e3, e3]])
assert B.as_explicit() == BB.as_explicit()
BI = BlockMatrix([[I, Z], [Z, I]])
assert BI.as_explicit().equals(eye(6))
def test_block_index_symbolic():
# Note that these matrices may be zero-sized and indices may be negative, which causes
# all naive simplifications given in the comments to be invalid
A1 = MatrixSymbol('A1', n, k)
A2 = MatrixSymbol('A2', n, l)
A3 = MatrixSymbol('A3', m, k)
A4 = MatrixSymbol('A4', m, l)
A = BlockMatrix([[A1, A2], [A3, A4]])
assert A[0, 0] == MatrixElement(A, 0, 0) # Cannot be A1[0, 0]
assert A[n - 1, k - 1] == A1[n - 1, k - 1]
assert A[n, k] == A4[0, 0]
assert A[n + m - 1, 0] == MatrixElement(A, n + m - 1, 0) # Cannot be A3[m - 1, 0]
assert A[0, k + l - 1] == MatrixElement(A, 0, k + l - 1) # Cannot be A2[0, l - 1]
assert A[n + m - 1, k + l - 1] == MatrixElement(A, n + m - 1, k + l - 1) # Cannot be A4[m - 1, l - 1]
assert A[i, j] == MatrixElement(A, i, j)
assert A[n + i, k + j] == MatrixElement(A, n + i, k + j) # Cannot be A4[i, j]
assert A[n - i - 1, k - j - 1] == MatrixElement(A, n - i - 1, k - j - 1) # Cannot be A1[n - i - 1, k - j - 1]
def test_block_index_symbolic_nonzero():
# All invalid simplifications from test_block_index_symbolic() that become valid if all
# matrices have nonzero size and all indices are nonnegative
k, l, m, n = symbols('k l m n', integer=True, positive=True)
i, j = symbols('i j', integer=True, nonnegative=True)
A1 = MatrixSymbol('A1', n, k)
A2 = MatrixSymbol('A2', n, l)
A3 = MatrixSymbol('A3', m, k)
A4 = MatrixSymbol('A4', m, l)
A = BlockMatrix([[A1, A2], [A3, A4]])
assert A[0, 0] == A1[0, 0]
assert A[n + m - 1, 0] == A3[m - 1, 0]
assert A[0, k + l - 1] == A2[0, l - 1]
assert A[n + m - 1, k + l - 1] == A4[m - 1, l - 1]
assert A[i, j] == MatrixElement(A, i, j)
assert A[n + i, k + j] == A4[i, j]
assert A[n - i - 1, k - j - 1] == A1[n - i - 1, k - j - 1]
assert A[2 * n, 2 * k] == A4[n, k]
def test_block_index_large():
n, m, k = symbols('n m k', integer=True, positive=True)
i = symbols('i', integer=True, nonnegative=True)
A1 = MatrixSymbol('A1', n, n)
A2 = MatrixSymbol('A2', n, m)
A3 = MatrixSymbol('A3', n, k)
A4 = MatrixSymbol('A4', m, n)
A5 = MatrixSymbol('A5', m, m)
A6 = MatrixSymbol('A6', m, k)
A7 = MatrixSymbol('A7', k, n)
A8 = MatrixSymbol('A8', k, m)
A9 = MatrixSymbol('A9', k, k)
A = BlockMatrix([[A1, A2, A3], [A4, A5, A6], [A7, A8, A9]])
assert A[n + i, n + i] == MatrixElement(A, n + i, n + i)
@XFAIL
def test_block_index_symbolic_fail():
# To make this work, symbolic matrix dimensions would need to be somehow assumed nonnegative
# even if the symbols aren't specified as such. Then 2 * n < n would correctly evaluate to
# False in BlockMatrix._entry()
A1 = MatrixSymbol('A1', n, 1)
A2 = MatrixSymbol('A2', m, 1)
A = BlockMatrix([[A1], [A2]])
assert A[2 * n, 0] == A2[n, 0]
def test_slicing():
A.as_explicit()[0, :] # does not raise an error
def test_errors():
raises(IndexError, lambda: Identity(2)[1, 2, 3, 4, 5])
raises(IndexError, lambda: Identity(2)[[1, 2, 3, 4, 5]])
def test_matrix_expression_to_indices():
i, j = symbols("i, j")
i1, i2, i3 = symbols("i_1:4")
def replace_dummies(expr):
repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
return expr.xreplace(repl)
expr = W*X*Z
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = Z.T*X.T*W.T
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr
expr = W*X*Z + W*Y*Z
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = 2*W*X*Z + 3*W*Y*Z
assert replace_dummies(expr._entry(i, j)) == \
2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = W*(X + Y)*Z
assert replace_dummies(expr._entry(i, j)) == \
Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
expr = A*B**2*A
#assert replace_dummies(expr._entry(i, j)) == \
# Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))
# Check that different dummies are used in sub-multiplications:
expr = (X1*X2 + X2*X1)*X3
assert replace_dummies(expr._entry(i, j)) == \
Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
i1, j], (i1, 0, m - 1))
def test_matrix_expression_from_index_summation():
from sympy.abc import a,b,c,d
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
w1 = MatrixSymbol("w1", k, 1)
i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == OneMatrix(1, k)*A*OneMatrix(k, 1) + OneMatrix(1, k)*B*OneMatrix(k, 1)
expr = Sum(A[a, b]**2, (a, 0, k - 1), (b, 0, k - 1))
assert MatrixExpr.from_index_summation(expr, a) == Trace(A * A.T)
expr = Sum(A[a, b]**3, (a, 0, k - 1), (b, 0, k - 1))
assert MatrixExpr.from_index_summation(expr, a) == Trace(HadamardPower(A.T, 2) * A)
expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A**3
expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A**2*B
# Parse the trace of a matrix:
expr = Sum(A[a, a], (a, 0, k-1))
assert MatrixExpr.from_index_summation(expr, None) == trace(A)
expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C
# Check wrong sum ranges (should raise an exception):
## Case 1: 0 to m instead of 0 to m-1
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
## Case 2: 1 to m-1 instead of 0 to m-1
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
# Parse nested sums:
expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A*B*C
# Test Kronecker delta:
expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
assert MatrixExpr.from_index_summation(expr, a) == A*B
expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
assert MatrixExpr.from_index_summation(expr, m) == ArrayTensorProduct(A.T, A)
# Test numbered indices:
expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*w1, i1, 0)
expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)

View File

@ -0,0 +1,69 @@
from sympy.core import symbols, S
from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix
from sympy.matrices.exceptions import NonInvertibleMatrixError, NonSquareMatrixError
from sympy.matrices import eye, Identity
from sympy.testing.pytest import raises
from sympy.assumptions.ask import Q
from sympy.assumptions.refine import refine
n, m, l = symbols('n m l', integer=True)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
def test_inverse():
assert Inverse(C).args == (C, S.NegativeOne)
assert Inverse(C).shape == (n, n)
assert Inverse(A*E).shape == (n, n)
assert Inverse(E*A).shape == (m, m)
assert Inverse(C).inverse() == C
assert Inverse(Inverse(C)).doit() == C
assert isinstance(Inverse(Inverse(C)), Inverse)
assert Inverse(*Inverse(E*A).args) == Inverse(E*A)
assert C.inverse().inverse() == C
assert C.inverse()*C == Identity(C.rows)
assert Identity(n).inverse() == Identity(n)
assert (3*Identity(n)).inverse() == Identity(n)/3
# Simplifies Muls if possible (i.e. submatrices are square)
assert (C*D).inverse() == D.I*C.I
# But still works when not possible
assert isinstance((A*E).inverse(), Inverse)
assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D)
assert Inverse(eye(3)).doit() == eye(3)
assert Inverse(eye(3)).doit(deep=False) == eye(3)
assert OneMatrix(1, 1).I == Identity(1)
assert isinstance(OneMatrix(n, n).I, Inverse)
def test_inverse_non_invertible():
raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I)
raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I)
def test_refine():
assert refine(C.I, Q.orthogonal(C)) == C.T
def test_inverse_matpow_canonicalization():
A = MatrixSymbol('A', 3, 3)
assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit()
def test_nonsquare_error():
A = MatrixSymbol('A', 3, 4)
raises(NonSquareMatrixError, lambda: Inverse(A))
def test_adjoint_trnaspose_conjugate():
A = MatrixSymbol('A', n, n)
assert A.transpose().inverse() == A.inverse().transpose()
assert A.conjugate().inverse() == A.inverse().conjugate()
assert A.adjoint().inverse() == A.inverse().adjoint()

View File

@ -0,0 +1,150 @@
from sympy.core.mod import Mod
from sympy.core.numbers import I
from sympy.core.symbol import symbols
from sympy.functions.elementary.integers import floor
from sympy.matrices.dense import (Matrix, eye)
from sympy.matrices import MatrixSymbol, Identity
from sympy.matrices.expressions import det, trace
from sympy.matrices.expressions.kronecker import (KroneckerProduct,
kronecker_product,
combine_kronecker)
mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
mat2 = Matrix([[2 * I, 3], [4 * I, 2]])
i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
Z = MatrixSymbol('Z', n, n)
W = MatrixSymbol('W', m, m)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, m)
C = MatrixSymbol('C', m, k)
def test_KroneckerProduct():
assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
assert KroneckerProduct(A, C).shape == (n*m, m*k)
assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity
def test_KroneckerProduct_identity():
assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
assert KroneckerProduct(eye(2), eye(3)) == eye(6)
def test_KroneckerProduct_explicit():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
kp = KroneckerProduct(X, Y)
assert kp.shape == (4, 4)
assert kp.as_explicit() == Matrix(
[
[X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
[X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
[X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
[X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
]
)
def test_tensor_product_adjoint():
assert KroneckerProduct(I*A, B).adjoint() == \
-I*KroneckerProduct(A.adjoint(), B.adjoint())
assert KroneckerProduct(mat1, mat2).adjoint() == \
kronecker_product(mat1.adjoint(), mat2.adjoint())
def test_tensor_product_conjugate():
assert KroneckerProduct(I*A, B).conjugate() == \
-I*KroneckerProduct(A.conjugate(), B.conjugate())
assert KroneckerProduct(mat1, mat2).conjugate() == \
kronecker_product(mat1.conjugate(), mat2.conjugate())
def test_tensor_product_transpose():
assert KroneckerProduct(I*A, B).transpose() == \
I*KroneckerProduct(A.transpose(), B.transpose())
assert KroneckerProduct(mat1, mat2).transpose() == \
kronecker_product(mat1.transpose(), mat2.transpose())
def test_KroneckerProduct_is_associative():
assert kronecker_product(A, kronecker_product(
B, C)) == kronecker_product(kronecker_product(A, B), C)
assert kronecker_product(A, kronecker_product(
B, C)) == KroneckerProduct(A, B, C)
def test_KroneckerProduct_is_bilinear():
assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
assert kronecker_product(A, x*B) == x*kronecker_product(A, B)
def test_KroneckerProduct_determinant():
kp = kronecker_product(W, Z)
assert det(kp) == det(W)**n * det(Z)**m
def test_KroneckerProduct_trace():
kp = kronecker_product(W, Z)
assert trace(kp) == trace(W)*trace(Z)
def test_KroneckerProduct_isnt_commutative():
assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
assert KroneckerProduct(A, B).is_commutative is False
def test_KroneckerProduct_extracts_commutative_part():
assert kronecker_product(x * A, 2 * B) == x * \
2 * KroneckerProduct(A, B)
def test_KroneckerProduct_inverse():
kp = kronecker_product(W, Z)
assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())
def test_KroneckerProduct_combine_add():
kp1 = kronecker_product(A, B)
kp2 = kronecker_product(C, W)
assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)
def test_KroneckerProduct_combine_mul():
X = MatrixSymbol('X', m, n)
Y = MatrixSymbol('Y', m, n)
kp1 = kronecker_product(A, X)
kp2 = kronecker_product(B, Y)
assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)
def test_KroneckerProduct_combine_pow():
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', n, n)
assert combine_kronecker(KroneckerProduct(
X, Y)**x) == KroneckerProduct(X**x, Y**x)
assert combine_kronecker(x * KroneckerProduct(X, Y)
** 2) == x * KroneckerProduct(X**2, Y**2)
assert combine_kronecker(
x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
# cannot simplify because of non-square arguments to kronecker product:
assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m
def test_KroneckerProduct_expand():
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', n, n)
assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)
def test_KroneckerProduct_entry():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', o, p)
assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]

View File

@ -0,0 +1,58 @@
from sympy.matrices.expressions import MatrixSymbol, MatAdd, MatPow, MatMul
from sympy.matrices.expressions.special import GenericZeroMatrix, ZeroMatrix
from sympy.matrices.exceptions import ShapeError
from sympy.matrices import eye, ImmutableMatrix
from sympy.core import Add, Basic, S
from sympy.core.add import add
from sympy.testing.pytest import XFAIL, raises
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
def test_evaluate():
assert MatAdd(X, X, evaluate=True) == add(X, X, evaluate=True) == MatAdd(X, X).doit()
def test_sort_key():
assert MatAdd(Y, X).doit().args == add(Y, X).doit().args == (X, Y)
def test_matadd_sympify():
assert isinstance(MatAdd(eye(1), eye(1)).args[0], Basic)
assert isinstance(add(eye(1), eye(1)).args[0], Basic)
def test_matadd_of_matrices():
assert MatAdd(eye(2), 4*eye(2), eye(2)).doit() == ImmutableMatrix(6*eye(2))
assert add(eye(2), 4*eye(2), eye(2)).doit() == ImmutableMatrix(6*eye(2))
def test_doit_args():
A = ImmutableMatrix([[1, 2], [3, 4]])
B = ImmutableMatrix([[2, 3], [4, 5]])
assert MatAdd(A, MatPow(B, 2)).doit() == A + B**2
assert MatAdd(A, MatMul(A, B)).doit() == A + A*B
assert (MatAdd(A, X, MatMul(A, B), Y, MatAdd(2*A, B)).doit() ==
add(A, X, MatMul(A, B), Y, add(2*A, B)).doit() ==
MatAdd(3*A + A*B + B, X, Y))
def test_generic_identity():
assert MatAdd.identity == GenericZeroMatrix()
assert MatAdd.identity != S.Zero
def test_zero_matrix_add():
assert Add(ZeroMatrix(2, 2), ZeroMatrix(2, 2)) == ZeroMatrix(2, 2)
@XFAIL
def test_matrix_Add_with_scalar():
raises(TypeError, lambda: Add(0, ZeroMatrix(2, 2)))
def test_shape_error():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 3, 3)
raises(ShapeError, lambda: MatAdd(A, B))
A = MatrixSymbol('A', 3, 2)
raises(ShapeError, lambda: MatAdd(A, B))

View File

@ -0,0 +1,592 @@
from sympy.concrete.summations import Sum
from sympy.core.exprtools import gcd_terms
from sympy.core.function import (diff, expand)
from sympy.core.relational import Eq
from sympy.core.symbol import (Dummy, Symbol, Str)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import zeros
from sympy.polys.polytools import factor
from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
Function)
from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
from sympy.simplify import simplify
from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
MatPow, Matrix, MatrixExpr, MatrixSymbol,
SparseMatrix, Transpose, Adjoint, MatrixSet)
from sympy.matrices.exceptions import NonSquareMatrixError
from sympy.matrices.expressions.determinant import Determinant, det
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.matrices.expressions.special import ZeroMatrix, Identity
from sympy.testing.pytest import raises, XFAIL, skip
from importlib.metadata import version
n, m, l, k, p = symbols('n m l k p', integer=True)
x = symbols('x')
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
w = MatrixSymbol('w', n, 1)
def test_matrix_symbol_creation():
assert MatrixSymbol('A', 2, 2)
assert MatrixSymbol('A', 0, 0)
raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))
n = symbols('n')
assert MatrixSymbol('A', n, n)
n = symbols('n', integer=False)
raises(ValueError, lambda: MatrixSymbol('A', n, n))
n = symbols('n', negative=True)
raises(ValueError, lambda: MatrixSymbol('A', n, n))
def test_matexpr_properties():
assert A.shape == (n, m)
assert (A * B).shape == (n, l)
assert A[0, 1].indices == (0, 1)
assert A[0, 0].symbol == A
assert A[0, 0].symbol.name == 'A'
def test_matexpr():
assert (x*A).shape == A.shape
assert (x*A).__class__ == MatMul
assert 2*A - A - A == ZeroMatrix(*A.shape)
assert (A*B).shape == (n, l)
def test_matexpr_subs():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', m, l)
assert A.subs(n, m).shape == (m, m)
assert (A*B).subs(B, C) == A*C
assert (A*B).subs(l, n).is_square
W = MatrixSymbol("W", 3, 3)
X = MatrixSymbol("X", 2, 2)
Y = MatrixSymbol("Y", 1, 2)
Z = MatrixSymbol("Z", n, 2)
# no restrictions on Symbol replacement
assert X.subs(X, Y) == Y
# it might be better to just change the name
y = Str('y')
assert X.subs(Str("X"), y).args == (y, 2, 2)
# it's ok to introduce a wider matrix
assert X[1, 1].subs(X, W) == W[1, 1]
# but for a given MatrixExpression, only change
# name if indexing on the new shape is valid.
# Here, X is 2,2; Y is 1,2 and Y[1, 1] is out
# of range so an error is raised
raises(IndexError, lambda: X[1, 1].subs(X, Y))
# here, [0, 1] is in range so the subs succeeds
assert X[0, 1].subs(X, Y) == Y[0, 1]
# and here the size of n will accept any index
# in the first position
assert W[2, 1].subs(W, Z) == Z[2, 1]
# but not in the second position
raises(IndexError, lambda: W[2, 2].subs(W, Z))
# any matrix should raise if invalid
raises(IndexError, lambda: W[2, 2].subs(W, zeros(2)))
A = SparseMatrix([[1, 2], [3, 4]])
B = Matrix([[1, 2], [3, 4]])
C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)
assert (C*D).subs({C: A, D: B}) == MatMul(A, B)
def test_addition():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, m)
assert isinstance(A + B, MatAdd)
assert (A + B).shape == A.shape
assert isinstance(A - A + 2*B, MatMul)
raises(TypeError, lambda: A + 1)
raises(TypeError, lambda: 5 + A)
raises(TypeError, lambda: 5 - A)
assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
raises(TypeError, lambda: ZeroMatrix(n, m) + S.Zero)
def test_multiplication():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
assert (2*A*B).shape == (n, l)
assert (A*0*B) == ZeroMatrix(n, l)
assert (2*A).shape == A.shape
assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
assert C * Identity(n) * C.I == Identity(n)
assert B/2 == S.Half*B
raises(NotImplementedError, lambda: 2/B)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert Identity(n) * (A + B) == A + B
assert A**2*A == A**3
assert A**2*(A.I)**3 == A.I
assert A**3*(A.I)**2 == A
def test_MatPow():
A = MatrixSymbol('A', n, n)
AA = MatPow(A, 2)
assert AA.exp == 2
assert AA.base == A
assert (A**n).exp == n
assert A**0 == Identity(n)
assert A**1 == A
assert A**2 == AA
assert A**-1 == Inverse(A)
assert (A**-1)**-1 == A
assert (A**2)**3 == A**6
assert A**S.Half == sqrt(A)
assert A**Rational(1, 3) == cbrt(A)
raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)
def test_MatrixSymbol():
n, m, t = symbols('n,m,t')
X = MatrixSymbol('X', n, m)
assert X.shape == (n, m)
raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
assert X.doit() == X
def test_dense_conversion():
X = MatrixSymbol('X', 2, 2)
assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
def test_free_symbols():
assert (C*D).free_symbols == {C, D}
def test_zero_matmul():
assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
def test_matadd_simplify():
A = MatrixSymbol('A', 1, 1)
assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
MatAdd(A, Matrix([[1]]))
def test_matmul_simplify():
A = MatrixSymbol('A', 1, 1)
assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
MatMul(A, Matrix([[1]]))
def test_invariants():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
X = MatrixSymbol('X', n, n)
objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
MatPow(X, 0)]
for obj in objs:
assert obj == obj.__class__(*obj.args)
def test_matexpr_indexing():
A = MatrixSymbol('A', n, m)
A[1, 2]
A[l, k]
A[l + 1, k + 1]
A = MatrixSymbol('A', 2, 1)
for i in range(-2, 2):
for j in range(-1, 1):
A[i, j]
def test_single_indexing():
A = MatrixSymbol('A', 2, 3)
assert A[1] == A[0, 1]
assert A[int(1)] == A[0, 1]
assert A[3] == A[1, 0]
assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
raises(IndexError, lambda: A[6])
raises(IndexError, lambda: A[n])
B = MatrixSymbol('B', n, m)
raises(IndexError, lambda: B[1])
B = MatrixSymbol('B', n, 3)
assert B[3] == B[1, 0]
def test_MatrixElement_commutative():
assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
def test_MatrixSymbol_determinant():
A = MatrixSymbol('A', 4, 4)
assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
B = MatrixSymbol('B', 4, 4)
assert Determinant(A + B).doit() == det(A + B) == (A + B).det()
def test_MatrixElement_diff():
assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
def test_MatrixElement_doit():
u = MatrixSymbol('u', 2, 1)
v = ImmutableMatrix([3, 5])
assert u[0, 0].subs(u, v).doit() == v[0, 0]
def test_identity_powers():
M = Identity(n)
assert MatPow(M, 3).doit() == M**3
assert M**n == M
assert MatPow(M, 0).doit() == M**2
assert M**-2 == M
assert MatPow(M, -2).doit() == M**0
N = Identity(3)
assert MatPow(N, 2).doit() == N**n
assert MatPow(N, 3).doit() == N
assert MatPow(N, -2).doit() == N**4
assert MatPow(N, 2).doit() == N**0
def test_Zero_power():
z1 = ZeroMatrix(n, n)
assert z1**4 == z1
raises(ValueError, lambda:z1**-2)
assert z1**0 == Identity(n)
assert MatPow(z1, 2).doit() == z1**2
raises(ValueError, lambda:MatPow(z1, -2).doit())
z2 = ZeroMatrix(3, 3)
assert MatPow(z2, 4).doit() == z2**4
raises(ValueError, lambda:z2**-3)
assert z2**3 == MatPow(z2, 3).doit()
assert z2**0 == Identity(3)
raises(ValueError, lambda:MatPow(z2, -1).doit())
def test_matrixelement_diff():
dexpr = diff((D*w)[k,0], w[p,0])
assert w[k, p].diff(w[k, p]) == 1
assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
_i_1 = Dummy("_i_1")
assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
assert dexpr.doit() == D[k, p]
def test_MatrixElement_with_values():
x, y, z, w = symbols("x y z w")
M = Matrix([[x, y], [z, w]])
i, j = symbols("i, j")
Mij = M[i, j]
assert isinstance(Mij, MatrixElement)
Ms = SparseMatrix([[2, 3], [4, 5]])
msij = Ms[i, j]
assert isinstance(msij, MatrixElement)
for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
A = MatrixSymbol("A", 2, 2)
assert A[0, 0].subs(A, M) == x
assert A[i, j].subs(A, M) == M[i, j]
assert M[i, j].subs(M, A) == A[i, j]
assert isinstance(M[3*i - 2, j], MatrixElement)
assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
assert isinstance(M[i, 0], MatrixElement)
assert M[i, 0].subs(i, 0) == M[0, 0]
assert M[0, i].subs(i, 1) == M[0, 1]
assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
raises(ValueError, lambda: M[i, 2])
raises(ValueError, lambda: M[i, -1])
raises(ValueError, lambda: M[2, i])
raises(ValueError, lambda: M[-1, i])
def test_inv():
B = MatrixSymbol('B', 3, 3)
assert B.inv() == B**-1
# https://github.com/sympy/sympy/issues/19162
X = MatrixSymbol('X', 1, 1).as_explicit()
assert X.inv() == Matrix([[1/X[0, 0]]])
X = MatrixSymbol('X', 2, 2).as_explicit()
detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
invX = Matrix([[ X[1, 1], -X[0, 1]],
[-X[1, 0], X[0, 0]]]) / detX
assert X.inv() == invX
@XFAIL
def test_factor_expand():
A = MatrixSymbol("A", n, n)
B = MatrixSymbol("B", n, n)
expr1 = (A + B)*(C + D)
expr2 = A*C + B*C + A*D + B*D
assert expr1 != expr2
assert expand(expr1) == expr2
assert factor(expr2) == expr1
expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
I = Identity(n)
# Ideally we get the first, but we at least don't want a wrong answer
assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
def test_numpy_conversion():
try:
from numpy import array, array_equal
except ImportError:
skip('NumPy must be available to test creating matrices from ndarrays')
A = MatrixSymbol('A', 2, 2)
np_array = array([[MatrixElement(A, 0, 0), MatrixElement(A, 0, 1)],
[MatrixElement(A, 1, 0), MatrixElement(A, 1, 1)]])
assert array_equal(array(A), np_array)
assert array_equal(array(A, copy=True), np_array)
if(int(version('numpy').split('.')[0]) >= 2): #run this test only if numpy is new enough that copy variable is passed properly.
raises(TypeError, lambda: array(A, copy=False))
def test_issue_2749():
A = MatrixSymbol("A", 5, 2)
assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
[(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
def test_issue_2750():
x = MatrixSymbol('x', 1, 1)
assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
def test_issue_7842():
A = MatrixSymbol('A', 3, 1)
B = MatrixSymbol('B', 2, 1)
assert Eq(A, B) == False
assert Eq(A[1,0], B[1, 0]).func is Eq
A = ZeroMatrix(2, 3)
B = ZeroMatrix(2, 3)
assert Eq(A, B) == True
def test_issue_21195():
t = symbols('t')
x = Function('x')(t)
dx = x.diff(t)
exp1 = cos(x) + cos(x)*dx
exp2 = sin(x) + tan(x)*(dx.diff(t))
exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
A = Matrix([[exp1], [exp2], [exp3]])
B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
assert A.diff(x) == B
def test_issue_24859():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 3, 2)
J = A*B
Jinv = Matrix(J).adjugate()
u = MatrixSymbol('u', 2, 3)
Jk = Jinv.subs(A, A + x*u)
expected = B[0, 1]*u[1, 0] + B[1, 1]*u[1, 1] + B[2, 1]*u[1, 2]
assert Jk[0, 0].diff(x) == expected
assert diff(Jk[0, 0], x).doit() == expected
def test_MatMul_postprocessor():
z = zeros(2)
z1 = ZeroMatrix(2, 2)
assert Mul(0, z) == Mul(z, 0) in [z, z1]
M = Matrix([[1, 2], [3, 4]])
Mx = Matrix([[x, 2*x], [3*x, 4*x]])
assert Mul(x, M) == Mul(M, x) == Mx
A = MatrixSymbol("A", 2, 2)
assert Mul(A, M) == MatMul(A, M)
assert Mul(M, A) == MatMul(M, A)
# Scalars should be absorbed into constant matrices
a = Mul(x, M, A)
b = Mul(M, x, A)
c = Mul(M, A, x)
assert a == b == c == MatMul(Mx, A)
a = Mul(x, A, M)
b = Mul(A, x, M)
c = Mul(A, M, x)
assert a == b == c == MatMul(A, Mx)
assert Mul(M, M) == M**2
assert Mul(A, M, M) == MatMul(A, M**2)
assert Mul(M, M, A) == MatMul(M**2, A)
assert Mul(M, A, M) == MatMul(M, A, M)
assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
@XFAIL
def test_MatAdd_postprocessor_xfail():
# This is difficult to get working because of the way that Add processes
# its args.
z = zeros(2)
assert Add(z, S.NaN) == Add(S.NaN, z)
def test_MatAdd_postprocessor():
# Some of these are nonsensical, but we do not raise errors for Add
# because that breaks algorithms that want to replace matrices with dummy
# symbols.
z = zeros(2)
assert Add(0, z) == Add(z, 0) == z
a = Add(S.Infinity, z)
assert a == Add(z, S.Infinity)
assert isinstance(a, Add)
assert a.args == (S.Infinity, z)
a = Add(S.ComplexInfinity, z)
assert a == Add(z, S.ComplexInfinity)
assert isinstance(a, Add)
assert a.args == (S.ComplexInfinity, z)
a = Add(z, S.NaN)
# assert a == Add(S.NaN, z) # See the XFAIL above
assert isinstance(a, Add)
assert a.args == (S.NaN, z)
M = Matrix([[1, 2], [3, 4]])
a = Add(x, M)
assert a == Add(M, x)
assert isinstance(a, Add)
assert a.args == (x, M)
A = MatrixSymbol("A", 2, 2)
assert Add(A, M) == Add(M, A) == A + M
# Scalars should be absorbed into constant matrices (producing an error)
a = Add(x, M, A)
assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
assert isinstance(a, Add)
assert a.args == (x, A + M)
assert Add(M, M) == 2*M
assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
a = Add(A, x, M, M, x)
assert isinstance(a, Add)
assert a.args == (2*x, A + 2*M)
def test_simplify_matrix_expressions():
# Various simplification functions
assert type(gcd_terms(C*D + D*C)) == MatAdd
a = gcd_terms(2*C*D + 4*D*C)
assert type(a) == MatAdd
assert a.args == (2*C*D, 4*D*C)
def test_exp():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
expr1 = exp(A)*exp(B)
expr2 = exp(B)*exp(A)
assert expr1 != expr2
assert expr1 - expr2 != 0
assert not isinstance(expr1, exp)
assert not isinstance(expr2, exp)
def test_invalid_args():
raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
def test_matrixsymbol_from_symbol():
# The label should be preserved during doit and subs
A_label = Symbol('A', complex=True)
A = MatrixSymbol(A_label, 2, 2)
A_1 = A.doit()
A_2 = A.subs(2, 3)
assert A_1.args == A.args
assert A_2.args[0] == A.args[0]
def test_as_explicit():
Z = MatrixSymbol('Z', 2, 3)
assert Z.as_explicit() == ImmutableMatrix([
[Z[0, 0], Z[0, 1], Z[0, 2]],
[Z[1, 0], Z[1, 1], Z[1, 2]],
])
raises(ValueError, lambda: A.as_explicit())
def test_MatrixSet():
M = MatrixSet(2, 2, set=S.Reals)
assert M.shape == (2, 2)
assert M.set == S.Reals
X = Matrix([[1, 2], [3, 4]])
assert X in M
X = ZeroMatrix(2, 2)
assert X in M
raises(TypeError, lambda: A in M)
raises(TypeError, lambda: 1 in M)
M = MatrixSet(n, m, set=S.Reals)
assert A in M
raises(TypeError, lambda: C in M)
raises(TypeError, lambda: X in M)
M = MatrixSet(2, 2, set={1, 2, 3})
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[1, 2]])
assert (X in M) == S.false
assert (Y in M) == S.false
raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
def test_matrixsymbol_solving():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
Z = ZeroMatrix(2, 2)
assert -(-A + B) - A + B == Z
assert (-(-A + B) - A + B).simplify() == Z
assert (-(-A + B) - A + B).expand() == Z
assert (-(-A + B) - A + B - Z).simplify() == Z
assert (-(-A + B) - A + B - Z).expand() == Z
assert (A*(A + B) + B*(A.T + B.T)).expand() == A**2 + A*B + B*A.T + B*B.T

View File

@ -0,0 +1,186 @@
from sympy.core import I, symbols, Basic, Mul, S
from sympy.core.mul import mul
from sympy.functions import adjoint, transpose
from sympy.matrices.exceptions import ShapeError
from sympy.matrices import (Identity, Inverse, Matrix, MatrixSymbol, ZeroMatrix,
eye, ImmutableMatrix)
from sympy.matrices.expressions import Adjoint, Transpose, det, MatPow
from sympy.matrices.expressions.special import GenericIdentity
from sympy.matrices.expressions.matmul import (factor_in_front, remove_ids,
MatMul, combine_powers, any_zeros, unpack, only_squares)
from sympy.strategies import null_safe
from sympy.assumptions.ask import Q
from sympy.assumptions.refine import refine
from sympy.core.symbol import Symbol
from sympy.testing.pytest import XFAIL, raises
n, m, l, k = symbols('n m l k', integer=True)
x = symbols('x')
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
def test_evaluate():
assert MatMul(C, C, evaluate=True) == MatMul(C, C).doit()
def test_adjoint():
assert adjoint(A*B) == Adjoint(B)*Adjoint(A)
assert adjoint(2*A*B) == 2*Adjoint(B)*Adjoint(A)
assert adjoint(2*I*C) == -2*I*Adjoint(C)
M = Matrix(2, 2, [1, 2 + I, 3, 4])
MA = Matrix(2, 2, [1, 3, 2 - I, 4])
assert adjoint(M) == MA
assert adjoint(2*M) == 2*MA
assert adjoint(MatMul(2, M)) == MatMul(2, MA).doit()
def test_transpose():
assert transpose(A*B) == Transpose(B)*Transpose(A)
assert transpose(2*A*B) == 2*Transpose(B)*Transpose(A)
assert transpose(2*I*C) == 2*I*Transpose(C)
M = Matrix(2, 2, [1, 2 + I, 3, 4])
MT = Matrix(2, 2, [1, 3, 2 + I, 4])
assert transpose(M) == MT
assert transpose(2*M) == 2*MT
assert transpose(x*M) == x*MT
assert transpose(MatMul(2, M)) == MatMul(2, MT).doit()
def test_factor_in_front():
assert factor_in_front(MatMul(A, 2, B, evaluate=False)) ==\
MatMul(2, A, B, evaluate=False)
def test_remove_ids():
assert remove_ids(MatMul(A, Identity(m), B, evaluate=False)) == \
MatMul(A, B, evaluate=False)
assert null_safe(remove_ids)(MatMul(Identity(n), evaluate=False)) == \
MatMul(Identity(n), evaluate=False)
def test_combine_powers():
assert combine_powers(MatMul(D, Inverse(D), D, evaluate=False)) == \
MatMul(Identity(n), D, evaluate=False)
assert combine_powers(MatMul(B.T, Inverse(E*A), E, A, B, evaluate=False)) == \
MatMul(B.T, Identity(m), B, evaluate=False)
assert combine_powers(MatMul(A, E, Inverse(A*E), D, evaluate=False)) == \
MatMul(Identity(n), D, evaluate=False)
def test_any_zeros():
assert any_zeros(MatMul(A, ZeroMatrix(m, k), evaluate=False)) == \
ZeroMatrix(n, k)
def test_unpack():
assert unpack(MatMul(A, evaluate=False)) == A
x = MatMul(A, B)
assert unpack(x) == x
def test_only_squares():
assert only_squares(C) == [C]
assert only_squares(C, D) == [C, D]
assert only_squares(C, A, A.T, D) == [C, A*A.T, D]
def test_determinant():
assert det(2*C) == 2**n*det(C)
assert det(2*C*D) == 2**n*det(C)*det(D)
assert det(3*C*A*A.T*D) == 3**n*det(C)*det(A*A.T)*det(D)
def test_doit():
assert MatMul(C, 2, D).args == (C, 2, D)
assert MatMul(C, 2, D).doit().args == (2, C, D)
assert MatMul(C, Transpose(D*C)).args == (C, Transpose(D*C))
assert MatMul(C, Transpose(D*C)).doit(deep=True).args == (C, C.T, D.T)
def test_doit_drills_down():
X = ImmutableMatrix([[1, 2], [3, 4]])
Y = ImmutableMatrix([[2, 3], [4, 5]])
assert MatMul(X, MatPow(Y, 2)).doit() == X*Y**2
assert MatMul(C, Transpose(D*C)).doit().args == (C, C.T, D.T)
def test_doit_deep_false_still_canonical():
assert (MatMul(C, Transpose(D*C), 2).doit(deep=False).args ==
(2, C, Transpose(D*C)))
def test_matmul_scalar_Matrix_doit():
# Issue 9053
X = Matrix([[1, 2], [3, 4]])
assert MatMul(2, X).doit() == 2*X
def test_matmul_sympify():
assert isinstance(MatMul(eye(1), eye(1)).args[0], Basic)
def test_collapse_MatrixBase():
A = Matrix([[1, 1], [1, 1]])
B = Matrix([[1, 2], [3, 4]])
assert MatMul(A, B).doit() == ImmutableMatrix([[4, 6], [4, 6]])
def test_refine():
assert refine(C*C.T*D, Q.orthogonal(C)).doit() == D
kC = k*C
assert refine(kC*C.T, Q.orthogonal(C)).doit() == k*Identity(n)
assert refine(kC* kC.T, Q.orthogonal(C)).doit() == (k**2)*Identity(n)
def test_matmul_no_matrices():
assert MatMul(1) == 1
assert MatMul(n, m) == n*m
assert not isinstance(MatMul(n, m), MatMul)
def test_matmul_args_cnc():
assert MatMul(n, A, A.T).args_cnc() == [[n], [A, A.T]]
assert MatMul(A, A.T).args_cnc() == [[], [A, A.T]]
@XFAIL
def test_matmul_args_cnc_symbols():
# Not currently supported
a, b = symbols('a b', commutative=False)
assert MatMul(n, a, b, A, A.T).args_cnc() == [[n], [a, b, A, A.T]]
assert MatMul(n, a, A, b, A.T).args_cnc() == [[n], [a, A, b, A.T]]
def test_issue_12950():
M = Matrix([[Symbol("x")]]) * MatrixSymbol("A", 1, 1)
assert MatrixSymbol("A", 1, 1).as_explicit()[0]*Symbol('x') == M.as_explicit()[0]
def test_construction_with_Mul():
assert Mul(C, D) == MatMul(C, D)
assert Mul(D, C) == MatMul(D, C)
def test_construction_with_mul():
assert mul(C, D) == MatMul(C, D)
assert mul(D, C) == MatMul(D, C)
assert mul(C, D) != MatMul(D, C)
def test_generic_identity():
assert MatMul.identity == GenericIdentity()
assert MatMul.identity != S.One
def test_issue_23519():
N = Symbol("N", integer=True)
M1 = MatrixSymbol("M1", N, N)
M2 = MatrixSymbol("M2", N, N)
I = Identity(N)
z = (M2 + 2 * (M2 + I) * M1 + I)
assert z.coeff(M1) == 2*I + 2*M2
def test_shape_error():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 3, 3)
raises(ShapeError, lambda: MatMul(A, B))

View File

@ -0,0 +1,217 @@
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.simplify.powsimp import powsimp
from sympy.testing.pytest import raises
from sympy.core.expr import unchanged
from sympy.core import symbols, S
from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix, OneMatrix, Matrix
from sympy.matrices.exceptions import NonSquareMatrixError
from sympy.matrices.expressions import MatPow, MatAdd, MatMul
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixElement
n, m, l, k = symbols('n m l k', integer=True)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
def test_entry_matrix():
X = ImmutableMatrix([[1, 2], [3, 4]])
assert MatPow(X, 0)[0, 0] == 1
assert MatPow(X, 0)[0, 1] == 0
assert MatPow(X, 1)[0, 0] == 1
assert MatPow(X, 1)[0, 1] == 2
assert MatPow(X, 2)[0, 0] == 7
def test_entry_symbol():
from sympy.concrete import Sum
assert MatPow(C, 0)[0, 0] == 1
assert MatPow(C, 0)[0, 1] == 0
assert MatPow(C, 1)[0, 0] == C[0, 0]
assert isinstance(MatPow(C, 2)[0, 0], Sum)
assert isinstance(MatPow(C, n)[0, 0], MatrixElement)
def test_as_explicit_symbol():
X = MatrixSymbol('X', 2, 2)
assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2))
assert MatPow(X, 1).as_explicit() == X.as_explicit()
assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2
assert MatPow(X, n).as_explicit() == ImmutableMatrix([
[(X ** n)[0, 0], (X ** n)[0, 1]],
[(X ** n)[1, 0], (X ** n)[1, 1]],
])
a = MatrixSymbol("a", 3, 1)
b = MatrixSymbol("b", 3, 1)
c = MatrixSymbol("c", 3, 1)
expr = (a.T*b)**S.Half
assert expr.as_explicit() == Matrix([[sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])]])
expr = c*(a.T*b)**S.Half
m = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
assert expr.as_explicit() == Matrix([[c[0, 0]*m], [c[1, 0]*m], [c[2, 0]*m]])
expr = (a*b.T)**S.Half
denom = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
expected = (a*b.T).as_explicit()/denom
assert expr.as_explicit() == expected
expr = X**-1
det = X[0, 0]*X[1, 1] - X[1, 0]*X[0, 1]
expected = Matrix([[X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]])/det
assert expr.as_explicit() == expected
expr = X**m
assert expr.as_explicit() == X.as_explicit()**m
def test_as_explicit_matrix():
A = ImmutableMatrix([[1, 2], [3, 4]])
assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2))
assert MatPow(A, 1).as_explicit() == A
assert MatPow(A, 2).as_explicit() == A**2
assert MatPow(A, -1).as_explicit() == A.inv()
assert MatPow(A, -2).as_explicit() == (A.inv())**2
# less expensive than testing on a 2x2
A = ImmutableMatrix([4])
assert MatPow(A, S.Half).as_explicit() == A**S.Half
def test_doit_symbol():
assert MatPow(C, 0).doit() == Identity(n)
assert MatPow(C, 1).doit() == C
assert MatPow(C, -1).doit() == C.I
for r in [2, S.Half, S.Pi, n]:
assert MatPow(C, r).doit() == MatPow(C, r)
def test_doit_matrix():
X = ImmutableMatrix([[1, 2], [3, 4]])
assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2))
assert MatPow(X, 1).doit() == X
assert MatPow(X, 2).doit() == X**2
assert MatPow(X, -1).doit() == X.inv()
assert MatPow(X, -2).doit() == (X.inv())**2
# less expensive than testing on a 2x2
assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2])
X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0
raises(ValueError, lambda: MatPow(X,-1).doit())
raises(ValueError, lambda: MatPow(X,-2).doit())
def test_nonsquare():
A = MatrixSymbol('A', 2, 3)
B = ImmutableMatrix([[1, 2, 3], [4, 5, 6]])
for r in [-1, 0, 1, 2, S.Half, S.Pi, n]:
raises(NonSquareMatrixError, lambda: MatPow(A, r))
raises(NonSquareMatrixError, lambda: MatPow(B, r))
def test_doit_equals_pow(): #17179
X = ImmutableMatrix ([[1,0],[0,1]])
assert MatPow(X, n).doit() == X**n == X
def test_doit_nested_MatrixExpr():
X = ImmutableMatrix([[1, 2], [3, 4]])
Y = ImmutableMatrix([[2, 3], [4, 5]])
assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2
assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2
def test_identity_power():
k = Identity(n)
assert MatPow(k, 4).doit() == k
assert MatPow(k, n).doit() == k
assert MatPow(k, -3).doit() == k
assert MatPow(k, 0).doit() == k
l = Identity(3)
assert MatPow(l, n).doit() == l
assert MatPow(l, -1).doit() == l
assert MatPow(l, 0).doit() == l
def test_zero_power():
z1 = ZeroMatrix(n, n)
assert MatPow(z1, 3).doit() == z1
raises(ValueError, lambda:MatPow(z1, -1).doit())
assert MatPow(z1, 0).doit() == Identity(n)
assert MatPow(z1, n).doit() == z1
raises(ValueError, lambda:MatPow(z1, -2).doit())
z2 = ZeroMatrix(4, 4)
assert MatPow(z2, n).doit() == z2
raises(ValueError, lambda:MatPow(z2, -3).doit())
assert MatPow(z2, 2).doit() == z2
assert MatPow(z2, 0).doit() == Identity(4)
raises(ValueError, lambda:MatPow(z2, -1).doit())
def test_OneMatrix_power():
o = OneMatrix(3, 3)
assert o ** 0 == Identity(3)
assert o ** 1 == o
assert o * o == o ** 2 == 3 * o
assert o * o * o == o ** 3 == 9 * o
o = OneMatrix(n, n)
assert o * o == o ** 2 == n * o
# powsimp necessary as n ** (n - 2) * n does not produce n ** (n - 1)
assert powsimp(o ** (n - 1) * o) == o ** n == n ** (n - 1) * o
def test_transpose_power():
from sympy.matrices.expressions.transpose import Transpose as TP
assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5
assert ((C*D).T**5).T == (C*D)**5
assert (C.T.I.T)**7 == C**-7
assert (C.T**l).T**k == C**(l*k)
assert ((E.T * A.T)**5).T == (A*E)**5
assert ((A*E).T**5).T**7 == (A*E)**35
assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5
assert ((D*C)**-5).T**-5 == ((D*C)**25).T
assert (((D*C)**l).T**k).T == (D*C)**(l*k)
def test_Inverse():
assert Inverse(MatPow(C, 0)).doit() == Identity(n)
assert Inverse(MatPow(C, 1)).doit() == Inverse(C)
assert Inverse(MatPow(C, 2)).doit() == MatPow(C, -2)
assert Inverse(MatPow(C, -1)).doit() == C
assert MatPow(Inverse(C), 0).doit() == Identity(n)
assert MatPow(Inverse(C), 1).doit() == Inverse(C)
assert MatPow(Inverse(C), 2).doit() == MatPow(C, -2)
assert MatPow(Inverse(C), -1).doit() == C
def test_combine_powers():
assert (C ** 1) ** 1 == C
assert (C ** 2) ** 3 == MatPow(C, 6)
assert (C ** -2) ** -3 == MatPow(C, 6)
assert (C ** -1) ** -1 == C
assert (((C ** 2) ** 3) ** 4) ** 5 == MatPow(C, 120)
assert (C ** n) ** n == C ** (n ** 2)
def test_unchanged():
assert unchanged(MatPow, C, 0)
assert unchanged(MatPow, C, 1)
assert unchanged(MatPow, Inverse(C), -1)
assert unchanged(Inverse, MatPow(C, -1), -1)
assert unchanged(MatPow, MatPow(C, -1), -1)
assert unchanged(MatPow, MatPow(C, 1), 1)
def test_no_exponentiation():
# if this passes, Pow.as_numer_denom should recognize
# MatAdd as exponent
raises(NotImplementedError, lambda: 3**(-2*C))

View File

@ -0,0 +1,166 @@
from sympy.combinatorics import Permutation
from sympy.core.expr import unchanged
from sympy.matrices import Matrix
from sympy.matrices.expressions import \
MatMul, BlockDiagMatrix, Determinant, Inverse
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix, Identity
from sympy.matrices.expressions.permutation import \
MatrixPermute, PermutationMatrix
from sympy.testing.pytest import raises
from sympy.core.symbol import Symbol
def test_PermutationMatrix_basic():
p = Permutation([1, 0])
assert unchanged(PermutationMatrix, p)
raises(ValueError, lambda: PermutationMatrix((0, 1, 2)))
assert PermutationMatrix(p).as_explicit() == Matrix([[0, 1], [1, 0]])
assert isinstance(PermutationMatrix(p)*MatrixSymbol('A', 2, 2), MatMul)
def test_PermutationMatrix_matmul():
p = Permutation([1, 2, 0])
P = PermutationMatrix(p)
M = Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
assert (P*M).as_explicit() == P.as_explicit()*M
assert (M*P).as_explicit() == M*P.as_explicit()
P1 = PermutationMatrix(Permutation([1, 2, 0]))
P2 = PermutationMatrix(Permutation([2, 1, 0]))
P3 = PermutationMatrix(Permutation([1, 0, 2]))
assert P1*P2 == P3
def test_PermutationMatrix_matpow():
p1 = Permutation([1, 2, 0])
P1 = PermutationMatrix(p1)
p2 = Permutation([2, 0, 1])
P2 = PermutationMatrix(p2)
assert P1**2 == P2
assert P1**3 == Identity(3)
def test_PermutationMatrix_identity():
p = Permutation([0, 1])
assert PermutationMatrix(p).is_Identity
p = Permutation([1, 0])
assert not PermutationMatrix(p).is_Identity
def test_PermutationMatrix_determinant():
P = PermutationMatrix(Permutation([0, 1, 2]))
assert Determinant(P).doit() == 1
P = PermutationMatrix(Permutation([0, 2, 1]))
assert Determinant(P).doit() == -1
P = PermutationMatrix(Permutation([2, 0, 1]))
assert Determinant(P).doit() == 1
def test_PermutationMatrix_inverse():
P = PermutationMatrix(Permutation(0, 1, 2))
assert Inverse(P).doit() == PermutationMatrix(Permutation(0, 2, 1))
def test_PermutationMatrix_rewrite_BlockDiagMatrix():
P = PermutationMatrix(Permutation([0, 1, 2, 3, 4, 5]))
P0 = PermutationMatrix(Permutation([0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P0, P0, P0, P0, P0)
P = PermutationMatrix(Permutation([0, 1, 3, 2, 4, 5]))
P10 = PermutationMatrix(Permutation(0, 1))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P0, P10, P0, P0)
P = PermutationMatrix(Permutation([1, 0, 3, 2, 5, 4]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P10, P10, P10)
P = PermutationMatrix(Permutation([0, 4, 3, 2, 1, 5]))
P3210 = PermutationMatrix(Permutation([3, 2, 1, 0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P3210, P0)
P = PermutationMatrix(Permutation([0, 4, 2, 3, 1, 5]))
P3120 = PermutationMatrix(Permutation([3, 1, 2, 0]))
assert P.rewrite(BlockDiagMatrix) == \
BlockDiagMatrix(P0, P3120, P0)
P = PermutationMatrix(Permutation(0, 3)(1, 4)(2, 5))
assert P.rewrite(BlockDiagMatrix) == BlockDiagMatrix(P)
def test_MartrixPermute_basic():
p = Permutation(0, 1)
P = PermutationMatrix(p)
A = MatrixSymbol('A', 2, 2)
raises(ValueError, lambda: MatrixPermute(Symbol('x'), p))
raises(ValueError, lambda: MatrixPermute(A, Symbol('x')))
assert MatrixPermute(A, P) == MatrixPermute(A, p)
raises(ValueError, lambda: MatrixPermute(A, p, 2))
pp = Permutation(0, 1, size=3)
assert MatrixPermute(A, pp) == MatrixPermute(A, p)
pp = Permutation(0, 1, 2)
raises(ValueError, lambda: MatrixPermute(A, pp))
def test_MatrixPermute_shape():
p = Permutation(0, 1)
A = MatrixSymbol('A', 2, 3)
assert MatrixPermute(A, p).shape == (2, 3)
def test_MatrixPermute_explicit():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
AA = A.as_explicit()
assert MatrixPermute(A, p, 0).as_explicit() == \
AA.permute(p, orientation='rows')
assert MatrixPermute(A, p, 1).as_explicit() == \
AA.permute(p, orientation='cols')
def test_MatrixPermute_rewrite_MatMul():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p, 0).rewrite(MatMul).as_explicit() == \
MatrixPermute(A, p, 0).as_explicit()
assert MatrixPermute(A, p, 1).rewrite(MatMul).as_explicit() == \
MatrixPermute(A, p, 1).as_explicit()
def test_MatrixPermute_doit():
p = Permutation(0, 1, 2)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p).doit() == MatrixPermute(A, p)
p = Permutation(0, size=3)
A = MatrixSymbol('A', 3, 3)
assert MatrixPermute(A, p).doit().as_explicit() == \
MatrixPermute(A, p).as_explicit()
p = Permutation(0, 1, 2)
A = Identity(3)
assert MatrixPermute(A, p, 0).doit().as_explicit() == \
MatrixPermute(A, p, 0).as_explicit()
assert MatrixPermute(A, p, 1).doit().as_explicit() == \
MatrixPermute(A, p, 1).as_explicit()
A = ZeroMatrix(3, 3)
assert MatrixPermute(A, p).doit() == A
A = OneMatrix(3, 3)
assert MatrixPermute(A, p).doit() == A
A = MatrixSymbol('A', 4, 4)
p1 = Permutation(0, 1, 2, 3)
p2 = Permutation(0, 2, 3, 1)
expr = MatrixPermute(MatrixPermute(A, p1, 0), p2, 0)
assert expr.as_explicit() == expr.doit().as_explicit()
expr = MatrixPermute(MatrixPermute(A, p1, 1), p2, 1)
assert expr.as_explicit() == expr.doit().as_explicit()

View File

@ -0,0 +1,42 @@
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.matrices import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.sets import MatrixSet
from sympy.matrices.expressions.special import ZeroMatrix
from sympy.testing.pytest import raises
from sympy.sets.sets import SetKind
from sympy.matrices.kind import MatrixKind
from sympy.core.kind import NumberKind
def test_MatrixSet():
n, m = symbols('n m', integer=True)
A = MatrixSymbol('A', n, m)
C = MatrixSymbol('C', n, n)
M = MatrixSet(2, 2, set=S.Reals)
assert M.shape == (2, 2)
assert M.set == S.Reals
X = Matrix([[1, 2], [3, 4]])
assert X in M
X = ZeroMatrix(2, 2)
assert X in M
raises(TypeError, lambda: A in M)
raises(TypeError, lambda: 1 in M)
M = MatrixSet(n, m, set=S.Reals)
assert A in M
raises(TypeError, lambda: C in M)
raises(TypeError, lambda: X in M)
M = MatrixSet(2, 2, set={1, 2, 3})
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[1, 2]])
assert (X in M) == S.false
assert (Y in M) == S.false
raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
def test_SetKind_MatrixSet():
assert MatrixSet(2, 2, set=S.Reals).kind is SetKind(MatrixKind(NumberKind))

View File

@ -0,0 +1,65 @@
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions import MatrixSymbol
from sympy.abc import a, b, c, d, k, l, m, n
from sympy.testing.pytest import raises, XFAIL
from sympy.functions.elementary.integers import floor
from sympy.assumptions import assuming, Q
X = MatrixSymbol('X', n, m)
Y = MatrixSymbol('Y', m, k)
def test_shape():
B = MatrixSlice(X, (a, b), (c, d))
assert B.shape == (b - a, d - c)
def test_entry():
B = MatrixSlice(X, (a, b), (c, d))
assert B[0,0] == X[a, c]
assert B[k,l] == X[a+k, c+l]
raises(IndexError, lambda : MatrixSlice(X, 1, (2, 5))[1, 0])
assert X[1::2, :][1, 3] == X[1+2, 3]
assert X[:, 1::2][3, 1] == X[3, 1+2]
def test_on_diag():
assert not MatrixSlice(X, (a, b), (c, d)).on_diag
assert MatrixSlice(X, (a, b), (a, b)).on_diag
def test_inputs():
assert MatrixSlice(X, 1, (2, 5)) == MatrixSlice(X, (1, 2), (2, 5))
assert MatrixSlice(X, 1, (2, 5)).shape == (1, 3)
def test_slicing():
assert X[1:5, 2:4] == MatrixSlice(X, (1, 5), (2, 4))
assert X[1, 2:4] == MatrixSlice(X, 1, (2, 4))
assert X[1:5, :].shape == (4, X.shape[1])
assert X[:, 1:5].shape == (X.shape[0], 4)
assert X[::2, ::2].shape == (floor(n/2), floor(m/2))
assert X[2, :] == MatrixSlice(X, 2, (0, m))
assert X[k, :] == MatrixSlice(X, k, (0, m))
def test_exceptions():
X = MatrixSymbol('x', 10, 20)
raises(IndexError, lambda: X[0:12, 2])
raises(IndexError, lambda: X[0:9, 22])
raises(IndexError, lambda: X[-1:5, 2])
@XFAIL
def test_symmetry():
X = MatrixSymbol('x', 10, 10)
Y = X[:5, 5:]
with assuming(Q.symmetric(X)):
assert Y.T == X[5:, :5]
def test_slice_of_slice():
X = MatrixSymbol('x', 10, 10)
assert X[2, :][:, 3][0, 0] == X[2, 3]
assert X[:5, :5][:4, :4] == X[:4, :4]
assert X[1:5, 2:6][1:3, 2] == X[2:4, 4]
assert X[1:9:2, 2:6][1:3, 2] == X[3:7:2, 4]
def test_negative_index():
X = MatrixSymbol('x', 10, 10)
assert X[-1, :] == X[9, :]

View File

@ -0,0 +1,228 @@
from sympy.core.add import Add
from sympy.core.expr import unchanged
from sympy.core.mul import Mul
from sympy.core.symbol import symbols
from sympy.core.relational import Eq
from sympy.concrete.summations import Sum
from sympy.functions.elementary.complexes import im, re
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions.special import (
ZeroMatrix, GenericZeroMatrix, Identity, GenericIdentity, OneMatrix)
from sympy.matrices.expressions.matmul import MatMul
from sympy.testing.pytest import raises
def test_zero_matrix_creation():
assert unchanged(ZeroMatrix, 2, 2)
assert unchanged(ZeroMatrix, 0, 0)
raises(ValueError, lambda: ZeroMatrix(-1, 2))
raises(ValueError, lambda: ZeroMatrix(2.0, 2))
raises(ValueError, lambda: ZeroMatrix(2j, 2))
raises(ValueError, lambda: ZeroMatrix(2, -1))
raises(ValueError, lambda: ZeroMatrix(2, 2.0))
raises(ValueError, lambda: ZeroMatrix(2, 2j))
n = symbols('n')
assert unchanged(ZeroMatrix, n, n)
n = symbols('n', integer=False)
raises(ValueError, lambda: ZeroMatrix(n, n))
n = symbols('n', negative=True)
raises(ValueError, lambda: ZeroMatrix(n, n))
def test_generic_zero_matrix():
z = GenericZeroMatrix()
n = symbols('n', integer=True)
A = MatrixSymbol("A", n, n)
assert z == z
assert z != A
assert A != z
assert z.is_ZeroMatrix
raises(TypeError, lambda: z.shape)
raises(TypeError, lambda: z.rows)
raises(TypeError, lambda: z.cols)
assert MatAdd() == z
assert MatAdd(z, A) == MatAdd(A)
# Make sure it is hashable
hash(z)
def test_identity_matrix_creation():
assert Identity(2)
assert Identity(0)
raises(ValueError, lambda: Identity(-1))
raises(ValueError, lambda: Identity(2.0))
raises(ValueError, lambda: Identity(2j))
n = symbols('n')
assert Identity(n)
n = symbols('n', integer=False)
raises(ValueError, lambda: Identity(n))
n = symbols('n', negative=True)
raises(ValueError, lambda: Identity(n))
def test_generic_identity():
I = GenericIdentity()
n = symbols('n', integer=True)
A = MatrixSymbol("A", n, n)
assert I == I
assert I != A
assert A != I
assert I.is_Identity
assert I**-1 == I
raises(TypeError, lambda: I.shape)
raises(TypeError, lambda: I.rows)
raises(TypeError, lambda: I.cols)
assert MatMul() == I
assert MatMul(I, A) == MatMul(A)
# Make sure it is hashable
hash(I)
def test_one_matrix_creation():
assert OneMatrix(2, 2)
assert OneMatrix(0, 0)
assert Eq(OneMatrix(1, 1), Identity(1))
raises(ValueError, lambda: OneMatrix(-1, 2))
raises(ValueError, lambda: OneMatrix(2.0, 2))
raises(ValueError, lambda: OneMatrix(2j, 2))
raises(ValueError, lambda: OneMatrix(2, -1))
raises(ValueError, lambda: OneMatrix(2, 2.0))
raises(ValueError, lambda: OneMatrix(2, 2j))
n = symbols('n')
assert OneMatrix(n, n)
n = symbols('n', integer=False)
raises(ValueError, lambda: OneMatrix(n, n))
n = symbols('n', negative=True)
raises(ValueError, lambda: OneMatrix(n, n))
def test_ZeroMatrix():
n, m = symbols('n m', integer=True)
A = MatrixSymbol('A', n, m)
Z = ZeroMatrix(n, m)
assert A + Z == A
assert A*Z.T == ZeroMatrix(n, n)
assert Z*A.T == ZeroMatrix(n, n)
assert A - A == ZeroMatrix(*A.shape)
assert Z
assert Z.transpose() == ZeroMatrix(m, n)
assert Z.conjugate() == Z
assert Z.adjoint() == ZeroMatrix(m, n)
assert re(Z) == Z
assert im(Z) == Z
assert ZeroMatrix(n, n)**0 == Identity(n)
assert ZeroMatrix(3, 3).as_explicit() == ImmutableDenseMatrix.zeros(3, 3)
def test_ZeroMatrix_doit():
n = symbols('n', integer=True)
Znn = ZeroMatrix(Add(n, n, evaluate=False), n)
assert isinstance(Znn.rows, Add)
assert Znn.doit() == ZeroMatrix(2*n, n)
assert isinstance(Znn.doit().rows, Mul)
def test_OneMatrix():
n, m = symbols('n m', integer=True)
A = MatrixSymbol('A', n, m)
U = OneMatrix(n, m)
assert U.shape == (n, m)
assert isinstance(A + U, Add)
assert U.transpose() == OneMatrix(m, n)
assert U.conjugate() == U
assert U.adjoint() == OneMatrix(m, n)
assert re(U) == U
assert im(U) == ZeroMatrix(n, m)
assert OneMatrix(n, n) ** 0 == Identity(n)
U = OneMatrix(n, n)
assert U[1, 2] == 1
U = OneMatrix(2, 3)
assert U.as_explicit() == ImmutableDenseMatrix.ones(2, 3)
def test_OneMatrix_doit():
n = symbols('n', integer=True)
Unn = OneMatrix(Add(n, n, evaluate=False), n)
assert isinstance(Unn.rows, Add)
assert Unn.doit() == OneMatrix(2 * n, n)
assert isinstance(Unn.doit().rows, Mul)
def test_OneMatrix_mul():
n, m, k = symbols('n m k', integer=True)
w = MatrixSymbol('w', n, 1)
assert OneMatrix(n, m) * OneMatrix(m, k) == OneMatrix(n, k) * m
assert w * OneMatrix(1, 1) == w
assert OneMatrix(1, 1) * w.T == w.T
def test_Identity():
n, m = symbols('n m', integer=True)
A = MatrixSymbol('A', n, m)
i, j = symbols('i j')
In = Identity(n)
Im = Identity(m)
assert A*Im == A
assert In*A == A
assert In.transpose() == In
assert In.inverse() == In
assert In.conjugate() == In
assert In.adjoint() == In
assert re(In) == In
assert im(In) == ZeroMatrix(n, n)
assert In[i, j] != 0
assert Sum(In[i, j], (i, 0, n-1), (j, 0, n-1)).subs(n,3).doit() == 3
assert Sum(Sum(In[i, j], (i, 0, n-1)), (j, 0, n-1)).subs(n,3).doit() == 3
# If range exceeds the limit `(0, n-1)`, do not remove `Piecewise`:
expr = Sum(In[i, j], (i, 0, n-1))
assert expr.doit() == 1
expr = Sum(In[i, j], (i, 0, n-2))
assert expr.doit().dummy_eq(
Piecewise(
(1, (j >= 0) & (j <= n-2)),
(0, True)
)
)
expr = Sum(In[i, j], (i, 1, n-1))
assert expr.doit().dummy_eq(
Piecewise(
(1, (j >= 1) & (j <= n-1)),
(0, True)
)
)
assert Identity(3).as_explicit() == ImmutableDenseMatrix.eye(3)
def test_Identity_doit():
n = symbols('n', integer=True)
Inn = Identity(Add(n, n, evaluate=False))
assert isinstance(Inn.rows, Add)
assert Inn.doit() == Identity(2*n)
assert isinstance(Inn.doit().rows, Mul)

View File

@ -0,0 +1,116 @@
from sympy.core import Lambda, S, symbols
from sympy.concrete import Sum
from sympy.functions import adjoint, conjugate, transpose
from sympy.matrices import eye, Matrix, ShapeError, ImmutableMatrix
from sympy.matrices.expressions import (
Adjoint, Identity, FunctionMatrix, MatrixExpr, MatrixSymbol, Trace,
ZeroMatrix, trace, MatPow, MatAdd, MatMul
)
from sympy.matrices.expressions.special import OneMatrix
from sympy.testing.pytest import raises
from sympy.abc import i
n = symbols('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
C = MatrixSymbol('C', 3, 4)
def test_Trace():
assert isinstance(Trace(A), Trace)
assert not isinstance(Trace(A), MatrixExpr)
raises(ShapeError, lambda: Trace(C))
assert trace(eye(3)) == 3
assert trace(Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])) == 15
assert adjoint(Trace(A)) == trace(Adjoint(A))
assert conjugate(Trace(A)) == trace(Adjoint(A))
assert transpose(Trace(A)) == Trace(A)
_ = A / Trace(A) # Make sure this is possible
# Some easy simplifications
assert trace(Identity(5)) == 5
assert trace(ZeroMatrix(5, 5)) == 0
assert trace(OneMatrix(1, 1)) == 1
assert trace(OneMatrix(2, 2)) == 2
assert trace(OneMatrix(n, n)) == n
assert trace(2*A*B) == 2*Trace(A*B)
assert trace(A.T) == trace(A)
i, j = symbols('i j')
F = FunctionMatrix(3, 3, Lambda((i, j), i + j))
assert trace(F) == (0 + 0) + (1 + 1) + (2 + 2)
raises(TypeError, lambda: Trace(S.One))
assert Trace(A).arg is A
assert str(trace(A)) == str(Trace(A).doit())
assert Trace(A).is_commutative is True
def test_Trace_A_plus_B():
assert trace(A + B) == Trace(A) + Trace(B)
assert Trace(A + B).arg == MatAdd(A, B)
assert Trace(A + B).doit() == Trace(A) + Trace(B)
def test_Trace_MatAdd_doit():
# See issue #9028
X = ImmutableMatrix([[1, 2, 3]]*3)
Y = MatrixSymbol('Y', 3, 3)
q = MatAdd(X, 2*X, Y, -3*Y)
assert Trace(q).arg == q
assert Trace(q).doit() == 18 - 2*Trace(Y)
def test_Trace_MatPow_doit():
X = Matrix([[1, 2], [3, 4]])
assert Trace(X).doit() == 5
q = MatPow(X, 2)
assert Trace(q).arg == q
assert Trace(q).doit() == 29
def test_Trace_MutableMatrix_plus():
# See issue #9043
X = Matrix([[1, 2], [3, 4]])
assert Trace(X) + Trace(X) == 2*Trace(X)
def test_Trace_doit_deep_False():
X = Matrix([[1, 2], [3, 4]])
q = MatPow(X, 2)
assert Trace(q).doit(deep=False).arg == q
q = MatAdd(X, 2*X)
assert Trace(q).doit(deep=False).arg == q
q = MatMul(X, 2*X)
assert Trace(q).doit(deep=False).arg == q
def test_trace_constant_factor():
# Issue 9052: gave 2*Trace(MatMul(A)) instead of 2*Trace(A)
assert trace(2*A) == 2*Trace(A)
X = ImmutableMatrix([[1, 2], [3, 4]])
assert trace(MatMul(2, X)) == 10
def test_trace_rewrite():
assert trace(A).rewrite(Sum) == Sum(A[i, i], (i, 0, n - 1))
assert trace(eye(3)).rewrite(Sum) == 3
def test_trace_normalize():
assert Trace(B*A) != Trace(A*B)
assert Trace(B*A)._normalize() == Trace(A*B)
assert Trace(B*A.T)._normalize() == Trace(A*B.T)
def test_trace_as_explicit():
raises(ValueError, lambda: Trace(A).as_explicit())
X = MatrixSymbol("X", 3, 3)
assert Trace(X).as_explicit() == X[0, 0] + X[1, 1] + X[2, 2]
assert Trace(eye(3)).as_explicit() == 3

View File

@ -0,0 +1,69 @@
from sympy.functions import adjoint, conjugate, transpose
from sympy.matrices.expressions import MatrixSymbol, Adjoint, trace, Transpose
from sympy.matrices import eye, Matrix
from sympy.assumptions.ask import Q
from sympy.assumptions.refine import refine
from sympy.core.singleton import S
from sympy.core.symbol import symbols
n, m, l, k, p = symbols('n m l k p', integer=True)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
def test_transpose():
Sq = MatrixSymbol('Sq', n, n)
assert transpose(A) == Transpose(A)
assert Transpose(A).shape == (m, n)
assert Transpose(A*B).shape == (l, n)
assert transpose(Transpose(A)) == A
assert isinstance(Transpose(Transpose(A)), Transpose)
assert adjoint(Transpose(A)) == Adjoint(Transpose(A))
assert conjugate(Transpose(A)) == Adjoint(A)
assert Transpose(eye(3)).doit() == eye(3)
assert Transpose(S(5)).doit() == S(5)
assert Transpose(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])
assert transpose(trace(Sq)) == trace(Sq)
assert trace(Transpose(Sq)) == trace(Sq)
assert Transpose(Sq)[0, 1] == Sq[1, 0]
assert Transpose(A*B).doit() == Transpose(B) * Transpose(A)
def test_transpose_MatAdd_MatMul():
# Issue 16807
from sympy.functions.elementary.trigonometric import cos
x = symbols('x')
M = MatrixSymbol('M', 3, 3)
N = MatrixSymbol('N', 3, 3)
assert (N + (cos(x) * M)).T == cos(x)*M.T + N.T
def test_refine():
assert refine(C.T, Q.symmetric(C)) == C
def test_transpose1x1():
m = MatrixSymbol('m', 1, 1)
assert m == refine(m.T)
assert m == refine(m.T.T)
def test_issue_9817():
from sympy.matrices.expressions import Identity
v = MatrixSymbol('v', 3, 1)
A = MatrixSymbol('A', 3, 3)
x = Matrix([i + 1 for i in range(3)])
X = Identity(3)
quadratic = v.T * A * v
subbed = quadratic.xreplace({v:x, A:X})
assert subbed.as_explicit() == Matrix([[14]])