I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,3 @@
from sympy.liealgebras.cartan_type import CartanType
__all__ = ['CartanType']

View File

@ -0,0 +1,25 @@
from .cartan_type import CartanType
def CartanMatrix(ct):
"""Access the Cartan matrix of a specific Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_matrix import CartanMatrix
>>> CartanMatrix("A2")
Matrix([
[ 2, -1],
[-1, 2]])
>>> CartanMatrix(['C', 3])
Matrix([
[ 2, -1, 0],
[-1, 2, -1],
[ 0, -2, 2]])
This method works by returning the Cartan matrix
which corresponds to Cartan type t.
"""
return CartanType(ct).cartan_matrix()

View File

@ -0,0 +1,73 @@
from sympy.core import Atom, Basic
class CartanType_generator():
"""
Constructor for actually creating things
"""
def __call__(self, *args):
c = args[0]
if isinstance(c, list):
letter, n = c[0], int(c[1])
elif isinstance(c, str):
letter, n = c[0], int(c[1:])
else:
raise TypeError("Argument must be a string (e.g. 'A3') or a list (e.g. ['A', 3])")
if n < 0:
raise ValueError("Lie algebra rank cannot be negative")
if letter == "A":
from . import type_a
return type_a.TypeA(n)
if letter == "B":
from . import type_b
return type_b.TypeB(n)
if letter == "C":
from . import type_c
return type_c.TypeC(n)
if letter == "D":
from . import type_d
return type_d.TypeD(n)
if letter == "E":
if n >= 6 and n <= 8:
from . import type_e
return type_e.TypeE(n)
if letter == "F":
if n == 4:
from . import type_f
return type_f.TypeF(n)
if letter == "G":
if n == 2:
from . import type_g
return type_g.TypeG(n)
CartanType = CartanType_generator()
class Standard_Cartan(Atom):
"""
Concrete base class for Cartan types such as A4, etc
"""
def __new__(cls, series, n):
obj = Basic.__new__(cls)
obj.n = n
obj.series = series
return obj
def rank(self):
"""
Returns the rank of the Lie algebra
"""
return self.n
def series(self):
"""
Returns the type of the Lie algebra
"""
return self.series

View File

@ -0,0 +1,24 @@
from .cartan_type import CartanType
def DynkinDiagram(t):
"""Display the Dynkin diagram of a given Lie algebra
Works by generating the CartanType for the input, t, and then returning the
Dynkin diagram method from the individual classes.
Examples
========
>>> from sympy.liealgebras.dynkin_diagram import DynkinDiagram
>>> print(DynkinDiagram("A3"))
0---0---0
1 2 3
>>> print(DynkinDiagram("B4"))
0---0---0=>=0
1 2 3 4
"""
return CartanType(t).dynkin_diagram()

View File

@ -0,0 +1,199 @@
from .cartan_type import CartanType
from sympy.core.basic import Atom
class RootSystem(Atom):
"""Represent the root system of a simple Lie algebra
Every simple Lie algebra has a unique root system. To find the root
system, we first consider the Cartan subalgebra of g, which is the maximal
abelian subalgebra, and consider the adjoint action of g on this
subalgebra. There is a root system associated with this action. Now, a
root system over a vector space V is a set of finite vectors Phi (called
roots), which satisfy:
1. The roots span V
2. The only scalar multiples of x in Phi are x and -x
3. For every x in Phi, the set Phi is closed under reflection
through the hyperplane perpendicular to x.
4. If x and y are roots in Phi, then the projection of y onto
the line through x is a half-integral multiple of x.
Now, there is a subset of Phi, which we will call Delta, such that:
1. Delta is a basis of V
2. Each root x in Phi can be written x = sum k_y y for y in Delta
The elements of Delta are called the simple roots.
Therefore, we see that the simple roots span the root space of a given
simple Lie algebra.
References
==========
.. [1] https://en.wikipedia.org/wiki/Root_system
.. [2] Lie Algebras and Representation Theory - Humphreys
"""
def __new__(cls, cartantype):
"""Create a new RootSystem object
This method assigns an attribute called cartan_type to each instance of
a RootSystem object. When an instance of RootSystem is called, it
needs an argument, which should be an instance of a simple Lie algebra.
We then take the CartanType of this argument and set it as the
cartan_type attribute of the RootSystem instance.
"""
obj = Atom.__new__(cls)
obj.cartan_type = CartanType(cartantype)
return obj
def simple_roots(self):
"""Generate the simple roots of the Lie algebra
The rank of the Lie algebra determines the number of simple roots that
it has. This method obtains the rank of the Lie algebra, and then uses
the simple_root method from the Lie algebra classes to generate all the
simple roots.
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> roots = c.simple_roots()
>>> roots
{1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
"""
n = self.cartan_type.rank()
roots = {}
for i in range(1, n+1):
root = self.cartan_type.simple_root(i)
roots[i] = root
return roots
def all_roots(self):
"""Generate all the roots of a given root system
The result is a dictionary where the keys are integer numbers. It
generates the roots by getting the dictionary of all positive roots
from the bases classes, and then taking each root, and multiplying it
by -1 and adding it to the dictionary. In this way all the negative
roots are generated.
"""
alpha = self.cartan_type.positive_roots()
keys = list(alpha.keys())
k = max(keys)
for val in keys:
k += 1
root = alpha[val]
newroot = [-x for x in root]
alpha[k] = newroot
return alpha
def root_space(self):
"""Return the span of the simple roots
The root space is the vector space spanned by the simple roots, i.e. it
is a vector space with a distinguished basis, the simple roots. This
method returns a string that represents the root space as the span of
the simple roots, alpha[1],...., alpha[n].
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.root_space()
'alpha[1] + alpha[2] + alpha[3]'
"""
n = self.cartan_type.rank()
rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1))
return rs
def add_simple_roots(self, root1, root2):
"""Add two simple roots together
The function takes as input two integers, root1 and root2. It then
uses these integers as keys in the dictionary of simple roots, and gets
the corresponding simple roots, and then adds them together.
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> newroot = c.add_simple_roots(1, 2)
>>> newroot
[1, 0, -1, 0]
"""
alpha = self.simple_roots()
if root1 > len(alpha) or root2 > len(alpha):
raise ValueError("You've used a root that doesn't exist!")
a1 = alpha[root1]
a2 = alpha[root2]
newroot = [_a1 + _a2 for _a1, _a2 in zip(a1, a2)]
return newroot
def add_as_roots(self, root1, root2):
"""Add two roots together if and only if their sum is also a root
It takes as input two vectors which should be roots. It then computes
their sum and checks if it is in the list of all possible roots. If it
is, it returns the sum. Otherwise it returns a string saying that the
sum is not a root.
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
[1, 0, 0, -1]
>>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
'The sum of these two roots is not a root'
"""
alpha = self.all_roots()
newroot = [r1 + r2 for r1, r2 in zip(root1, root2)]
if newroot in alpha.values():
return newroot
else:
return "The sum of these two roots is not a root"
def cartan_matrix(self):
"""Cartan matrix of Lie algebra associated with this root system
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0],
[-1, 2, -1],
[ 0, -1, 2]])
"""
return self.cartan_type.cartan_matrix()
def dynkin_diagram(self):
"""Dynkin diagram of the Lie algebra associated with this root system
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> print(c.dynkin_diagram())
0---0---0
1 2 3
"""
return self.cartan_type.dynkin_diagram()

View File

@ -0,0 +1,10 @@
from sympy.liealgebras.cartan_matrix import CartanMatrix
from sympy.matrices import Matrix
def test_CartanMatrix():
c = CartanMatrix("A3")
m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
assert c == m
a = CartanMatrix(["G",2])
mt = Matrix(2, 2, [2, -1, -3, 2])
assert a == mt

View File

@ -0,0 +1,12 @@
from sympy.liealgebras.cartan_type import CartanType, Standard_Cartan
def test_Standard_Cartan():
c = CartanType("A4")
assert c.rank() == 4
assert c.series == "A"
m = Standard_Cartan("A", 2)
assert m.rank() == 2
assert m.series == "A"
b = CartanType("B12")
assert b.rank() == 12
assert b.series == "B"

View File

@ -0,0 +1,9 @@
from sympy.liealgebras.dynkin_diagram import DynkinDiagram
def test_DynkinDiagram():
c = DynkinDiagram("A3")
diag = "0---0---0\n1 2 3"
assert c == diag
ct = DynkinDiagram(["B", 3])
diag2 = "0---0=>=0\n1 2 3"
assert ct == diag2

View File

@ -0,0 +1,18 @@
from sympy.liealgebras.root_system import RootSystem
from sympy.liealgebras.type_a import TypeA
from sympy.matrices import Matrix
def test_root_system():
c = RootSystem("A3")
assert c.cartan_type == TypeA(3)
assert c.simple_roots() == {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
assert c.root_space() == "alpha[1] + alpha[2] + alpha[3]"
assert c.cartan_matrix() == Matrix([[ 2, -1, 0], [-1, 2, -1], [ 0, -1, 2]])
assert c.dynkin_diagram() == "0---0---0\n1 2 3"
assert c.add_simple_roots(1, 2) == [1, 0, -1, 0]
assert c.all_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1],
6: [0, 0, 1, -1], 7: [-1, 1, 0, 0], 8: [-1, 0, 1, 0],
9: [-1, 0, 0, 1], 10: [0, -1, 1, 0],
11: [0, -1, 0, 1], 12: [0, 0, -1, 1]}
assert c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1]) == [1, 0, 0, -1]

View File

@ -0,0 +1,17 @@
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_A():
c = CartanType("A3")
m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
assert m == c.cartan_matrix()
assert c.basis() == 8
assert c.roots() == 12
assert c.dimension() == 4
assert c.simple_root(1) == [1, -1, 0, 0]
assert c.highest_root() == [1, 0, 0, -1]
assert c.lie_algebra() == "su(4)"
diag = "0---0---0\n1 2 3"
assert c.dynkin_diagram() == diag
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}

View File

@ -0,0 +1,17 @@
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_B():
c = CartanType("B3")
m = Matrix(3, 3, [2, -1, 0, -1, 2, -2, 0, -1, 2])
assert m == c.cartan_matrix()
assert c.dimension() == 3
assert c.roots() == 18
assert c.simple_root(3) == [0, 0, 1]
assert c.basis() == 3
assert c.lie_algebra() == "so(6)"
diag = "0---0=>=0\n1 2 3"
assert c.dynkin_diagram() == diag
assert c.positive_roots() == {1: [1, -1, 0], 2: [1, 1, 0], 3: [1, 0, -1],
4: [1, 0, 1], 5: [0, 1, -1], 6: [0, 1, 1], 7: [1, 0, 0],
8: [0, 1, 0], 9: [0, 0, 1]}

View File

@ -0,0 +1,22 @@
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_C():
c = CartanType("C4")
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -2, 2])
assert c.cartan_matrix() == m
assert c.dimension() == 4
assert c.simple_root(4) == [0, 0, 0, 2]
assert c.roots() == 32
assert c.basis() == 36
assert c.lie_algebra() == "sp(8)"
t = CartanType(['C', 3])
assert t.dimension() == 3
diag = "0---0---0=<=0\n1 2 3 4"
assert c.dynkin_diagram() == diag
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1],
6: [1, 0, 0, 1], 7: [0, 1, -1, 0], 8: [0, 1, 1, 0],
9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
12: [0, 0, 1, 1], 13: [2, 0, 0, 0], 14: [0, 2, 0, 0], 15: [0, 0, 2, 0],
16: [0, 0, 0, 2]}

View File

@ -0,0 +1,19 @@
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_D():
c = CartanType("D4")
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, -1, 0, -1, 2, 0, 0, -1, 0, 2])
assert c.cartan_matrix() == m
assert c.basis() == 6
assert c.lie_algebra() == "so(8)"
assert c.roots() == 24
assert c.simple_root(3) == [0, 0, 1, -1]
diag = " 3\n 0\n |\n |\n0---0---0\n1 2 4"
assert diag == c.dynkin_diagram()
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1],
7: [0, 1, -1, 0], 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1],
11: [0, 0, 1, -1], 12: [0, 0, 1, 1]}

View File

@ -0,0 +1,19 @@
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_E():
c = CartanType("E6")
m = Matrix(6, 6, [2, 0, -1, 0, 0, 0, 0, 2, 0, -1, 0, 0,
-1, 0, 2, -1, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0,
-1, 2, -1, 0, 0, 0, 0, -1, 2])
assert c.cartan_matrix() == m
assert c.dimension() == 8
assert c.simple_root(6) == [0, 0, 0, -1, 1, 0, 0, 0]
assert c.roots() == 72
assert c.basis() == 78
diag = " "*8 + "2\n" + " "*8 + "0\n" + " "*8 + "|\n" + " "*8 + "|\n"
diag += "---".join("0" for i in range(1, 6))+"\n"
diag += "1 " + " ".join(str(i) for i in range(3, 7))
assert c.dynkin_diagram() == diag
posroots = c.positive_roots()
assert posroots[8] == [1, 0, 0, 0, 1, 0, 0, 0]

View File

@ -0,0 +1,24 @@
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
from sympy.core.backend import S
def test_type_F():
c = CartanType("F4")
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
assert c.cartan_matrix() == m
assert c.dimension() == 4
assert c.simple_root(1) == [1, -1, 0, 0]
assert c.simple_root(2) == [0, 1, -1, 0]
assert c.simple_root(3) == [0, 0, 0, 1]
assert c.simple_root(4) == [-S.Half, -S.Half, -S.Half, -S.Half]
assert c.roots() == 48
assert c.basis() == 52
diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
assert c.dynkin_diagram() == diag
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
16: [0, 0, 0, 1], 17: [S.Half, S.Half, S.Half, S.Half], 18: [S.Half, -S.Half, S.Half, S.Half],
19: [S.Half, S.Half, -S.Half, S.Half], 20: [S.Half, S.Half, S.Half, -S.Half], 21: [S.Half, S.Half, -S.Half, -S.Half],
22: [S.Half, -S.Half, S.Half, -S.Half], 23: [S.Half, -S.Half, -S.Half, S.Half], 24: [S.Half, -S.Half, -S.Half, -S.Half]}

View File

@ -0,0 +1,16 @@
# coding=utf-8
from sympy.liealgebras.cartan_type import CartanType
from sympy.matrices import Matrix
def test_type_G():
c = CartanType("G2")
m = Matrix(2, 2, [2, -1, -3, 2])
assert c.cartan_matrix() == m
assert c.simple_root(2) == [1, -2, 1]
assert c.basis() == 14
assert c.roots() == 12
assert c.dimension() == 3
diag = "0≡<≡0\n1 2"
assert diag == c.dynkin_diagram()
assert c.positive_roots() == {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0],
4: [1, 0, 1], 5: [1, 1, -2], 6: [2, -1, -1]}

View File

@ -0,0 +1,35 @@
from sympy.liealgebras.weyl_group import WeylGroup
from sympy.matrices import Matrix
def test_weyl_group():
c = WeylGroup("A3")
assert c.matrix_form('r1*r2') == Matrix([[0, 0, 1, 0], [1, 0, 0, 0],
[0, 1, 0, 0], [0, 0, 0, 1]])
assert c.generators() == ['r1', 'r2', 'r3']
assert c.group_order() == 24.0
assert c.group_name() == "S4: the symmetric group acting on 4 elements."
assert c.coxeter_diagram() == "0---0---0\n1 2 3"
assert c.element_order('r1*r2*r3') == 4
assert c.element_order('r1*r3*r2*r3') == 3
d = WeylGroup("B5")
assert d.group_order() == 3840
assert d.element_order('r1*r2*r4*r5') == 12
assert d.matrix_form('r2*r3') == Matrix([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0],
[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
assert d.element_order('r1*r2*r1*r3*r5') == 6
e = WeylGroup("D5")
assert e.element_order('r2*r3*r5') == 4
assert e.matrix_form('r2*r3*r5') == Matrix([[1, 0, 0, 0, 0], [0, 0, 0, 0, -1],
[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, -1, 0]])
f = WeylGroup("G2")
assert f.element_order('r1*r2*r1*r2') == 3
assert f.element_order('r2*r1*r1*r2') == 1
assert f.matrix_form('r1*r2*r1*r2') == Matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
g = WeylGroup("F4")
assert g.matrix_form('r2*r3') == Matrix([[1, 0, 0, 0], [0, 1, 0, 0],
[0, 0, 0, -1], [0, 0, 1, 0]])
assert g.element_order('r2*r3') == 4
h = WeylGroup("E6")
assert h.group_order() == 51840

View File

@ -0,0 +1,166 @@
from sympy.liealgebras.cartan_type import Standard_Cartan
from sympy.core.backend import eye
class TypeA(Standard_Cartan):
"""
This class contains the information about
the A series of simple Lie algebras.
====
"""
def __new__(cls, n):
if n < 1:
raise ValueError("n cannot be less than 1")
return Standard_Cartan.__new__(cls, "A", n)
def dimension(self):
"""Dimension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A4")
>>> c.dimension()
5
"""
return self.n+1
def basic_root(self, i, j):
"""
This is a method just to generate roots
with a 1 iin the ith position and a -1
in the jth position.
"""
n = self.n
root = [0]*(n+1)
root[i] = 1
root[j] = -1
return root
def simple_root(self, i):
"""
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
In A_n the ith simple root is the root which has a 1
in the ith position, a -1 in the (i+1)th position,
and zeroes elsewhere.
This method returns the ith simple root for the A series.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A4")
>>> c.simple_root(1)
[1, -1, 0, 0, 0]
"""
return self.basic_root(i-1, i)
def positive_roots(self):
"""
This method generates all the positive roots of
A_n. This is half of all of the roots of A_n;
by multiplying all the positive roots by -1 we
get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
n = self.n
posroots = {}
k = 0
for i in range(0, n):
for j in range(i+1, n+1):
k += 1
posroots[k] = self.basic_root(i, j)
return posroots
def highest_root(self):
"""
Returns the highest weight root for A_n
"""
return self.basic_root(0, self.n)
def roots(self):
"""
Returns the total number of roots for A_n
"""
n = self.n
return n*(n+1)
def cartan_matrix(self):
"""
Returns the Cartan matrix for A_n.
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('A4')
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0, 0],
[-1, 2, -1, 0],
[ 0, -1, 2, -1],
[ 0, 0, -1, 2]])
"""
n = self.n
m = 2 * eye(n)
i = 1
while i < n-1:
m[i, i+1] = -1
m[i, i-1] = -1
i += 1
m[0,1] = -1
m[n-1, n-2] = -1
return m
def basis(self):
"""
Returns the number of independent generators of A_n
"""
n = self.n
return n**2 - 1
def lie_algebra(self):
"""
Returns the Lie algebra associated with A_n
"""
n = self.n
return "su(" + str(n + 1) + ")"
def dynkin_diagram(self):
n = self.n
diag = "---".join("0" for i in range(1, n+1)) + "\n"
diag += " ".join(str(i) for i in range(1, n+1))
return diag

View File

@ -0,0 +1,172 @@
from .cartan_type import Standard_Cartan
from sympy.core.backend import eye
class TypeB(Standard_Cartan):
def __new__(cls, n):
if n < 2:
raise ValueError("n cannot be less than 2")
return Standard_Cartan.__new__(cls, "B", n)
def dimension(self):
"""Dimension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("B3")
>>> c.dimension()
3
"""
return self.n
def basic_root(self, i, j):
"""
This is a method just to generate roots
with a 1 iin the ith position and a -1
in the jth position.
"""
root = [0]*self.n
root[i] = 1
root[j] = -1
return root
def simple_root(self, i):
"""
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
In B_n the first n-1 simple roots are the same as the
roots in A_(n-1) (a 1 in the ith position, a -1 in
the (i+1)th position, and zeroes elsewhere). The n-th
simple root is the root with a 1 in the nth position
and zeroes elsewhere.
This method returns the ith simple root for the B series.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("B3")
>>> c.simple_root(2)
[0, 1, -1]
"""
n = self.n
if i < n:
return self.basic_root(i-1, i)
else:
root = [0]*self.n
root[n-1] = 1
return root
def positive_roots(self):
"""
This method generates all the positive roots of
A_n. This is half of all of the roots of B_n;
by multiplying all the positive roots by -1 we
get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
n = self.n
posroots = {}
k = 0
for i in range(0, n-1):
for j in range(i+1, n):
k += 1
posroots[k] = self.basic_root(i, j)
k += 1
root = self.basic_root(i, j)
root[j] = 1
posroots[k] = root
for i in range(0, n):
k += 1
root = [0]*n
root[i] = 1
posroots[k] = root
return posroots
def roots(self):
"""
Returns the total number of roots for B_n"
"""
n = self.n
return 2*(n**2)
def cartan_matrix(self):
"""
Returns the Cartan matrix for B_n.
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('B4')
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0, 0],
[-1, 2, -1, 0],
[ 0, -1, 2, -2],
[ 0, 0, -1, 2]])
"""
n = self.n
m = 2* eye(n)
i = 1
while i < n-1:
m[i, i+1] = -1
m[i, i-1] = -1
i += 1
m[0, 1] = -1
m[n-2, n-1] = -2
m[n-1, n-2] = -1
return m
def basis(self):
"""
Returns the number of independent generators of B_n
"""
n = self.n
return (n**2 - n)/2
def lie_algebra(self):
"""
Returns the Lie algebra associated with B_n
"""
n = self.n
return "so(" + str(2*n) + ")"
def dynkin_diagram(self):
n = self.n
diag = "---".join("0" for i in range(1, n)) + "=>=0\n"
diag += " ".join(str(i) for i in range(1, n+1))
return diag

View File

@ -0,0 +1,171 @@
from .cartan_type import Standard_Cartan
from sympy.core.backend import eye
class TypeC(Standard_Cartan):
def __new__(cls, n):
if n < 3:
raise ValueError("n cannot be less than 3")
return Standard_Cartan.__new__(cls, "C", n)
def dimension(self):
"""Dimension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("C3")
>>> c.dimension()
3
"""
n = self.n
return n
def basic_root(self, i, j):
"""Generate roots with 1 in ith position and a -1 in jth position
"""
n = self.n
root = [0]*n
root[i] = 1
root[j] = -1
return root
def simple_root(self, i):
"""The ith simple root for the C series
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
In C_n, the first n-1 simple roots are the same as
the roots in A_(n-1) (a 1 in the ith position, a -1
in the (i+1)th position, and zeroes elsewhere). The
nth simple root is the root in which there is a 2 in
the nth position and zeroes elsewhere.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("C3")
>>> c.simple_root(2)
[0, 1, -1]
"""
n = self.n
if i < n:
return self.basic_root(i-1,i)
else:
root = [0]*self.n
root[n-1] = 2
return root
def positive_roots(self):
"""Generates all the positive roots of A_n
This is half of all of the roots of C_n; by multiplying all the
positive roots by -1 we get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
n = self.n
posroots = {}
k = 0
for i in range(0, n-1):
for j in range(i+1, n):
k += 1
posroots[k] = self.basic_root(i, j)
k += 1
root = self.basic_root(i, j)
root[j] = 1
posroots[k] = root
for i in range(0, n):
k += 1
root = [0]*n
root[i] = 2
posroots[k] = root
return posroots
def roots(self):
"""
Returns the total number of roots for C_n"
"""
n = self.n
return 2*(n**2)
def cartan_matrix(self):
"""The Cartan matrix for C_n
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('C4')
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0, 0],
[-1, 2, -1, 0],
[ 0, -1, 2, -1],
[ 0, 0, -2, 2]])
"""
n = self.n
m = 2 * eye(n)
i = 1
while i < n-1:
m[i, i+1] = -1
m[i, i-1] = -1
i += 1
m[0,1] = -1
m[n-1, n-2] = -2
return m
def basis(self):
"""
Returns the number of independent generators of C_n
"""
n = self.n
return n*(2*n + 1)
def lie_algebra(self):
"""
Returns the Lie algebra associated with C_n"
"""
n = self.n
return "sp(" + str(2*n) + ")"
def dynkin_diagram(self):
n = self.n
diag = "---".join("0" for i in range(1, n)) + "=<=0\n"
diag += " ".join(str(i) for i in range(1, n+1))
return diag

View File

@ -0,0 +1,175 @@
from .cartan_type import Standard_Cartan
from sympy.core.backend import eye
class TypeD(Standard_Cartan):
def __new__(cls, n):
if n < 3:
raise ValueError("n cannot be less than 3")
return Standard_Cartan.__new__(cls, "D", n)
def dimension(self):
"""Dmension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("D4")
>>> c.dimension()
4
"""
return self.n
def basic_root(self, i, j):
"""
This is a method just to generate roots
with a 1 iin the ith position and a -1
in the jth position.
"""
n = self.n
root = [0]*n
root[i] = 1
root[j] = -1
return root
def simple_root(self, i):
"""
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
In D_n, the first n-1 simple roots are the same as
the roots in A_(n-1) (a 1 in the ith position, a -1
in the (i+1)th position, and zeroes elsewhere).
The nth simple root is the root in which there 1s in
the nth and (n-1)th positions, and zeroes elsewhere.
This method returns the ith simple root for the D series.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("D4")
>>> c.simple_root(2)
[0, 1, -1, 0]
"""
n = self.n
if i < n:
return self.basic_root(i-1, i)
else:
root = [0]*n
root[n-2] = 1
root[n-1] = 1
return root
def positive_roots(self):
"""
This method generates all the positive roots of
A_n. This is half of all of the roots of D_n
by multiplying all the positive roots by -1 we
get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
n = self.n
posroots = {}
k = 0
for i in range(0, n-1):
for j in range(i+1, n):
k += 1
posroots[k] = self.basic_root(i, j)
k += 1
root = self.basic_root(i, j)
root[j] = 1
posroots[k] = root
return posroots
def roots(self):
"""
Returns the total number of roots for D_n"
"""
n = self.n
return 2*n*(n-1)
def cartan_matrix(self):
"""
Returns the Cartan matrix for D_n.
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('D4')
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0, 0],
[-1, 2, -1, -1],
[ 0, -1, 2, 0],
[ 0, -1, 0, 2]])
"""
n = self.n
m = 2*eye(n)
i = 1
while i < n-2:
m[i,i+1] = -1
m[i,i-1] = -1
i += 1
m[n-2, n-3] = -1
m[n-3, n-1] = -1
m[n-1, n-3] = -1
m[0, 1] = -1
return m
def basis(self):
"""
Returns the number of independent generators of D_n
"""
n = self.n
return n*(n-1)/2
def lie_algebra(self):
"""
Returns the Lie algebra associated with D_n"
"""
n = self.n
return "so(" + str(2*n) + ")"
def dynkin_diagram(self):
n = self.n
diag = " "*4*(n-3) + str(n-1) + "\n"
diag += " "*4*(n-3) + "0\n"
diag += " "*4*(n-3) +"|\n"
diag += " "*4*(n-3) + "|\n"
diag += "---".join("0" for i in range(1,n)) + "\n"
diag += " ".join(str(i) for i in range(1, n-1)) + " "+str(n)
return diag

View File

@ -0,0 +1,287 @@
from .cartan_type import Standard_Cartan
from sympy.core.backend import eye, Rational
class TypeE(Standard_Cartan):
def __new__(cls, n):
if n < 6 or n > 8:
raise ValueError("Invalid value of n")
return Standard_Cartan.__new__(cls, "E", n)
def dimension(self):
"""Dimension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("E6")
>>> c.dimension()
8
"""
return 8
def basic_root(self, i, j):
"""
This is a method just to generate roots
with a -1 in the ith position and a 1
in the jth position.
"""
root = [0]*8
root[i] = -1
root[j] = 1
return root
def simple_root(self, i):
"""
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
This method returns the ith simple root for E_n.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("E6")
>>> c.simple_root(2)
[1, 1, 0, 0, 0, 0, 0, 0]
"""
n = self.n
if i == 1:
root = [-0.5]*8
root[0] = 0.5
root[7] = 0.5
return root
elif i == 2:
root = [0]*8
root[1] = 1
root[0] = 1
return root
else:
if i in (7, 8) and n == 6:
raise ValueError("E6 only has six simple roots!")
if i == 8 and n == 7:
raise ValueError("E7 has only 7 simple roots!")
return self.basic_root(i - 3, i - 2)
def positive_roots(self):
"""
This method generates all the positive roots of
A_n. This is half of all of the roots of E_n;
by multiplying all the positive roots by -1 we
get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
n = self.n
if n == 6:
posroots = {}
k = 0
for i in range(n-1):
for j in range(i+1, n-1):
k += 1
root = self.basic_root(i, j)
posroots[k] = root
k += 1
root = self.basic_root(i, j)
root[i] = 1
posroots[k] = root
root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
for a in range(0, 2):
for b in range(0, 2):
for c in range(0, 2):
for d in range(0, 2):
for e in range(0, 2):
if (a + b + c + d + e)%2 == 0:
k += 1
if a == 1:
root[0] = Rational(-1, 2)
if b == 1:
root[1] = Rational(-1, 2)
if c == 1:
root[2] = Rational(-1, 2)
if d == 1:
root[3] = Rational(-1, 2)
if e == 1:
root[4] = Rational(-1, 2)
posroots[k] = root
return posroots
if n == 7:
posroots = {}
k = 0
for i in range(n-1):
for j in range(i+1, n-1):
k += 1
root = self.basic_root(i, j)
posroots[k] = root
k += 1
root = self.basic_root(i, j)
root[i] = 1
posroots[k] = root
k += 1
posroots[k] = [0, 0, 0, 0, 0, 1, 1, 0]
root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
for a in range(0, 2):
for b in range(0, 2):
for c in range(0, 2):
for d in range(0, 2):
for e in range(0, 2):
for f in range(0, 2):
if (a + b + c + d + e + f)%2 == 0:
k += 1
if a == 1:
root[0] = Rational(-1, 2)
if b == 1:
root[1] = Rational(-1, 2)
if c == 1:
root[2] = Rational(-1, 2)
if d == 1:
root[3] = Rational(-1, 2)
if e == 1:
root[4] = Rational(-1, 2)
if f == 1:
root[5] = Rational(1, 2)
posroots[k] = root
return posroots
if n == 8:
posroots = {}
k = 0
for i in range(n):
for j in range(i+1, n):
k += 1
root = self.basic_root(i, j)
posroots[k] = root
k += 1
root = self.basic_root(i, j)
root[i] = 1
posroots[k] = root
root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
for a in range(0, 2):
for b in range(0, 2):
for c in range(0, 2):
for d in range(0, 2):
for e in range(0, 2):
for f in range(0, 2):
for g in range(0, 2):
if (a + b + c + d + e + f + g)%2 == 0:
k += 1
if a == 1:
root[0] = Rational(-1, 2)
if b == 1:
root[1] = Rational(-1, 2)
if c == 1:
root[2] = Rational(-1, 2)
if d == 1:
root[3] = Rational(-1, 2)
if e == 1:
root[4] = Rational(-1, 2)
if f == 1:
root[5] = Rational(1, 2)
if g == 1:
root[6] = Rational(1, 2)
posroots[k] = root
return posroots
def roots(self):
"""
Returns the total number of roots of E_n
"""
n = self.n
if n == 6:
return 72
if n == 7:
return 126
if n == 8:
return 240
def cartan_matrix(self):
"""
Returns the Cartan matrix for G_2
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('A4')
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0, 0],
[-1, 2, -1, 0],
[ 0, -1, 2, -1],
[ 0, 0, -1, 2]])
"""
n = self.n
m = 2*eye(n)
i = 3
while i < n-1:
m[i, i+1] = -1
m[i, i-1] = -1
i += 1
m[0, 2] = m[2, 0] = -1
m[1, 3] = m[3, 1] = -1
m[2, 3] = -1
m[n-1, n-2] = -1
return m
def basis(self):
"""
Returns the number of independent generators of E_n
"""
n = self.n
if n == 6:
return 78
if n == 7:
return 133
if n == 8:
return 248
def dynkin_diagram(self):
n = self.n
diag = " "*8 + str(2) + "\n"
diag += " "*8 + "0\n"
diag += " "*8 + "|\n"
diag += " "*8 + "|\n"
diag += "---".join("0" for i in range(1, n)) + "\n"
diag += "1 " + " ".join(str(i) for i in range(3, n+1))
return diag

View File

@ -0,0 +1,162 @@
from .cartan_type import Standard_Cartan
from sympy.core.backend import Matrix, Rational
class TypeF(Standard_Cartan):
def __new__(cls, n):
if n != 4:
raise ValueError("n should be 4")
return Standard_Cartan.__new__(cls, "F", 4)
def dimension(self):
"""Dimension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("F4")
>>> c.dimension()
4
"""
return 4
def basic_root(self, i, j):
"""Generate roots with 1 in ith position and -1 in jth position
"""
n = self.n
root = [0]*n
root[i] = 1
root[j] = -1
return root
def simple_root(self, i):
"""The ith simple root of F_4
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("F4")
>>> c.simple_root(3)
[0, 0, 0, 1]
"""
if i < 3:
return self.basic_root(i-1, i)
if i == 3:
root = [0]*4
root[3] = 1
return root
if i == 4:
root = [Rational(-1, 2)]*4
return root
def positive_roots(self):
"""Generate all the positive roots of A_n
This is half of all of the roots of F_4; by multiplying all the
positive roots by -1 we get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
n = self.n
posroots = {}
k = 0
for i in range(0, n-1):
for j in range(i+1, n):
k += 1
posroots[k] = self.basic_root(i, j)
k += 1
root = self.basic_root(i, j)
root[j] = 1
posroots[k] = root
for i in range(0, n):
k += 1
root = [0]*n
root[i] = 1
posroots[k] = root
k += 1
root = [Rational(1, 2)]*n
posroots[k] = root
for i in range(1, 4):
k += 1
root = [Rational(1, 2)]*n
root[i] = Rational(-1, 2)
posroots[k] = root
posroots[k+1] = [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)]
posroots[k+2] = [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)]
posroots[k+3] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
posroots[k+4] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(-1, 2)]
return posroots
def roots(self):
"""
Returns the total number of roots for F_4
"""
return 48
def cartan_matrix(self):
"""The Cartan matrix for F_4
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType('A4')
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0, 0],
[-1, 2, -1, 0],
[ 0, -1, 2, -1],
[ 0, 0, -1, 2]])
"""
m = Matrix( 4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0,
-1, 2, -1, 0, 0, -1, 2])
return m
def basis(self):
"""
Returns the number of independent generators of F_4
"""
return 52
def dynkin_diagram(self):
diag = "0---0=>=0---0\n"
diag += " ".join(str(i) for i in range(1, 5))
return diag

View File

@ -0,0 +1,111 @@
# -*- coding: utf-8 -*-
from .cartan_type import Standard_Cartan
from sympy.core.backend import Matrix
class TypeG(Standard_Cartan):
def __new__(cls, n):
if n != 2:
raise ValueError("n should be 2")
return Standard_Cartan.__new__(cls, "G", 2)
def dimension(self):
"""Dimension of the vector space V underlying the Lie algebra
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("G2")
>>> c.dimension()
3
"""
return 3
def simple_root(self, i):
"""The ith simple root of G_2
Every lie algebra has a unique root system.
Given a root system Q, there is a subset of the
roots such that an element of Q is called a
simple root if it cannot be written as the sum
of two elements in Q. If we let D denote the
set of simple roots, then it is clear that every
element of Q can be written as a linear combination
of elements of D with all coefficients non-negative.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("G2")
>>> c.simple_root(1)
[0, 1, -1]
"""
if i == 1:
return [0, 1, -1]
else:
return [1, -2, 1]
def positive_roots(self):
"""Generate all the positive roots of A_n
This is half of all of the roots of A_n; by multiplying all the
positive roots by -1 we get the negative roots.
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("A3")
>>> c.positive_roots()
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
"""
roots = {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0], 4: [1, 0, 1],
5: [1, 1, -2], 6: [2, -1, -1]}
return roots
def roots(self):
"""
Returns the total number of roots of G_2"
"""
return 12
def cartan_matrix(self):
"""The Cartan matrix for G_2
The Cartan matrix matrix for a Lie algebra is
generated by assigning an ordering to the simple
roots, (alpha[1], ...., alpha[l]). Then the ijth
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
Examples
========
>>> from sympy.liealgebras.cartan_type import CartanType
>>> c = CartanType("G2")
>>> c.cartan_matrix()
Matrix([
[ 2, -1],
[-3, 2]])
"""
m = Matrix( 2, 2, [2, -1, -3, 2])
return m
def basis(self):
"""
Returns the number of independent generators of G_2
"""
return 14
def dynkin_diagram(self):
diag = "0≡<≡0\n1 2"
return diag

View File

@ -0,0 +1,403 @@
# -*- coding: utf-8 -*-
from .cartan_type import CartanType
from mpmath import fac
from sympy.core.backend import Matrix, eye, Rational, igcd
from sympy.core.basic import Atom
class WeylGroup(Atom):
"""
For each semisimple Lie group, we have a Weyl group. It is a subgroup of
the isometry group of the root system. Specifically, it's the subgroup
that is generated by reflections through the hyperplanes orthogonal to
the roots. Therefore, Weyl groups are reflection groups, and so a Weyl
group is a finite Coxeter group.
"""
def __new__(cls, cartantype):
obj = Atom.__new__(cls)
obj.cartan_type = CartanType(cartantype)
return obj
def generators(self):
"""
This method creates the generating reflections of the Weyl group for
a given Lie algebra. For a Lie algebra of rank n, there are n
different generating reflections. This function returns them as
a list.
Examples
========
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("F4")
>>> c.generators()
['r1', 'r2', 'r3', 'r4']
"""
n = self.cartan_type.rank()
generators = []
for i in range(1, n+1):
reflection = "r"+str(i)
generators.append(reflection)
return generators
def group_order(self):
"""
This method returns the order of the Weyl group.
For types A, B, C, D, and E the order depends on
the rank of the Lie algebra. For types F and G,
the order is fixed.
Examples
========
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("D4")
>>> c.group_order()
192.0
"""
n = self.cartan_type.rank()
if self.cartan_type.series == "A":
return fac(n+1)
if self.cartan_type.series in ("B", "C"):
return fac(n)*(2**n)
if self.cartan_type.series == "D":
return fac(n)*(2**(n-1))
if self.cartan_type.series == "E":
if n == 6:
return 51840
if n == 7:
return 2903040
if n == 8:
return 696729600
if self.cartan_type.series == "F":
return 1152
if self.cartan_type.series == "G":
return 12
def group_name(self):
"""
This method returns some general information about the Weyl group for
a given Lie algebra. It returns the name of the group and the elements
it acts on, if relevant.
"""
n = self.cartan_type.rank()
if self.cartan_type.series == "A":
return "S"+str(n+1) + ": the symmetric group acting on " + str(n+1) + " elements."
if self.cartan_type.series in ("B", "C"):
return "The hyperoctahedral group acting on " + str(2*n) + " elements."
if self.cartan_type.series == "D":
return "The symmetry group of the " + str(n) + "-dimensional demihypercube."
if self.cartan_type.series == "E":
if n == 6:
return "The symmetry group of the 6-polytope."
if n == 7:
return "The symmetry group of the 7-polytope."
if n == 8:
return "The symmetry group of the 8-polytope."
if self.cartan_type.series == "F":
return "The symmetry group of the 24-cell, or icositetrachoron."
if self.cartan_type.series == "G":
return "D6, the dihedral group of order 12, and symmetry group of the hexagon."
def element_order(self, weylelt):
"""
This method returns the order of a given Weyl group element, which should
be specified by the user in the form of products of the generating
reflections, i.e. of the form r1*r2 etc.
For types A-F, this method current works by taking the matrix form of
the specified element, and then finding what power of the matrix is the
identity. It then returns this power.
Examples
========
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> b = WeylGroup("B4")
>>> b.element_order('r1*r4*r2')
4
"""
n = self.cartan_type.rank()
if self.cartan_type.series == "A":
a = self.matrix_form(weylelt)
order = 1
while a != eye(n+1):
a *= self.matrix_form(weylelt)
order += 1
return order
if self.cartan_type.series == "D":
a = self.matrix_form(weylelt)
order = 1
while a != eye(n):
a *= self.matrix_form(weylelt)
order += 1
return order
if self.cartan_type.series == "E":
a = self.matrix_form(weylelt)
order = 1
while a != eye(8):
a *= self.matrix_form(weylelt)
order += 1
return order
if self.cartan_type.series == "G":
elts = list(weylelt)
reflections = elts[1::3]
m = self.delete_doubles(reflections)
while self.delete_doubles(m) != m:
m = self.delete_doubles(m)
reflections = m
if len(reflections) % 2 == 1:
return 2
elif len(reflections) == 0:
return 1
else:
if len(reflections) == 1:
return 2
else:
m = len(reflections) // 2
lcm = (6 * m)/ igcd(m, 6)
order = lcm / m
return order
if self.cartan_type.series == 'F':
a = self.matrix_form(weylelt)
order = 1
while a != eye(4):
a *= self.matrix_form(weylelt)
order += 1
return order
if self.cartan_type.series in ("B", "C"):
a = self.matrix_form(weylelt)
order = 1
while a != eye(n):
a *= self.matrix_form(weylelt)
order += 1
return order
def delete_doubles(self, reflections):
"""
This is a helper method for determining the order of an element in the
Weyl group of G2. It takes a Weyl element and if repeated simple reflections
in it, it deletes them.
"""
counter = 0
copy = list(reflections)
for elt in copy:
if counter < len(copy)-1:
if copy[counter + 1] == elt:
del copy[counter]
del copy[counter]
counter += 1
return copy
def matrix_form(self, weylelt):
"""
This method takes input from the user in the form of products of the
generating reflections, and returns the matrix corresponding to the
element of the Weyl group. Since each element of the Weyl group is
a reflection of some type, there is a corresponding matrix representation.
This method uses the standard representation for all the generating
reflections.
Examples
========
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> f = WeylGroup("F4")
>>> f.matrix_form('r2*r3')
Matrix([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, -1],
[0, 0, 1, 0]])
"""
elts = list(weylelt)
reflections = elts[1::3]
n = self.cartan_type.rank()
if self.cartan_type.series == 'A':
matrixform = eye(n+1)
for elt in reflections:
a = int(elt)
mat = eye(n+1)
mat[a-1, a-1] = 0
mat[a-1, a] = 1
mat[a, a-1] = 1
mat[a, a] = 0
matrixform *= mat
return matrixform
if self.cartan_type.series == 'D':
matrixform = eye(n)
for elt in reflections:
a = int(elt)
mat = eye(n)
if a < n:
mat[a-1, a-1] = 0
mat[a-1, a] = 1
mat[a, a-1] = 1
mat[a, a] = 0
matrixform *= mat
else:
mat[n-2, n-1] = -1
mat[n-2, n-2] = 0
mat[n-1, n-2] = -1
mat[n-1, n-1] = 0
matrixform *= mat
return matrixform
if self.cartan_type.series == 'G':
matrixform = eye(3)
for elt in reflections:
a = int(elt)
if a == 1:
gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
matrixform *= gen1
else:
gen2 = Matrix([[Rational(2, 3), Rational(2, 3), Rational(-1, 3)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
[Rational(-1, 3), Rational(2, 3), Rational(2, 3)]])
matrixform *= gen2
return matrixform
if self.cartan_type.series == 'F':
matrixform = eye(4)
for elt in reflections:
a = int(elt)
if a == 1:
mat = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
matrixform *= mat
elif a == 2:
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])
matrixform *= mat
elif a == 3:
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]])
matrixform *= mat
else:
mat = Matrix([[Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)],
[Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)],
[Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)],
[Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]])
matrixform *= mat
return matrixform
if self.cartan_type.series == 'E':
matrixform = eye(8)
for elt in reflections:
a = int(elt)
if a == 1:
mat = Matrix([[Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4),
Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4)],
[Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4),
Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4)],
[Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4),
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4),
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4)],
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4)],
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4)]])
matrixform *= mat
elif a == 2:
mat = eye(8)
mat[0, 0] = 0
mat[0, 1] = -1
mat[1, 0] = -1
mat[1, 1] = 0
matrixform *= mat
else:
mat = eye(8)
mat[a-3, a-3] = 0
mat[a-3, a-2] = 1
mat[a-2, a-3] = 1
mat[a-2, a-2] = 0
matrixform *= mat
return matrixform
if self.cartan_type.series in ("B", "C"):
matrixform = eye(n)
for elt in reflections:
a = int(elt)
mat = eye(n)
if a == 1:
mat[0, 0] = -1
matrixform *= mat
else:
mat[a - 2, a - 2] = 0
mat[a-2, a-1] = 1
mat[a - 1, a - 2] = 1
mat[a -1, a - 1] = 0
matrixform *= mat
return matrixform
def coxeter_diagram(self):
"""
This method returns the Coxeter diagram corresponding to a Weyl group.
The Coxeter diagram can be obtained from a Lie algebra's Dynkin diagram
by deleting all arrows; the Coxeter diagram is the undirected graph.
The vertices of the Coxeter diagram represent the generating reflections
of the Weyl group, $s_i$. An edge is drawn between $s_i$ and $s_j$ if the order
$m(i, j)$ of $s_is_j$ is greater than two. If there is one edge, the order
$m(i, j)$ is 3. If there are two edges, the order $m(i, j)$ is 4, and if there
are three edges, the order $m(i, j)$ is 6.
Examples
========
>>> from sympy.liealgebras.weyl_group import WeylGroup
>>> c = WeylGroup("B3")
>>> print(c.coxeter_diagram())
0---0===0
1 2 3
"""
n = self.cartan_type.rank()
if self.cartan_type.series in ("A", "D", "E"):
return self.cartan_type.dynkin_diagram()
if self.cartan_type.series in ("B", "C"):
diag = "---".join("0" for i in range(1, n)) + "===0\n"
diag += " ".join(str(i) for i in range(1, n+1))
return diag
if self.cartan_type.series == "F":
diag = "0---0===0---0\n"
diag += " ".join(str(i) for i in range(1, 5))
return diag
if self.cartan_type.series == "G":
diag = "0≡≡≡0\n1 2"
return diag