I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,234 @@
"""Various tests on satisfiability using dimacs cnf file syntax
You can find lots of cnf files in
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/
"""
from sympy.logic.utilities.dimacs import load
from sympy.logic.algorithms.dpll import dpll_satisfiable
def test_f1():
assert bool(dpll_satisfiable(load(f1)))
def test_f2():
assert bool(dpll_satisfiable(load(f2)))
def test_f3():
assert bool(dpll_satisfiable(load(f3)))
def test_f4():
assert not bool(dpll_satisfiable(load(f4)))
def test_f5():
assert bool(dpll_satisfiable(load(f5)))
f1 = """c simple example
c Resolution: SATISFIABLE
c
p cnf 3 2
1 -3 0
2 3 -1 0
"""
f2 = """c an example from Quinn's text, 16 variables and 18 clauses.
c Resolution: SATISFIABLE
c
p cnf 16 18
1 2 0
-2 -4 0
3 4 0
-4 -5 0
5 -6 0
6 -7 0
6 7 0
7 -16 0
8 -9 0
-8 -14 0
9 10 0
9 -10 0
-10 -11 0
10 12 0
11 12 0
13 14 0
14 -15 0
15 16 0
"""
f3 = """c
p cnf 6 9
-1 0
-3 0
2 -1 0
2 -4 0
5 -4 0
-1 -3 0
-4 -6 0
1 3 -2 0
4 6 -2 -5 0
"""
f4 = """c
c file: hole6.cnf [http://people.sc.fsu.edu/~jburkardt/data/cnf/hole6.cnf]
c
c SOURCE: John Hooker (jh38+@andrew.cmu.edu)
c
c DESCRIPTION: Pigeon hole problem of placing n (for file 'holen.cnf') pigeons
c in n+1 holes without placing 2 pigeons in the same hole
c
c NOTE: Part of the collection at the Forschungsinstitut fuer
c anwendungsorientierte Wissensverarbeitung in Ulm Germany.
c
c NOTE: Not satisfiable
c
p cnf 42 133
-1 -7 0
-1 -13 0
-1 -19 0
-1 -25 0
-1 -31 0
-1 -37 0
-7 -13 0
-7 -19 0
-7 -25 0
-7 -31 0
-7 -37 0
-13 -19 0
-13 -25 0
-13 -31 0
-13 -37 0
-19 -25 0
-19 -31 0
-19 -37 0
-25 -31 0
-25 -37 0
-31 -37 0
-2 -8 0
-2 -14 0
-2 -20 0
-2 -26 0
-2 -32 0
-2 -38 0
-8 -14 0
-8 -20 0
-8 -26 0
-8 -32 0
-8 -38 0
-14 -20 0
-14 -26 0
-14 -32 0
-14 -38 0
-20 -26 0
-20 -32 0
-20 -38 0
-26 -32 0
-26 -38 0
-32 -38 0
-3 -9 0
-3 -15 0
-3 -21 0
-3 -27 0
-3 -33 0
-3 -39 0
-9 -15 0
-9 -21 0
-9 -27 0
-9 -33 0
-9 -39 0
-15 -21 0
-15 -27 0
-15 -33 0
-15 -39 0
-21 -27 0
-21 -33 0
-21 -39 0
-27 -33 0
-27 -39 0
-33 -39 0
-4 -10 0
-4 -16 0
-4 -22 0
-4 -28 0
-4 -34 0
-4 -40 0
-10 -16 0
-10 -22 0
-10 -28 0
-10 -34 0
-10 -40 0
-16 -22 0
-16 -28 0
-16 -34 0
-16 -40 0
-22 -28 0
-22 -34 0
-22 -40 0
-28 -34 0
-28 -40 0
-34 -40 0
-5 -11 0
-5 -17 0
-5 -23 0
-5 -29 0
-5 -35 0
-5 -41 0
-11 -17 0
-11 -23 0
-11 -29 0
-11 -35 0
-11 -41 0
-17 -23 0
-17 -29 0
-17 -35 0
-17 -41 0
-23 -29 0
-23 -35 0
-23 -41 0
-29 -35 0
-29 -41 0
-35 -41 0
-6 -12 0
-6 -18 0
-6 -24 0
-6 -30 0
-6 -36 0
-6 -42 0
-12 -18 0
-12 -24 0
-12 -30 0
-12 -36 0
-12 -42 0
-18 -24 0
-18 -30 0
-18 -36 0
-18 -42 0
-24 -30 0
-24 -36 0
-24 -42 0
-30 -36 0
-30 -42 0
-36 -42 0
6 5 4 3 2 1 0
12 11 10 9 8 7 0
18 17 16 15 14 13 0
24 23 22 21 20 19 0
30 29 28 27 26 25 0
36 35 34 33 32 31 0
42 41 40 39 38 37 0
"""
f5 = """c simple example requiring variable selection
c
c NOTE: Satisfiable
c
p cnf 5 5
1 2 3 0
1 -2 3 0
4 5 -3 0
1 -4 -3 0
-1 -5 0
"""

View File

@ -0,0 +1,381 @@
"""For more tests on satisfiability, see test_dimacs"""
from sympy.assumptions.ask import Q
from sympy.core.symbol import symbols
from sympy.core.relational import Unequality
from sympy.logic.boolalg import And, Or, Implies, Equivalent, true, false
from sympy.logic.inference import literal_symbol, \
pl_true, satisfiable, valid, entails, PropKB
from sympy.logic.algorithms.dpll import dpll, dpll_satisfiable, \
find_pure_symbol, find_unit_clause, unit_propagate, \
find_pure_symbol_int_repr, find_unit_clause_int_repr, \
unit_propagate_int_repr
from sympy.logic.algorithms.dpll2 import dpll_satisfiable as dpll2_satisfiable
from sympy.logic.algorithms.z3_wrapper import z3_satisfiable
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.logic.tests.test_lra_theory import make_random_problem
from sympy.core.random import randint
from sympy.testing.pytest import raises, skip
from sympy.external import import_module
def test_literal():
A, B = symbols('A,B')
assert literal_symbol(True) is True
assert literal_symbol(False) is False
assert literal_symbol(A) is A
assert literal_symbol(~A) is A
def test_find_pure_symbol():
A, B, C = symbols('A,B,C')
assert find_pure_symbol([A], [A]) == (A, True)
assert find_pure_symbol([A, B], [~A | B, ~B | A]) == (None, None)
assert find_pure_symbol([A, B, C], [ A | ~B, ~B | ~C, C | A]) == (A, True)
assert find_pure_symbol([A, B, C], [~A | B, B | ~C, C | A]) == (B, True)
assert find_pure_symbol([A, B, C], [~A | ~B, ~B | ~C, C | A]) == (B, False)
assert find_pure_symbol(
[A, B, C], [~A | B, ~B | ~C, C | A]) == (None, None)
def test_find_pure_symbol_int_repr():
assert find_pure_symbol_int_repr([1], [{1}]) == (1, True)
assert find_pure_symbol_int_repr([1, 2],
[{-1, 2}, {-2, 1}]) == (None, None)
assert find_pure_symbol_int_repr([1, 2, 3],
[{1, -2}, {-2, -3}, {3, 1}]) == (1, True)
assert find_pure_symbol_int_repr([1, 2, 3],
[{-1, 2}, {2, -3}, {3, 1}]) == (2, True)
assert find_pure_symbol_int_repr([1, 2, 3],
[{-1, -2}, {-2, -3}, {3, 1}]) == (2, False)
assert find_pure_symbol_int_repr([1, 2, 3],
[{-1, 2}, {-2, -3}, {3, 1}]) == (None, None)
def test_unit_clause():
A, B, C = symbols('A,B,C')
assert find_unit_clause([A], {}) == (A, True)
assert find_unit_clause([A, ~A], {}) == (A, True) # Wrong ??
assert find_unit_clause([A | B], {A: True}) == (B, True)
assert find_unit_clause([A | B], {B: True}) == (A, True)
assert find_unit_clause(
[A | B | C, B | ~C, A | ~B], {A: True}) == (B, False)
assert find_unit_clause([A | B | C, B | ~C, A | B], {A: True}) == (B, True)
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
def test_unit_clause_int_repr():
assert find_unit_clause_int_repr(map(set, [[1]]), {}) == (1, True)
assert find_unit_clause_int_repr(map(set, [[1], [-1]]), {}) == (1, True)
assert find_unit_clause_int_repr([{1, 2}], {1: True}) == (2, True)
assert find_unit_clause_int_repr([{1, 2}], {2: True}) == (1, True)
assert find_unit_clause_int_repr(map(set,
[[1, 2, 3], [2, -3], [1, -2]]), {1: True}) == (2, False)
assert find_unit_clause_int_repr(map(set,
[[1, 2, 3], [3, -3], [1, 2]]), {1: True}) == (2, True)
A, B, C = symbols('A,B,C')
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
def test_unit_propagate():
A, B, C = symbols('A,B,C')
assert unit_propagate([A | B], A) == []
assert unit_propagate([A | B, ~A | C, ~C | B, A], A) == [C, ~C | B, A]
def test_unit_propagate_int_repr():
assert unit_propagate_int_repr([{1, 2}], 1) == []
assert unit_propagate_int_repr(map(set,
[[1, 2], [-1, 3], [-3, 2], [1]]), 1) == [{3}, {-3, 2}]
def test_dpll():
"""This is also tested in test_dimacs"""
A, B, C = symbols('A,B,C')
assert dpll([A | B], [A, B], {A: True, B: True}) == {A: True, B: True}
def test_dpll_satisfiable():
A, B, C = symbols('A,B,C')
assert dpll_satisfiable( A & ~A ) is False
assert dpll_satisfiable( A & ~B ) == {A: True, B: False}
assert dpll_satisfiable(
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
assert dpll_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert dpll_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False},
{A: True, C: True}, {B: True, C: True})
assert dpll_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert dpll_satisfiable( (A | B) & (A >> B) ) == {B: True}
assert dpll_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert dpll_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
def test_dpll2_satisfiable():
A, B, C = symbols('A,B,C')
assert dpll2_satisfiable( A & ~A ) is False
assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
assert dpll2_satisfiable(
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
assert dpll2_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
{A: True, B: True, C: True})
assert dpll2_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
{B: True, A: True})
assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
def test_minisat22_satisfiable():
A, B, C = symbols('A,B,C')
minisat22_satisfiable = lambda expr: satisfiable(expr, algorithm="minisat22")
assert minisat22_satisfiable( A & ~A ) is False
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
assert minisat22_satisfiable(
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
assert minisat22_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
{B: True, A: True})
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
def test_minisat22_minimal_satisfiable():
A, B, C = symbols('A,B,C')
minisat22_satisfiable = lambda expr, minimal=True: satisfiable(expr, algorithm="minisat22", minimal=True)
assert minisat22_satisfiable( A & ~A ) is False
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
assert minisat22_satisfiable(
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
assert minisat22_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
{B: True, A: True})
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
g = satisfiable((A | B | C),algorithm="minisat22",minimal=True,all_models=True)
sol = next(g)
first_solution = {key for key, value in sol.items() if value}
sol=next(g)
second_solution = {key for key, value in sol.items() if value}
sol=next(g)
third_solution = {key for key, value in sol.items() if value}
assert not first_solution <= second_solution
assert not second_solution <= third_solution
assert not first_solution <= third_solution
def test_satisfiable():
A, B, C = symbols('A,B,C')
assert satisfiable(A & (A >> B) & ~B) is False
def test_valid():
A, B, C = symbols('A,B,C')
assert valid(A >> (B >> A)) is True
assert valid((A >> (B >> C)) >> ((A >> B) >> (A >> C))) is True
assert valid((~B >> ~A) >> (A >> B)) is True
assert valid(A | B | C) is False
assert valid(A >> B) is False
def test_pl_true():
A, B, C = symbols('A,B,C')
assert pl_true(True) is True
assert pl_true( A & B, {A: True, B: True}) is True
assert pl_true( A | B, {A: True}) is True
assert pl_true( A | B, {B: True}) is True
assert pl_true( A | B, {A: None, B: True}) is True
assert pl_true( A >> B, {A: False}) is True
assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True
assert pl_true(Equivalent(A, B), {A: False, B: False}) is True
# test for false
assert pl_true(False) is False
assert pl_true( A & B, {A: False, B: False}) is False
assert pl_true( A & B, {A: False}) is False
assert pl_true( A & B, {B: False}) is False
assert pl_true( A | B, {A: False, B: False}) is False
#test for None
assert pl_true(B, {B: None}) is None
assert pl_true( A & B, {A: True, B: None}) is None
assert pl_true( A >> B, {A: True, B: None}) is None
assert pl_true(Equivalent(A, B), {A: None}) is None
assert pl_true(Equivalent(A, B), {A: True, B: None}) is None
# Test for deep
assert pl_true(A | B, {A: False}, deep=True) is None
assert pl_true(~A & ~B, {A: False}, deep=True) is None
assert pl_true(A | B, {A: False, B: False}, deep=True) is False
assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False
assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True
def test_pl_true_wrong_input():
from sympy.core.numbers import pi
raises(ValueError, lambda: pl_true('John Cleese'))
raises(ValueError, lambda: pl_true(42 + pi + pi ** 2))
raises(ValueError, lambda: pl_true(42))
def test_entails():
A, B, C = symbols('A, B, C')
assert entails(A, [A >> B, ~B]) is False
assert entails(B, [Equivalent(A, B), A]) is True
assert entails((A >> B) >> (~A >> ~B)) is False
assert entails((A >> B) >> (~B >> ~A)) is True
def test_PropKB():
A, B, C = symbols('A,B,C')
kb = PropKB()
assert kb.ask(A >> B) is False
assert kb.ask(A >> (B >> A)) is True
kb.tell(A >> B)
kb.tell(B >> C)
assert kb.ask(A) is False
assert kb.ask(B) is False
assert kb.ask(C) is False
assert kb.ask(~A) is False
assert kb.ask(~B) is False
assert kb.ask(~C) is False
assert kb.ask(A >> C) is True
kb.tell(A)
assert kb.ask(A) is True
assert kb.ask(B) is True
assert kb.ask(C) is True
assert kb.ask(~C) is False
kb.retract(A)
assert kb.ask(C) is False
def test_propKB_tolerant():
""""tolerant to bad input"""
kb = PropKB()
A, B, C = symbols('A,B,C')
assert kb.ask(B) is False
def test_satisfiable_non_symbols():
x, y = symbols('x y')
assumptions = Q.zero(x*y)
facts = Implies(Q.zero(x*y), Q.zero(x) | Q.zero(y))
query = ~Q.zero(x) & ~Q.zero(y)
refutations = [
{Q.zero(x): True, Q.zero(x*y): True},
{Q.zero(y): True, Q.zero(x*y): True},
{Q.zero(x): True, Q.zero(y): True, Q.zero(x*y): True},
{Q.zero(x): True, Q.zero(y): False, Q.zero(x*y): True},
{Q.zero(x): False, Q.zero(y): True, Q.zero(x*y): True}]
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll')
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2')
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations
def test_satisfiable_bool():
from sympy.core.singleton import S
assert satisfiable(true) == {true: true}
assert satisfiable(S.true) == {true: true}
assert satisfiable(false) is False
assert satisfiable(S.false) is False
def test_satisfiable_all_models():
from sympy.abc import A, B
assert next(satisfiable(False, all_models=True)) is False
assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False]
assert list(satisfiable(True, all_models=True)) == [{true: true}]
models = [{A: True, B: False}, {A: False, B: True}]
result = satisfiable(A ^ B, all_models=True)
models.remove(next(result))
models.remove(next(result))
raises(StopIteration, lambda: next(result))
assert not models
assert list(satisfiable(Equivalent(A, B), all_models=True)) == \
[{A: False, B: False}, {A: True, B: True}]
models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}]
for model in satisfiable(A >> B, all_models=True):
models.remove(model)
assert not models
# This is a santiy test to check that only the required number
# of solutions are generated. The expr below has 2**100 - 1 models
# which would time out the test if all are generated at once.
from sympy.utilities.iterables import numbered_symbols
from sympy.logic.boolalg import Or
sym = numbered_symbols()
X = [next(sym) for i in range(100)]
result = satisfiable(Or(*X), all_models=True)
for i in range(10):
assert next(result)
def test_z3():
z3 = import_module("z3")
if not z3:
skip("z3 not installed.")
A, B, C = symbols('A,B,C')
x, y, z = symbols('x,y,z')
assert z3_satisfiable((x >= 2) & (x < 1)) is False
assert z3_satisfiable( A & ~A ) is False
model = z3_satisfiable(A & (~A | B | C))
assert bool(model) is True
assert model[A] is True
# test nonlinear function
assert z3_satisfiable((x ** 2 >= 2) & (x < 1) & (x > -1)) is False
def test_z3_vs_lra_dpll2():
z3 = import_module("z3")
if z3 is None:
skip("z3 not installed.")
def boolean_formula_to_encoded_cnf(bf):
cnf = CNF.from_prop(bf)
enc = EncodedCNF()
enc.from_cnf(cnf)
return enc
def make_random_cnf(num_clauses=5, num_constraints=10, num_var=2):
assert num_clauses <= num_constraints
constraints = make_random_problem(num_variables=num_var, num_constraints=num_constraints, rational=False)
clauses = [[cons] for cons in constraints[:num_clauses]]
for cons in constraints[num_clauses:]:
if isinstance(cons, Unequality):
cons = ~cons
i = randint(0, num_clauses-1)
clauses[i].append(cons)
clauses = [Or(*clause) for clause in clauses]
cnf = And(*clauses)
return boolean_formula_to_encoded_cnf(cnf)
lra_dpll2_satisfiable = lambda x: dpll2_satisfiable(x, use_lra_theory=True)
for _ in range(50):
cnf = make_random_cnf(num_clauses=10, num_constraints=15, num_var=2)
try:
z3_sat = z3_satisfiable(cnf)
except z3.z3types.Z3Exception:
continue
lra_dpll2_sat = lra_dpll2_satisfiable(cnf) is not False
assert z3_sat == lra_dpll2_sat

View File

@ -0,0 +1,440 @@
from sympy.core.numbers import Rational, I, oo
from sympy.core.relational import Eq
from sympy.core.symbol import symbols
from sympy.core.singleton import S
from sympy.matrices.dense import Matrix
from sympy.matrices.dense import randMatrix
from sympy.assumptions.ask import Q
from sympy.logic.boolalg import And
from sympy.abc import x, y, z
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.functions.elementary.trigonometric import cos
from sympy.external import import_module
from sympy.logic.algorithms.lra_theory import LRASolver, UnhandledInput, LRARational, HANDLE_NEGATION
from sympy.core.random import random, choice, randint
from sympy.core.sympify import sympify
from sympy.ntheory.generate import randprime
from sympy.core.relational import StrictLessThan, StrictGreaterThan
import itertools
from sympy.testing.pytest import raises, XFAIL, skip
def make_random_problem(num_variables=2, num_constraints=2, sparsity=.1, rational=True,
disable_strict = False, disable_nonstrict=False, disable_equality=False):
def rand(sparsity=sparsity):
if random() < sparsity:
return sympify(0)
if rational:
int1, int2 = [randprime(0, 50) for _ in range(2)]
return Rational(int1, int2) * choice([-1, 1])
else:
return randint(1, 10) * choice([-1, 1])
variables = symbols('x1:%s' % (num_variables + 1))
constraints = []
for _ in range(num_constraints):
lhs, rhs = sum(rand() * x for x in variables), rand(sparsity=0) # sparsity=0 bc of bug with smtlib_code
options = []
if not disable_equality:
options += [Eq(lhs, rhs)]
if not disable_nonstrict:
options += [lhs <= rhs, lhs >= rhs]
if not disable_strict:
options += [lhs < rhs, lhs > rhs]
constraints.append(choice(options))
return constraints
def check_if_satisfiable_with_z3(constraints):
from sympy.external.importtools import import_module
from sympy.printing.smtlib import smtlib_code
from sympy.logic.boolalg import And
boolean_formula = And(*constraints)
z3 = import_module("z3")
if z3:
smtlib_string = smtlib_code(boolean_formula)
s = z3.Solver()
s.from_string(smtlib_string)
res = str(s.check())
if res == 'sat':
return True
elif res == 'unsat':
return False
else:
raise ValueError(f"z3 was not able to check the satisfiability of {boolean_formula}")
def find_rational_assignment(constr, assignment, iter=20):
eps = sympify(1)
for _ in range(iter):
assign = {key: val[0] + val[1]*eps for key, val in assignment.items()}
try:
for cons in constr:
assert cons.subs(assign) == True
return assign
except AssertionError:
eps = eps/2
return None
def boolean_formula_to_encoded_cnf(bf):
cnf = CNF.from_prop(bf)
enc = EncodedCNF()
enc.from_cnf(cnf)
return enc
def test_from_encoded_cnf():
s1, s2 = symbols("s1 s2")
# Test preprocessing
# Example is from section 3 of paper.
phi = (x >= 0) & ((x + y <= 2) | (x + 2 * y - z >= 6)) & (Eq(x + y, 2) | (x + 2 * y - z > 4))
enc = boolean_formula_to_encoded_cnf(phi)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
assert lra.A.shape == (2, 5)
assert str(lra.slack) == '[_s1, _s2]'
assert str(lra.nonslack) == '[x, y, z]'
assert lra.A == Matrix([[ 1, 1, 0, -1, 0],
[-1, -2, 1, 0, -1]])
assert {(str(b.var), b.bound, b.upper, b.equality, b.strict) for b in lra.enc_to_boundary.values()} == {('_s1', 2, None, True, False),
('_s1', 2, True, False, False),
('_s2', -4, True, False, True),
('_s2', -6, True, False, False),
('x', 0, False, False, False)}
def test_problem():
from sympy.logic.algorithms.lra_theory import LRASolver
from sympy.assumptions.cnf import CNF, EncodedCNF
cons = [-2 * x - 2 * y >= 7, -9 * y >= 7, -6 * y >= 5]
cnf = CNF().from_prop(And(*cons))
enc = EncodedCNF()
enc.from_cnf(cnf)
lra, _ = LRASolver.from_encoded_cnf(enc)
lra.assert_lit(1)
lra.assert_lit(2)
lra.assert_lit(3)
is_sat, assignment = lra.check()
assert is_sat is True
def test_random_problems():
z3 = import_module("z3")
if z3 is None:
skip("z3 is not installed")
special_cases = []; x1, x2, x3 = symbols("x1 x2 x3")
special_cases.append([x1 - 3 * x2 <= -5, 6 * x1 + 4 * x2 <= 0, -7 * x1 + 3 * x2 <= 3])
special_cases.append([-3 * x1 >= 3, Eq(4 * x1, -1)])
special_cases.append([-4 * x1 < 4, 6 * x1 <= -6])
special_cases.append([-3 * x2 >= 7, 6 * x1 <= -5, -3 * x2 <= -4])
special_cases.append([x + y >= 2, x + y <= 1])
special_cases.append([x >= 0, x + y <= 2, x + 2 * y - z >= 6]) # from paper example
special_cases.append([-2 * x1 - 2 * x2 >= 7, -9 * x1 >= 7, -6 * x1 >= 5])
special_cases.append([2 * x1 > -3, -9 * x1 < -6, 9 * x1 <= 6])
special_cases.append([-2*x1 < -4, 9*x1 > -9])
special_cases.append([-6*x1 >= -1, -8*x1 + x2 >= 5, -8*x1 + 7*x2 < 4, x1 > 7])
special_cases.append([Eq(x1, 2), Eq(5*x1, -2), Eq(-7*x2, -6), Eq(9*x1 + 10*x2, 9)])
special_cases.append([Eq(3*x1, 6), Eq(x1 - 8*x2, -9), Eq(-7*x1 + 5*x2, 3), Eq(3*x2, 7)])
special_cases.append([-4*x1 < 4, 6*x1 <= -6])
special_cases.append([-3*x1 + 8*x2 >= -8, -10*x2 > 9, 8*x1 - 4*x2 < 8, 10*x1 - 9*x2 >= -9])
special_cases.append([x1 + 5*x2 >= -6, 9*x1 - 3*x2 >= -9, 6*x1 + 6*x2 < -10, -3*x1 + 3*x2 < -7])
special_cases.append([-9*x1 < 7, -5*x1 - 7*x2 < -1, 3*x1 + 7*x2 > 1, -6*x1 - 6*x2 > 9])
special_cases.append([9*x1 - 6*x2 >= -7, 9*x1 + 4*x2 < -8, -7*x2 <= 1, 10*x2 <= -7])
feasible_count = 0
for i in range(50):
if i % 8 == 0:
constraints = make_random_problem(num_variables=1, num_constraints=2, rational=False)
elif i % 8 == 1:
constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_equality=True,
disable_nonstrict=True)
elif i % 8 == 2:
constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_strict=True)
elif i % 8 == 3:
constraints = make_random_problem(num_variables=3, num_constraints=12, rational=False)
else:
constraints = make_random_problem(num_variables=3, num_constraints=6, rational=False)
if i < len(special_cases):
constraints = special_cases[i]
if False in constraints or True in constraints:
continue
phi = And(*constraints)
if phi == False:
continue
cnf = CNF.from_prop(phi); enc = EncodedCNF()
enc.from_cnf(cnf)
assert all(0 not in clause for clause in enc.data)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
s_subs = lra.s_subs
lra.run_checks = True
s_subs_rev = {value: key for key, value in s_subs.items()}
lits = {lit for clause in enc.data for lit in clause}
bounds = [(lra.enc_to_boundary[l], l) for l in lits if l in lra.enc_to_boundary]
bounds = sorted(bounds, key=lambda x: (str(x[0].var), x[0].bound, str(x[0].upper))) # to remove nondeterminism
for b, l in bounds:
if lra.result and lra.result[0] == False:
break
lra.assert_lit(l)
feasible = lra.check()
if feasible[0] == True:
feasible_count += 1
assert check_if_satisfiable_with_z3(constraints) is True
cons_funcs = [cons.func for cons in constraints]
assignment = feasible[1]
assignment = {key.var : value for key, value in assignment.items()}
if not (StrictLessThan in cons_funcs or StrictGreaterThan in cons_funcs):
assignment = {key: value[0] for key, value in assignment.items()}
for cons in constraints:
assert cons.subs(assignment) == True
else:
rat_assignment = find_rational_assignment(constraints, assignment)
assert rat_assignment is not None
else:
assert check_if_satisfiable_with_z3(constraints) is False
conflict = feasible[1]
assert len(conflict) >= 2
conflict = {lra.enc_to_boundary[-l].get_inequality() for l in conflict}
conflict = {clause.subs(s_subs_rev) for clause in conflict}
assert check_if_satisfiable_with_z3(conflict) is False
# check that conflict clause is probably minimal
for subset in itertools.combinations(conflict, len(conflict)-1):
assert check_if_satisfiable_with_z3(subset) is True
@XFAIL
def test_pos_neg_zero():
bf = Q.positive(x) & Q.negative(x) & Q.zero(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == False
bf = Q.positive(x) & Q.lt(x, -1)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = Q.positive(x) & Q.zero(x)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = Q.positive(x) & Q.zero(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == True
@XFAIL
def test_pos_neg_infinite():
bf = Q.positive_infinite(x) & Q.lt(x, 10000000) & Q.positive_infinite(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == False
bf = Q.positive_infinite(x) & Q.gt(x, 10000000) & Q.positive_infinite(y)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == True
bf = Q.positive_infinite(x) & Q.negative_infinite(x)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in enc.encoding.values():
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
def test_binrel_evaluation():
bf = Q.gt(3, 2)
enc = boolean_formula_to_encoded_cnf(bf)
lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
assert len(lra.enc_to_boundary) == 0
assert conflicts == [[1]]
bf = Q.lt(3, 2)
enc = boolean_formula_to_encoded_cnf(bf)
lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
assert len(lra.enc_to_boundary) == 0
assert conflicts == [[-1]]
def test_negation():
assert HANDLE_NEGATION is True
bf = Q.gt(x, 1) & ~Q.gt(x, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
assert sorted(lra.check()[1]) in [[-1, 2], [-2, 1]]
bf = ~Q.gt(x, 1) & ~Q.lt(x, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == True
bf = ~Q.gt(x, 0) & ~Q.lt(x, 1)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = ~Q.gt(x, 0) & ~Q.le(x, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
bf = ~Q.le(x+y, 2) & ~Q.ge(x-y, 2) & ~Q.ge(y, 0)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == False
assert len(lra.check()[1]) == 3
assert all(i > 0 for i in lra.check()[1])
def test_unhandled_input():
nan = S.NaN
bf = Q.gt(3, nan) & Q.gt(x, nan)
enc = boolean_formula_to_encoded_cnf(bf)
raises(ValueError, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(3, I) & Q.gt(x, I)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(3, float("inf")) & Q.gt(x, float("inf"))
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(3, oo) & Q.gt(x, oo)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
# test non-linearity
bf = Q.gt(x**2 + x, 2)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
bf = Q.gt(cos(x) + x, 2)
enc = boolean_formula_to_encoded_cnf(bf)
raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))
@XFAIL
def test_infinite_strict_inequalities():
# Extensive testing of the interaction between strict inequalities
# and constraints containing infinity is needed because
# the paper's rule for strict inequalities don't work when
# infinite numbers are allowed. Using the paper's rules you
# can end up with situations where oo + delta > oo is considered
# True when oo + delta should be equal to oo.
# See https://math.stackexchange.com/questions/4757069/can-this-method-of-converting-strict-inequalities-to-equisatisfiable-nonstrict-i
bf = (-x - y >= -float("inf")) & (x > 0) & (y >= float("inf"))
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for lit in sorted(enc.encoding.values()):
if lra.assert_lit(lit) is not None:
break
assert len(lra.enc_to_boundary) == 3
assert lra.check()[0] == True
def test_pivot():
for _ in range(10):
m = randMatrix(5)
rref = m.rref()
for _ in range(5):
i, j = randint(0, 4), randint(0, 4)
if m[i, j] != 0:
assert LRASolver._pivot(m, i, j).rref() == rref
def test_reset_bounds():
bf = Q.ge(x, 1) & Q.lt(x, 1)
enc = boolean_formula_to_encoded_cnf(bf)
lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
for clause in enc.data:
for lit in clause:
lra.assert_lit(lit)
assert len(lra.enc_to_boundary) == 2
assert lra.check()[0] == False
lra.reset_bounds()
assert lra.check()[0] == True
for var in lra.all_var:
assert var.upper == LRARational(float("inf"), 0)
assert var.upper_from_eq == False
assert var.upper_from_neg == False
assert var.lower == LRARational(-float("inf"), 0)
assert var.lower_from_eq == False
assert var.lower_from_neg == False
assert var.assign == LRARational(0, 0)
assert var.var is not None
assert var.col_idx is not None
def test_empty_cnf():
cnf = CNF()
enc = EncodedCNF()
enc.from_cnf(cnf)
lra, conflict = LRASolver.from_encoded_cnf(enc)
assert len(conflict) == 0
assert lra.check() == (True, {})