I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,13 @@
"""
Multipledispatch handlers for ``Predicate`` are implemented here.
Handlers in this module are not directly imported to other modules in
order to avoid circular import problem.
"""
from .common import (AskHandler, CommonHandler,
test_closed_group)
__all__ = [
'AskHandler', 'CommonHandler',
'test_closed_group'
]

View File

@ -0,0 +1,258 @@
"""
This module contains query handlers responsible for calculus queries:
infinitesimal, finite, etc.
"""
from sympy.assumptions import Q, ask
from sympy.core import Add, Mul, Pow, Symbol
from sympy.core.numbers import (NegativeInfinity, GoldenRatio,
Infinity, Exp1, ComplexInfinity, ImaginaryUnit, NaN, Number, Pi, E,
TribonacciConstant)
from sympy.functions import cos, exp, log, sign, sin
from sympy.logic.boolalg import conjuncts
from ..predicates.calculus import (FinitePredicate, InfinitePredicate,
PositiveInfinitePredicate, NegativeInfinitePredicate)
# FinitePredicate
@FinitePredicate.register(Symbol)
def _(expr, assumptions):
"""
Handles Symbol.
"""
if expr.is_finite is not None:
return expr.is_finite
if Q.finite(expr) in conjuncts(assumptions):
return True
return None
@FinitePredicate.register(Add)
def _(expr, assumptions):
"""
Return True if expr is bounded, False if not and None if unknown.
Truth Table:
+-------+-----+-----------+-----------+
| | | | |
| | B | U | ? |
| | | | |
+-------+-----+---+---+---+---+---+---+
| | | | | | | | |
| | |'+'|'-'|'x'|'+'|'-'|'x'|
| | | | | | | | |
+-------+-----+---+---+---+---+---+---+
| | | | |
| B | B | U | ? |
| | | | |
+---+---+-----+---+---+---+---+---+---+
| | | | | | | | | |
| |'+'| | U | ? | ? | U | ? | ? |
| | | | | | | | | |
| +---+-----+---+---+---+---+---+---+
| | | | | | | | | |
| U |'-'| | ? | U | ? | ? | U | ? |
| | | | | | | | | |
| +---+-----+---+---+---+---+---+---+
| | | | | |
| |'x'| | ? | ? |
| | | | | |
+---+---+-----+---+---+---+---+---+---+
| | | | |
| ? | | | ? |
| | | | |
+-------+-----+-----------+---+---+---+
* 'B' = Bounded
* 'U' = Unbounded
* '?' = unknown boundedness
* '+' = positive sign
* '-' = negative sign
* 'x' = sign unknown
* All Bounded -> True
* 1 Unbounded and the rest Bounded -> False
* >1 Unbounded, all with same known sign -> False
* Any Unknown and unknown sign -> None
* Else -> None
When the signs are not the same you can have an undefined
result as in oo - oo, hence 'bounded' is also undefined.
"""
sign = -1 # sign of unknown or infinite
result = True
for arg in expr.args:
_bounded = ask(Q.finite(arg), assumptions)
if _bounded:
continue
s = ask(Q.extended_positive(arg), assumptions)
# if there has been more than one sign or if the sign of this arg
# is None and Bounded is None or there was already
# an unknown sign, return None
if sign != -1 and s != sign or \
s is None and None in (_bounded, sign):
return None
else:
sign = s
# once False, do not change
if result is not False:
result = _bounded
return result
@FinitePredicate.register(Mul)
def _(expr, assumptions):
"""
Return True if expr is bounded, False if not and None if unknown.
Truth Table:
+---+---+---+--------+
| | | | |
| | B | U | ? |
| | | | |
+---+---+---+---+----+
| | | | | |
| | | | s | /s |
| | | | | |
+---+---+---+---+----+
| | | | |
| B | B | U | ? |
| | | | |
+---+---+---+---+----+
| | | | | |
| U | | U | U | ? |
| | | | | |
+---+---+---+---+----+
| | | | |
| ? | | | ? |
| | | | |
+---+---+---+---+----+
* B = Bounded
* U = Unbounded
* ? = unknown boundedness
* s = signed (hence nonzero)
* /s = not signed
"""
result = True
for arg in expr.args:
_bounded = ask(Q.finite(arg), assumptions)
if _bounded:
continue
elif _bounded is None:
if result is None:
return None
if ask(Q.extended_nonzero(arg), assumptions) is None:
return None
if result is not False:
result = None
else:
result = False
return result
@FinitePredicate.register(Pow)
def _(expr, assumptions):
"""
* Unbounded ** NonZero -> Unbounded
* Bounded ** Bounded -> Bounded
* Abs()<=1 ** Positive -> Bounded
* Abs()>=1 ** Negative -> Bounded
* Otherwise unknown
"""
if expr.base == E:
return ask(Q.finite(expr.exp), assumptions)
base_bounded = ask(Q.finite(expr.base), assumptions)
exp_bounded = ask(Q.finite(expr.exp), assumptions)
if base_bounded is None and exp_bounded is None: # Common Case
return None
if base_bounded is False and ask(Q.extended_nonzero(expr.exp), assumptions):
return False
if base_bounded and exp_bounded:
return True
if (abs(expr.base) <= 1) == True and ask(Q.extended_positive(expr.exp), assumptions):
return True
if (abs(expr.base) >= 1) == True and ask(Q.extended_negative(expr.exp), assumptions):
return True
if (abs(expr.base) >= 1) == True and exp_bounded is False:
return False
return None
@FinitePredicate.register(exp)
def _(expr, assumptions):
return ask(Q.finite(expr.exp), assumptions)
@FinitePredicate.register(log)
def _(expr, assumptions):
# After complex -> finite fact is registered to new assumption system,
# querying Q.infinite may be removed.
if ask(Q.infinite(expr.args[0]), assumptions):
return False
return ask(~Q.zero(expr.args[0]), assumptions)
@FinitePredicate.register_many(cos, sin, Number, Pi, Exp1, GoldenRatio,
TribonacciConstant, ImaginaryUnit, sign)
def _(expr, assumptions):
return True
@FinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity)
def _(expr, assumptions):
return False
@FinitePredicate.register(NaN)
def _(expr, assumptions):
return None
# InfinitePredicate
@InfinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity)
def _(expr, assumptions):
return True
# PositiveInfinitePredicate
@PositiveInfinitePredicate.register(Infinity)
def _(expr, assumptions):
return True
@PositiveInfinitePredicate.register_many(NegativeInfinity, ComplexInfinity)
def _(expr, assumptions):
return False
# NegativeInfinitePredicate
@NegativeInfinitePredicate.register(NegativeInfinity)
def _(expr, assumptions):
return True
@NegativeInfinitePredicate.register_many(Infinity, ComplexInfinity)
def _(expr, assumptions):
return False

View File

@ -0,0 +1,156 @@
"""
This module defines base class for handlers and some core handlers:
``Q.commutative`` and ``Q.is_true``.
"""
from sympy.assumptions import Q, ask, AppliedPredicate
from sympy.core import Basic, Symbol
from sympy.core.logic import _fuzzy_group
from sympy.core.numbers import NaN, Number
from sympy.logic.boolalg import (And, BooleanTrue, BooleanFalse, conjuncts,
Equivalent, Implies, Not, Or)
from sympy.utilities.exceptions import sympy_deprecation_warning
from ..predicates.common import CommutativePredicate, IsTruePredicate
class AskHandler:
"""Base class that all Ask Handlers must inherit."""
def __new__(cls, *args, **kwargs):
sympy_deprecation_warning(
"""
The AskHandler system is deprecated. The AskHandler class should
be replaced with the multipledispatch handler of Predicate
""",
deprecated_since_version="1.8",
active_deprecations_target='deprecated-askhandler',
)
return super().__new__(cls, *args, **kwargs)
class CommonHandler(AskHandler):
# Deprecated
"""Defines some useful methods common to most Handlers. """
@staticmethod
def AlwaysTrue(expr, assumptions):
return True
@staticmethod
def AlwaysFalse(expr, assumptions):
return False
@staticmethod
def AlwaysNone(expr, assumptions):
return None
NaN = AlwaysFalse
# CommutativePredicate
@CommutativePredicate.register(Symbol)
def _(expr, assumptions):
"""Objects are expected to be commutative unless otherwise stated"""
assumps = conjuncts(assumptions)
if expr.is_commutative is not None:
return expr.is_commutative and not ~Q.commutative(expr) in assumps
if Q.commutative(expr) in assumps:
return True
elif ~Q.commutative(expr) in assumps:
return False
return True
@CommutativePredicate.register(Basic)
def _(expr, assumptions):
for arg in expr.args:
if not ask(Q.commutative(arg), assumptions):
return False
return True
@CommutativePredicate.register(Number)
def _(expr, assumptions):
return True
@CommutativePredicate.register(NaN)
def _(expr, assumptions):
return True
# IsTruePredicate
@IsTruePredicate.register(bool)
def _(expr, assumptions):
return expr
@IsTruePredicate.register(BooleanTrue)
def _(expr, assumptions):
return True
@IsTruePredicate.register(BooleanFalse)
def _(expr, assumptions):
return False
@IsTruePredicate.register(AppliedPredicate)
def _(expr, assumptions):
return ask(expr, assumptions)
@IsTruePredicate.register(Not)
def _(expr, assumptions):
arg = expr.args[0]
if arg.is_Symbol:
# symbol used as abstract boolean object
return None
value = ask(arg, assumptions=assumptions)
if value in (True, False):
return not value
else:
return None
@IsTruePredicate.register(Or)
def _(expr, assumptions):
result = False
for arg in expr.args:
p = ask(arg, assumptions=assumptions)
if p is True:
return True
if p is None:
result = None
return result
@IsTruePredicate.register(And)
def _(expr, assumptions):
result = True
for arg in expr.args:
p = ask(arg, assumptions=assumptions)
if p is False:
return False
if p is None:
result = None
return result
@IsTruePredicate.register(Implies)
def _(expr, assumptions):
p, q = expr.args
return ask(~p | q, assumptions=assumptions)
@IsTruePredicate.register(Equivalent)
def _(expr, assumptions):
p, q = expr.args
pt = ask(p, assumptions=assumptions)
if pt is None:
return None
qt = ask(q, assumptions=assumptions)
if qt is None:
return None
return pt == qt
#### Helper methods
def test_closed_group(expr, assumptions, key):
"""
Test for membership in a group with respect
to the current operation.
"""
return _fuzzy_group(
(ask(key(a), assumptions) for a in expr.args), quick_exit=True)

View File

@ -0,0 +1,716 @@
"""
This module contains query handlers responsible for Matrices queries:
Square, Symmetric, Invertible etc.
"""
from sympy.logic.boolalg import conjuncts
from sympy.assumptions import Q, ask
from sympy.assumptions.handlers import test_closed_group
from sympy.matrices import MatrixBase
from sympy.matrices.expressions import (BlockMatrix, BlockDiagMatrix, Determinant,
DiagMatrix, DiagonalMatrix, HadamardProduct, Identity, Inverse, MatAdd, MatMul,
MatPow, MatrixExpr, MatrixSlice, MatrixSymbol, OneMatrix, Trace, Transpose,
ZeroMatrix)
from sympy.matrices.expressions.blockmatrix import reblock_2x2
from sympy.matrices.expressions.factorizations import Factorization
from sympy.matrices.expressions.fourier import DFT
from sympy.core.logic import fuzzy_and
from sympy.utilities.iterables import sift
from sympy.core import Basic
from ..predicates.matrices import (SquarePredicate, SymmetricPredicate,
InvertiblePredicate, OrthogonalPredicate, UnitaryPredicate,
FullRankPredicate, PositiveDefinitePredicate, UpperTriangularPredicate,
LowerTriangularPredicate, DiagonalPredicate, IntegerElementsPredicate,
RealElementsPredicate, ComplexElementsPredicate)
def _Factorization(predicate, expr, assumptions):
if predicate in expr.predicates:
return True
# SquarePredicate
@SquarePredicate.register(MatrixExpr)
def _(expr, assumptions):
return expr.shape[0] == expr.shape[1]
# SymmetricPredicate
@SymmetricPredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if all(ask(Q.symmetric(arg), assumptions) for arg in mmul.args):
return True
# TODO: implement sathandlers system for the matrices.
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
if ask(Q.diagonal(expr), assumptions):
return True
if len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T:
if len(mmul.args) == 2:
return True
return ask(Q.symmetric(MatMul(*mmul.args[1:-1])), assumptions)
@SymmetricPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.symmetric(base), assumptions)
return None
@SymmetricPredicate.register(MatAdd)
def _(expr, assumptions):
return all(ask(Q.symmetric(arg), assumptions) for arg in expr.args)
@SymmetricPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if not expr.is_square:
return False
# TODO: implement sathandlers system for the matrices.
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
if ask(Q.diagonal(expr), assumptions):
return True
if Q.symmetric(expr) in conjuncts(assumptions):
return True
@SymmetricPredicate.register_many(OneMatrix, ZeroMatrix)
def _(expr, assumptions):
return ask(Q.square(expr), assumptions)
@SymmetricPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.symmetric(expr.arg), assumptions)
@SymmetricPredicate.register(MatrixSlice)
def _(expr, assumptions):
# TODO: implement sathandlers system for the matrices.
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
if ask(Q.diagonal(expr), assumptions):
return True
if not expr.on_diag:
return None
else:
return ask(Q.symmetric(expr.parent), assumptions)
@SymmetricPredicate.register(Identity)
def _(expr, assumptions):
return True
# InvertiblePredicate
@InvertiblePredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if all(ask(Q.invertible(arg), assumptions) for arg in mmul.args):
return True
if any(ask(Q.invertible(arg), assumptions) is False
for arg in mmul.args):
return False
@InvertiblePredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
if exp.is_negative == False:
return ask(Q.invertible(base), assumptions)
return None
@InvertiblePredicate.register(MatAdd)
def _(expr, assumptions):
return None
@InvertiblePredicate.register(MatrixSymbol)
def _(expr, assumptions):
if not expr.is_square:
return False
if Q.invertible(expr) in conjuncts(assumptions):
return True
@InvertiblePredicate.register_many(Identity, Inverse)
def _(expr, assumptions):
return True
@InvertiblePredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@InvertiblePredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@InvertiblePredicate.register(Transpose)
def _(expr, assumptions):
return ask(Q.invertible(expr.arg), assumptions)
@InvertiblePredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.invertible(expr.parent), assumptions)
@InvertiblePredicate.register(MatrixBase)
def _(expr, assumptions):
if not expr.is_square:
return False
return expr.rank() == expr.rows
@InvertiblePredicate.register(MatrixExpr)
def _(expr, assumptions):
if not expr.is_square:
return False
return None
@InvertiblePredicate.register(BlockMatrix)
def _(expr, assumptions):
if not expr.is_square:
return False
if expr.blockshape == (1, 1):
return ask(Q.invertible(expr.blocks[0, 0]), assumptions)
expr = reblock_2x2(expr)
if expr.blockshape == (2, 2):
[[A, B], [C, D]] = expr.blocks.tolist()
if ask(Q.invertible(A), assumptions) == True:
invertible = ask(Q.invertible(D - C * A.I * B), assumptions)
if invertible is not None:
return invertible
if ask(Q.invertible(B), assumptions) == True:
invertible = ask(Q.invertible(C - D * B.I * A), assumptions)
if invertible is not None:
return invertible
if ask(Q.invertible(C), assumptions) == True:
invertible = ask(Q.invertible(B - A * C.I * D), assumptions)
if invertible is not None:
return invertible
if ask(Q.invertible(D), assumptions) == True:
invertible = ask(Q.invertible(A - B * D.I * C), assumptions)
if invertible is not None:
return invertible
return None
@InvertiblePredicate.register(BlockDiagMatrix)
def _(expr, assumptions):
if expr.rowblocksizes != expr.colblocksizes:
return None
return fuzzy_and([ask(Q.invertible(a), assumptions) for a in expr.diag])
# OrthogonalPredicate
@OrthogonalPredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if (all(ask(Q.orthogonal(arg), assumptions) for arg in mmul.args) and
factor == 1):
return True
if any(ask(Q.invertible(arg), assumptions) is False
for arg in mmul.args):
return False
@OrthogonalPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if int_exp:
return ask(Q.orthogonal(base), assumptions)
return None
@OrthogonalPredicate.register(MatAdd)
def _(expr, assumptions):
if (len(expr.args) == 1 and
ask(Q.orthogonal(expr.args[0]), assumptions)):
return True
@OrthogonalPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if (not expr.is_square or
ask(Q.invertible(expr), assumptions) is False):
return False
if Q.orthogonal(expr) in conjuncts(assumptions):
return True
@OrthogonalPredicate.register(Identity)
def _(expr, assumptions):
return True
@OrthogonalPredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@OrthogonalPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.orthogonal(expr.arg), assumptions)
@OrthogonalPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.orthogonal(expr.parent), assumptions)
@OrthogonalPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.orthogonal, expr, assumptions)
# UnitaryPredicate
@UnitaryPredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if (all(ask(Q.unitary(arg), assumptions) for arg in mmul.args) and
abs(factor) == 1):
return True
if any(ask(Q.invertible(arg), assumptions) is False
for arg in mmul.args):
return False
@UnitaryPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if int_exp:
return ask(Q.unitary(base), assumptions)
return None
@UnitaryPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if (not expr.is_square or
ask(Q.invertible(expr), assumptions) is False):
return False
if Q.unitary(expr) in conjuncts(assumptions):
return True
@UnitaryPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.unitary(expr.arg), assumptions)
@UnitaryPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.unitary(expr.parent), assumptions)
@UnitaryPredicate.register_many(DFT, Identity)
def _(expr, assumptions):
return True
@UnitaryPredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@UnitaryPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.unitary, expr, assumptions)
# FullRankPredicate
@FullRankPredicate.register(MatMul)
def _(expr, assumptions):
if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args):
return True
@FullRankPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if int_exp and ask(~Q.negative(exp), assumptions):
return ask(Q.fullrank(base), assumptions)
return None
@FullRankPredicate.register(Identity)
def _(expr, assumptions):
return True
@FullRankPredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@FullRankPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@FullRankPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.fullrank(expr.arg), assumptions)
@FullRankPredicate.register(MatrixSlice)
def _(expr, assumptions):
if ask(Q.orthogonal(expr.parent), assumptions):
return True
# PositiveDefinitePredicate
@PositiveDefinitePredicate.register(MatMul)
def _(expr, assumptions):
factor, mmul = expr.as_coeff_mmul()
if (all(ask(Q.positive_definite(arg), assumptions)
for arg in mmul.args) and factor > 0):
return True
if (len(mmul.args) >= 2
and mmul.args[0] == mmul.args[-1].T
and ask(Q.fullrank(mmul.args[0]), assumptions)):
return ask(Q.positive_definite(
MatMul(*mmul.args[1:-1])), assumptions)
@PositiveDefinitePredicate.register(MatPow)
def _(expr, assumptions):
# a power of a positive definite matrix is positive definite
if ask(Q.positive_definite(expr.args[0]), assumptions):
return True
@PositiveDefinitePredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.positive_definite(arg), assumptions)
for arg in expr.args):
return True
@PositiveDefinitePredicate.register(MatrixSymbol)
def _(expr, assumptions):
if not expr.is_square:
return False
if Q.positive_definite(expr) in conjuncts(assumptions):
return True
@PositiveDefinitePredicate.register(Identity)
def _(expr, assumptions):
return True
@PositiveDefinitePredicate.register(ZeroMatrix)
def _(expr, assumptions):
return False
@PositiveDefinitePredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@PositiveDefinitePredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.positive_definite(expr.arg), assumptions)
@PositiveDefinitePredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.positive_definite(expr.parent), assumptions)
# UpperTriangularPredicate
@UpperTriangularPredicate.register(MatMul)
def _(expr, assumptions):
factor, matrices = expr.as_coeff_matrices()
if all(ask(Q.upper_triangular(m), assumptions) for m in matrices):
return True
@UpperTriangularPredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.upper_triangular(arg), assumptions) for arg in expr.args):
return True
@UpperTriangularPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.upper_triangular(base), assumptions)
return None
@UpperTriangularPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if Q.upper_triangular(expr) in conjuncts(assumptions):
return True
@UpperTriangularPredicate.register_many(Identity, ZeroMatrix)
def _(expr, assumptions):
return True
@UpperTriangularPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@UpperTriangularPredicate.register(Transpose)
def _(expr, assumptions):
return ask(Q.lower_triangular(expr.arg), assumptions)
@UpperTriangularPredicate.register(Inverse)
def _(expr, assumptions):
return ask(Q.upper_triangular(expr.arg), assumptions)
@UpperTriangularPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.upper_triangular(expr.parent), assumptions)
@UpperTriangularPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.upper_triangular, expr, assumptions)
# LowerTriangularPredicate
@LowerTriangularPredicate.register(MatMul)
def _(expr, assumptions):
factor, matrices = expr.as_coeff_matrices()
if all(ask(Q.lower_triangular(m), assumptions) for m in matrices):
return True
@LowerTriangularPredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.lower_triangular(arg), assumptions) for arg in expr.args):
return True
@LowerTriangularPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.lower_triangular(base), assumptions)
return None
@LowerTriangularPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if Q.lower_triangular(expr) in conjuncts(assumptions):
return True
@LowerTriangularPredicate.register_many(Identity, ZeroMatrix)
def _(expr, assumptions):
return True
@LowerTriangularPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@LowerTriangularPredicate.register(Transpose)
def _(expr, assumptions):
return ask(Q.upper_triangular(expr.arg), assumptions)
@LowerTriangularPredicate.register(Inverse)
def _(expr, assumptions):
return ask(Q.lower_triangular(expr.arg), assumptions)
@LowerTriangularPredicate.register(MatrixSlice)
def _(expr, assumptions):
if not expr.on_diag:
return None
else:
return ask(Q.lower_triangular(expr.parent), assumptions)
@LowerTriangularPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.lower_triangular, expr, assumptions)
# DiagonalPredicate
def _is_empty_or_1x1(expr):
return expr.shape in ((0, 0), (1, 1))
@DiagonalPredicate.register(MatMul)
def _(expr, assumptions):
if _is_empty_or_1x1(expr):
return True
factor, matrices = expr.as_coeff_matrices()
if all(ask(Q.diagonal(m), assumptions) for m in matrices):
return True
@DiagonalPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.diagonal(base), assumptions)
return None
@DiagonalPredicate.register(MatAdd)
def _(expr, assumptions):
if all(ask(Q.diagonal(arg), assumptions) for arg in expr.args):
return True
@DiagonalPredicate.register(MatrixSymbol)
def _(expr, assumptions):
if _is_empty_or_1x1(expr):
return True
if Q.diagonal(expr) in conjuncts(assumptions):
return True
@DiagonalPredicate.register(OneMatrix)
def _(expr, assumptions):
return expr.shape[0] == 1 and expr.shape[1] == 1
@DiagonalPredicate.register_many(Inverse, Transpose)
def _(expr, assumptions):
return ask(Q.diagonal(expr.arg), assumptions)
@DiagonalPredicate.register(MatrixSlice)
def _(expr, assumptions):
if _is_empty_or_1x1(expr):
return True
if not expr.on_diag:
return None
else:
return ask(Q.diagonal(expr.parent), assumptions)
@DiagonalPredicate.register_many(DiagonalMatrix, DiagMatrix, Identity, ZeroMatrix)
def _(expr, assumptions):
return True
@DiagonalPredicate.register(Factorization)
def _(expr, assumptions):
return _Factorization(Q.diagonal, expr, assumptions)
# IntegerElementsPredicate
def BM_elements(predicate, expr, assumptions):
""" Block Matrix elements. """
return all(ask(predicate(b), assumptions) for b in expr.blocks)
def MS_elements(predicate, expr, assumptions):
""" Matrix Slice elements. """
return ask(predicate(expr.parent), assumptions)
def MatMul_elements(matrix_predicate, scalar_predicate, expr, assumptions):
d = sift(expr.args, lambda x: isinstance(x, MatrixExpr))
factors, matrices = d[False], d[True]
return fuzzy_and([
test_closed_group(Basic(*factors), assumptions, scalar_predicate),
test_closed_group(Basic(*matrices), assumptions, matrix_predicate)])
@IntegerElementsPredicate.register_many(Determinant, HadamardProduct, MatAdd,
Trace, Transpose)
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.integer_elements)
@IntegerElementsPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
if exp.is_negative == False:
return ask(Q.integer_elements(base), assumptions)
return None
@IntegerElementsPredicate.register_many(Identity, OneMatrix, ZeroMatrix)
def _(expr, assumptions):
return True
@IntegerElementsPredicate.register(MatMul)
def _(expr, assumptions):
return MatMul_elements(Q.integer_elements, Q.integer, expr, assumptions)
@IntegerElementsPredicate.register(MatrixSlice)
def _(expr, assumptions):
return MS_elements(Q.integer_elements, expr, assumptions)
@IntegerElementsPredicate.register(BlockMatrix)
def _(expr, assumptions):
return BM_elements(Q.integer_elements, expr, assumptions)
# RealElementsPredicate
@RealElementsPredicate.register_many(Determinant, Factorization, HadamardProduct,
MatAdd, Trace, Transpose)
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.real_elements)
@RealElementsPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.real_elements(base), assumptions)
return None
@RealElementsPredicate.register(MatMul)
def _(expr, assumptions):
return MatMul_elements(Q.real_elements, Q.real, expr, assumptions)
@RealElementsPredicate.register(MatrixSlice)
def _(expr, assumptions):
return MS_elements(Q.real_elements, expr, assumptions)
@RealElementsPredicate.register(BlockMatrix)
def _(expr, assumptions):
return BM_elements(Q.real_elements, expr, assumptions)
# ComplexElementsPredicate
@ComplexElementsPredicate.register_many(Determinant, Factorization, HadamardProduct,
Inverse, MatAdd, Trace, Transpose)
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.complex_elements)
@ComplexElementsPredicate.register(MatPow)
def _(expr, assumptions):
# only for integer powers
base, exp = expr.args
int_exp = ask(Q.integer(exp), assumptions)
if not int_exp:
return None
non_negative = ask(~Q.negative(exp), assumptions)
if (non_negative or non_negative == False
and ask(Q.invertible(base), assumptions)):
return ask(Q.complex_elements(base), assumptions)
return None
@ComplexElementsPredicate.register(MatMul)
def _(expr, assumptions):
return MatMul_elements(Q.complex_elements, Q.complex, expr, assumptions)
@ComplexElementsPredicate.register(MatrixSlice)
def _(expr, assumptions):
return MS_elements(Q.complex_elements, expr, assumptions)
@ComplexElementsPredicate.register(BlockMatrix)
def _(expr, assumptions):
return BM_elements(Q.complex_elements, expr, assumptions)
@ComplexElementsPredicate.register(DFT)
def _(expr, assumptions):
return True

View File

@ -0,0 +1,269 @@
"""
Handlers for keys related to number theory: prime, even, odd, etc.
"""
from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Float, Mul, Pow, S
from sympy.core.numbers import (ImaginaryUnit, Infinity, Integer, NaN,
NegativeInfinity, NumberSymbol, Rational, int_valued)
from sympy.functions import Abs, im, re
from sympy.ntheory import isprime
from sympy.multipledispatch import MDNotImplementedError
from ..predicates.ntheory import (PrimePredicate, CompositePredicate,
EvenPredicate, OddPredicate)
# PrimePredicate
def _PrimePredicate_number(expr, assumptions):
# helper method
exact = not expr.atoms(Float)
try:
i = int(expr.round())
if (expr - i).equals(0) is False:
raise TypeError
except TypeError:
return False
if exact:
return isprime(i)
# when not exact, we won't give a True or False
# since the number represents an approximate value
@PrimePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_prime
if ret is None:
raise MDNotImplementedError
return ret
@PrimePredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
return _PrimePredicate_number(expr, assumptions)
@PrimePredicate.register(Mul)
def _(expr, assumptions):
if expr.is_number:
return _PrimePredicate_number(expr, assumptions)
for arg in expr.args:
if not ask(Q.integer(arg), assumptions):
return None
for arg in expr.args:
if arg.is_number and arg.is_composite:
return False
@PrimePredicate.register(Pow)
def _(expr, assumptions):
"""
Integer**Integer -> !Prime
"""
if expr.is_number:
return _PrimePredicate_number(expr, assumptions)
if ask(Q.integer(expr.exp), assumptions) and \
ask(Q.integer(expr.base), assumptions):
return False
@PrimePredicate.register(Integer)
def _(expr, assumptions):
return isprime(expr)
@PrimePredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
def _(expr, assumptions):
return False
@PrimePredicate.register(Float)
def _(expr, assumptions):
return _PrimePredicate_number(expr, assumptions)
@PrimePredicate.register(NumberSymbol)
def _(expr, assumptions):
return _PrimePredicate_number(expr, assumptions)
@PrimePredicate.register(NaN)
def _(expr, assumptions):
return None
# CompositePredicate
@CompositePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_composite
if ret is None:
raise MDNotImplementedError
return ret
@CompositePredicate.register(Basic)
def _(expr, assumptions):
_positive = ask(Q.positive(expr), assumptions)
if _positive:
_integer = ask(Q.integer(expr), assumptions)
if _integer:
_prime = ask(Q.prime(expr), assumptions)
if _prime is None:
return
# Positive integer which is not prime is not
# necessarily composite
if expr.equals(1):
return False
return not _prime
else:
return _integer
else:
return _positive
# EvenPredicate
def _EvenPredicate_number(expr, assumptions):
# helper method
if isinstance(expr, (float, Float)):
if int_valued(expr):
return None
return False
try:
i = int(expr.round())
except TypeError:
return False
if not (expr - i).equals(0):
return False
return i % 2 == 0
@EvenPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_even
if ret is None:
raise MDNotImplementedError
return ret
@EvenPredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
@EvenPredicate.register(Mul)
def _(expr, assumptions):
"""
Even * Integer -> Even
Even * Odd -> Even
Integer * Odd -> ?
Odd * Odd -> Odd
Even * Even -> Even
Integer * Integer -> Even if Integer + Integer = Odd
otherwise -> ?
"""
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
even, odd, irrational, acc = False, 0, False, 1
for arg in expr.args:
# check for all integers and at least one even
if ask(Q.integer(arg), assumptions):
if ask(Q.even(arg), assumptions):
even = True
elif ask(Q.odd(arg), assumptions):
odd += 1
elif not even and acc != 1:
if ask(Q.odd(acc + arg), assumptions):
even = True
elif ask(Q.irrational(arg), assumptions):
# one irrational makes the result False
# two makes it undefined
if irrational:
break
irrational = True
else:
break
acc = arg
else:
if irrational:
return False
if even:
return True
if odd == len(expr.args):
return False
@EvenPredicate.register(Add)
def _(expr, assumptions):
"""
Even + Odd -> Odd
Even + Even -> Even
Odd + Odd -> Even
"""
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
_result = True
for arg in expr.args:
if ask(Q.even(arg), assumptions):
pass
elif ask(Q.odd(arg), assumptions):
_result = not _result
else:
break
else:
return _result
@EvenPredicate.register(Pow)
def _(expr, assumptions):
if expr.is_number:
return _EvenPredicate_number(expr, assumptions)
if ask(Q.integer(expr.exp), assumptions):
if ask(Q.positive(expr.exp), assumptions):
return ask(Q.even(expr.base), assumptions)
elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
return False
elif expr.base is S.NegativeOne:
return False
@EvenPredicate.register(Integer)
def _(expr, assumptions):
return not bool(expr.p & 1)
@EvenPredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
def _(expr, assumptions):
return False
@EvenPredicate.register(NumberSymbol)
def _(expr, assumptions):
return _EvenPredicate_number(expr, assumptions)
@EvenPredicate.register(Abs)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return ask(Q.even(expr.args[0]), assumptions)
@EvenPredicate.register(re)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return ask(Q.even(expr.args[0]), assumptions)
@EvenPredicate.register(im)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return True
@EvenPredicate.register(NaN)
def _(expr, assumptions):
return None
# OddPredicate
@OddPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_odd
if ret is None:
raise MDNotImplementedError
return ret
@OddPredicate.register(Basic)
def _(expr, assumptions):
_integer = ask(Q.integer(expr), assumptions)
if _integer:
_even = ask(Q.even(expr), assumptions)
if _even is None:
return None
return not _even
return _integer

View File

@ -0,0 +1,436 @@
"""
Handlers related to order relations: positive, negative, etc.
"""
from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Mul, Pow
from sympy.core.logic import fuzzy_not, fuzzy_and, fuzzy_or
from sympy.core.numbers import E, ImaginaryUnit, NaN, I, pi
from sympy.functions import Abs, acos, acot, asin, atan, exp, factorial, log
from sympy.matrices import Determinant, Trace
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.multipledispatch import MDNotImplementedError
from ..predicates.order import (NegativePredicate, NonNegativePredicate,
NonZeroPredicate, ZeroPredicate, NonPositivePredicate, PositivePredicate,
ExtendedNegativePredicate, ExtendedNonNegativePredicate,
ExtendedNonPositivePredicate, ExtendedNonZeroPredicate,
ExtendedPositivePredicate,)
# NegativePredicate
def _NegativePredicate_number(expr, assumptions):
r, i = expr.as_real_imag()
# If the imaginary part can symbolically be shown to be zero then
# we just evaluate the real part; otherwise we evaluate the imaginary
# part to see if it actually evaluates to zero and if it does then
# we make the comparison between the real part and zero.
if not i:
r = r.evalf(2)
if r._prec != 1:
return r < 0
else:
i = i.evalf(2)
if i._prec != 1:
if i != 0:
return False
r = r.evalf(2)
if r._prec != 1:
return r < 0
@NegativePredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
return _NegativePredicate_number(expr, assumptions)
@NegativePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_negative
if ret is None:
raise MDNotImplementedError
return ret
@NegativePredicate.register(Add)
def _(expr, assumptions):
"""
Positive + Positive -> Positive,
Negative + Negative -> Negative
"""
if expr.is_number:
return _NegativePredicate_number(expr, assumptions)
r = ask(Q.real(expr), assumptions)
if r is not True:
return r
nonpos = 0
for arg in expr.args:
if ask(Q.negative(arg), assumptions) is not True:
if ask(Q.positive(arg), assumptions) is False:
nonpos += 1
else:
break
else:
if nonpos < len(expr.args):
return True
@NegativePredicate.register(Mul)
def _(expr, assumptions):
if expr.is_number:
return _NegativePredicate_number(expr, assumptions)
result = None
for arg in expr.args:
if result is None:
result = False
if ask(Q.negative(arg), assumptions):
result = not result
elif ask(Q.positive(arg), assumptions):
pass
else:
return
return result
@NegativePredicate.register(Pow)
def _(expr, assumptions):
"""
Real ** Even -> NonNegative
Real ** Odd -> same_as_base
NonNegative ** Positive -> NonNegative
"""
if expr.base == E:
# Exponential is always positive:
if ask(Q.real(expr.exp), assumptions):
return False
return
if expr.is_number:
return _NegativePredicate_number(expr, assumptions)
if ask(Q.real(expr.base), assumptions):
if ask(Q.positive(expr.base), assumptions):
if ask(Q.real(expr.exp), assumptions):
return False
if ask(Q.even(expr.exp), assumptions):
return False
if ask(Q.odd(expr.exp), assumptions):
return ask(Q.negative(expr.base), assumptions)
@NegativePredicate.register_many(Abs, ImaginaryUnit)
def _(expr, assumptions):
return False
@NegativePredicate.register(exp)
def _(expr, assumptions):
if ask(Q.real(expr.exp), assumptions):
return False
raise MDNotImplementedError
# NonNegativePredicate
@NonNegativePredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
notnegative = fuzzy_not(_NegativePredicate_number(expr, assumptions))
if notnegative:
return ask(Q.real(expr), assumptions)
else:
return notnegative
@NonNegativePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_nonnegative
if ret is None:
raise MDNotImplementedError
return ret
# NonZeroPredicate
@NonZeroPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_nonzero
if ret is None:
raise MDNotImplementedError
return ret
@NonZeroPredicate.register(Basic)
def _(expr, assumptions):
if ask(Q.real(expr)) is False:
return False
if expr.is_number:
# if there are no symbols just evalf
i = expr.evalf(2)
def nonz(i):
if i._prec != 1:
return i != 0
return fuzzy_or(nonz(i) for i in i.as_real_imag())
@NonZeroPredicate.register(Add)
def _(expr, assumptions):
if all(ask(Q.positive(x), assumptions) for x in expr.args) \
or all(ask(Q.negative(x), assumptions) for x in expr.args):
return True
@NonZeroPredicate.register(Mul)
def _(expr, assumptions):
for arg in expr.args:
result = ask(Q.nonzero(arg), assumptions)
if result:
continue
return result
return True
@NonZeroPredicate.register(Pow)
def _(expr, assumptions):
return ask(Q.nonzero(expr.base), assumptions)
@NonZeroPredicate.register(Abs)
def _(expr, assumptions):
return ask(Q.nonzero(expr.args[0]), assumptions)
@NonZeroPredicate.register(NaN)
def _(expr, assumptions):
return None
# ZeroPredicate
@ZeroPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_zero
if ret is None:
raise MDNotImplementedError
return ret
@ZeroPredicate.register(Basic)
def _(expr, assumptions):
return fuzzy_and([fuzzy_not(ask(Q.nonzero(expr), assumptions)),
ask(Q.real(expr), assumptions)])
@ZeroPredicate.register(Mul)
def _(expr, assumptions):
# TODO: This should be deducible from the nonzero handler
return fuzzy_or(ask(Q.zero(arg), assumptions) for arg in expr.args)
# NonPositivePredicate
@NonPositivePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_nonpositive
if ret is None:
raise MDNotImplementedError
return ret
@NonPositivePredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
notpositive = fuzzy_not(_PositivePredicate_number(expr, assumptions))
if notpositive:
return ask(Q.real(expr), assumptions)
else:
return notpositive
# PositivePredicate
def _PositivePredicate_number(expr, assumptions):
r, i = expr.as_real_imag()
# If the imaginary part can symbolically be shown to be zero then
# we just evaluate the real part; otherwise we evaluate the imaginary
# part to see if it actually evaluates to zero and if it does then
# we make the comparison between the real part and zero.
if not i:
r = r.evalf(2)
if r._prec != 1:
return r > 0
else:
i = i.evalf(2)
if i._prec != 1:
if i != 0:
return False
r = r.evalf(2)
if r._prec != 1:
return r > 0
@PositivePredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_positive
if ret is None:
raise MDNotImplementedError
return ret
@PositivePredicate.register(Basic)
def _(expr, assumptions):
if expr.is_number:
return _PositivePredicate_number(expr, assumptions)
@PositivePredicate.register(Mul)
def _(expr, assumptions):
if expr.is_number:
return _PositivePredicate_number(expr, assumptions)
result = True
for arg in expr.args:
if ask(Q.positive(arg), assumptions):
continue
elif ask(Q.negative(arg), assumptions):
result = result ^ True
else:
return
return result
@PositivePredicate.register(Add)
def _(expr, assumptions):
if expr.is_number:
return _PositivePredicate_number(expr, assumptions)
r = ask(Q.real(expr), assumptions)
if r is not True:
return r
nonneg = 0
for arg in expr.args:
if ask(Q.positive(arg), assumptions) is not True:
if ask(Q.negative(arg), assumptions) is False:
nonneg += 1
else:
break
else:
if nonneg < len(expr.args):
return True
@PositivePredicate.register(Pow)
def _(expr, assumptions):
if expr.base == E:
if ask(Q.real(expr.exp), assumptions):
return True
if ask(Q.imaginary(expr.exp), assumptions):
return ask(Q.even(expr.exp/(I*pi)), assumptions)
return
if expr.is_number:
return _PositivePredicate_number(expr, assumptions)
if ask(Q.positive(expr.base), assumptions):
if ask(Q.real(expr.exp), assumptions):
return True
if ask(Q.negative(expr.base), assumptions):
if ask(Q.even(expr.exp), assumptions):
return True
if ask(Q.odd(expr.exp), assumptions):
return False
@PositivePredicate.register(exp)
def _(expr, assumptions):
if ask(Q.real(expr.exp), assumptions):
return True
if ask(Q.imaginary(expr.exp), assumptions):
return ask(Q.even(expr.exp/(I*pi)), assumptions)
@PositivePredicate.register(log)
def _(expr, assumptions):
r = ask(Q.real(expr.args[0]), assumptions)
if r is not True:
return r
if ask(Q.positive(expr.args[0] - 1), assumptions):
return True
if ask(Q.negative(expr.args[0] - 1), assumptions):
return False
@PositivePredicate.register(factorial)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.integer(x) & Q.positive(x), assumptions):
return True
@PositivePredicate.register(ImaginaryUnit)
def _(expr, assumptions):
return False
@PositivePredicate.register(Abs)
def _(expr, assumptions):
return ask(Q.nonzero(expr), assumptions)
@PositivePredicate.register(Trace)
def _(expr, assumptions):
if ask(Q.positive_definite(expr.arg), assumptions):
return True
@PositivePredicate.register(Determinant)
def _(expr, assumptions):
if ask(Q.positive_definite(expr.arg), assumptions):
return True
@PositivePredicate.register(MatrixElement)
def _(expr, assumptions):
if (expr.i == expr.j
and ask(Q.positive_definite(expr.parent), assumptions)):
return True
@PositivePredicate.register(atan)
def _(expr, assumptions):
return ask(Q.positive(expr.args[0]), assumptions)
@PositivePredicate.register(asin)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.positive(x) & Q.nonpositive(x - 1), assumptions):
return True
if ask(Q.negative(x) & Q.nonnegative(x + 1), assumptions):
return False
@PositivePredicate.register(acos)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.nonpositive(x - 1) & Q.nonnegative(x + 1), assumptions):
return True
@PositivePredicate.register(acot)
def _(expr, assumptions):
return ask(Q.real(expr.args[0]), assumptions)
@PositivePredicate.register(NaN)
def _(expr, assumptions):
return None
# ExtendedNegativePredicate
@ExtendedNegativePredicate.register(object)
def _(expr, assumptions):
return ask(Q.negative(expr) | Q.negative_infinite(expr), assumptions)
# ExtendedPositivePredicate
@ExtendedPositivePredicate.register(object)
def _(expr, assumptions):
return ask(Q.positive(expr) | Q.positive_infinite(expr), assumptions)
# ExtendedNonZeroPredicate
@ExtendedNonZeroPredicate.register(object)
def _(expr, assumptions):
return ask(
Q.negative_infinite(expr) | Q.negative(expr) | Q.positive(expr) | Q.positive_infinite(expr),
assumptions)
# ExtendedNonPositivePredicate
@ExtendedNonPositivePredicate.register(object)
def _(expr, assumptions):
return ask(
Q.negative_infinite(expr) | Q.negative(expr) | Q.zero(expr),
assumptions)
# ExtendedNonNegativePredicate
@ExtendedNonNegativePredicate.register(object)
def _(expr, assumptions):
return ask(
Q.zero(expr) | Q.positive(expr) | Q.positive_infinite(expr),
assumptions)

View File

@ -0,0 +1,772 @@
"""
Handlers for predicates related to set membership: integer, rational, etc.
"""
from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Mul, Pow, S
from sympy.core.numbers import (AlgebraicNumber, ComplexInfinity, Exp1, Float,
GoldenRatio, ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity,
Number, NumberSymbol, Pi, pi, Rational, TribonacciConstant, E)
from sympy.core.logic import fuzzy_bool
from sympy.functions import (Abs, acos, acot, asin, atan, cos, cot, exp, im,
log, re, sin, tan)
from sympy.core.numbers import I
from sympy.core.relational import Eq
from sympy.functions.elementary.complexes import conjugate
from sympy.matrices import Determinant, MatrixBase, Trace
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.multipledispatch import MDNotImplementedError
from .common import test_closed_group
from ..predicates.sets import (IntegerPredicate, RationalPredicate,
IrrationalPredicate, RealPredicate, ExtendedRealPredicate,
HermitianPredicate, ComplexPredicate, ImaginaryPredicate,
AntihermitianPredicate, AlgebraicPredicate)
# IntegerPredicate
def _IntegerPredicate_number(expr, assumptions):
# helper function
try:
i = int(expr.round())
if not (expr - i).equals(0):
raise TypeError
return True
except TypeError:
return False
@IntegerPredicate.register_many(int, Integer) # type:ignore
def _(expr, assumptions):
return True
@IntegerPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity,
NegativeInfinity, Pi, Rational, TribonacciConstant)
def _(expr, assumptions):
return False
@IntegerPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_integer
if ret is None:
raise MDNotImplementedError
return ret
@IntegerPredicate.register_many(Add, Pow)
def _(expr, assumptions):
"""
* Integer + Integer -> Integer
* Integer + !Integer -> !Integer
* !Integer + !Integer -> ?
"""
if expr.is_number:
return _IntegerPredicate_number(expr, assumptions)
return test_closed_group(expr, assumptions, Q.integer)
@IntegerPredicate.register(Mul)
def _(expr, assumptions):
"""
* Integer*Integer -> Integer
* Integer*Irrational -> !Integer
* Odd/Even -> !Integer
* Integer*Rational -> ?
"""
if expr.is_number:
return _IntegerPredicate_number(expr, assumptions)
_output = True
for arg in expr.args:
if not ask(Q.integer(arg), assumptions):
if arg.is_Rational:
if arg.q == 2:
return ask(Q.even(2*expr), assumptions)
if ~(arg.q & 1):
return None
elif ask(Q.irrational(arg), assumptions):
if _output:
_output = False
else:
return
else:
return
return _output
@IntegerPredicate.register(Abs)
def _(expr, assumptions):
return ask(Q.integer(expr.args[0]), assumptions)
@IntegerPredicate.register_many(Determinant, MatrixElement, Trace)
def _(expr, assumptions):
return ask(Q.integer_elements(expr.args[0]), assumptions)
# RationalPredicate
@RationalPredicate.register(Rational)
def _(expr, assumptions):
return True
@RationalPredicate.register(Float)
def _(expr, assumptions):
return None
@RationalPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity,
NegativeInfinity, Pi, TribonacciConstant)
def _(expr, assumptions):
return False
@RationalPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_rational
if ret is None:
raise MDNotImplementedError
return ret
@RationalPredicate.register_many(Add, Mul)
def _(expr, assumptions):
"""
* Rational + Rational -> Rational
* Rational + !Rational -> !Rational
* !Rational + !Rational -> ?
"""
if expr.is_number:
if expr.as_real_imag()[1]:
return False
return test_closed_group(expr, assumptions, Q.rational)
@RationalPredicate.register(Pow)
def _(expr, assumptions):
"""
* Rational ** Integer -> Rational
* Irrational ** Rational -> Irrational
* Rational ** Irrational -> ?
"""
if expr.base == E:
x = expr.exp
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
return
if ask(Q.integer(expr.exp), assumptions):
return ask(Q.rational(expr.base), assumptions)
elif ask(Q.rational(expr.exp), assumptions):
if ask(Q.prime(expr.base), assumptions):
return False
@RationalPredicate.register_many(asin, atan, cos, sin, tan)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@RationalPredicate.register(exp)
def _(expr, assumptions):
x = expr.exp
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@RationalPredicate.register_many(acot, cot)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.rational(x), assumptions):
return False
@RationalPredicate.register_many(acos, log)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x - 1), assumptions)
# IrrationalPredicate
@IrrationalPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_irrational
if ret is None:
raise MDNotImplementedError
return ret
@IrrationalPredicate.register(Basic)
def _(expr, assumptions):
_real = ask(Q.real(expr), assumptions)
if _real:
_rational = ask(Q.rational(expr), assumptions)
if _rational is None:
return None
return not _rational
else:
return _real
# RealPredicate
def _RealPredicate_number(expr, assumptions):
# let as_real_imag() work first since the expression may
# be simpler to evaluate
i = expr.as_real_imag()[1].evalf(2)
if i._prec != 1:
return not i
# allow None to be returned if we couldn't show for sure
# that i was 0
@RealPredicate.register_many(Abs, Exp1, Float, GoldenRatio, im, Pi, Rational,
re, TribonacciConstant)
def _(expr, assumptions):
return True
@RealPredicate.register_many(ImaginaryUnit, Infinity, NegativeInfinity)
def _(expr, assumptions):
return False
@RealPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_real
if ret is None:
raise MDNotImplementedError
return ret
@RealPredicate.register(Add)
def _(expr, assumptions):
"""
* Real + Real -> Real
* Real + (Complex & !Real) -> !Real
"""
if expr.is_number:
return _RealPredicate_number(expr, assumptions)
return test_closed_group(expr, assumptions, Q.real)
@RealPredicate.register(Mul)
def _(expr, assumptions):
"""
* Real*Real -> Real
* Real*Imaginary -> !Real
* Imaginary*Imaginary -> Real
"""
if expr.is_number:
return _RealPredicate_number(expr, assumptions)
result = True
for arg in expr.args:
if ask(Q.real(arg), assumptions):
pass
elif ask(Q.imaginary(arg), assumptions):
result = result ^ True
else:
break
else:
return result
@RealPredicate.register(Pow)
def _(expr, assumptions):
"""
* Real**Integer -> Real
* Positive**Real -> Real
* Real**(Integer/Even) -> Real if base is nonnegative
* Real**(Integer/Odd) -> Real
* Imaginary**(Integer/Even) -> Real
* Imaginary**(Integer/Odd) -> not Real
* Imaginary**Real -> ? since Real could be 0 (giving real)
or 1 (giving imaginary)
* b**Imaginary -> Real if log(b) is imaginary and b != 0
and exponent != integer multiple of
I*pi/log(b)
* Real**Real -> ? e.g. sqrt(-1) is imaginary and
sqrt(2) is not
"""
if expr.is_number:
return _RealPredicate_number(expr, assumptions)
if expr.base == E:
return ask(
Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions
)
if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
if ask(Q.imaginary(expr.base.exp), assumptions):
if ask(Q.imaginary(expr.exp), assumptions):
return True
# If the i = (exp's arg)/(I*pi) is an integer or half-integer
# multiple of I*pi then 2*i will be an integer. In addition,
# exp(i*I*pi) = (-1)**i so the overall realness of the expr
# can be determined by replacing exp(i*I*pi) with (-1)**i.
i = expr.base.exp/I/pi
if ask(Q.integer(2*i), assumptions):
return ask(Q.real((S.NegativeOne**i)**expr.exp), assumptions)
return
if ask(Q.imaginary(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
odd = ask(Q.odd(expr.exp), assumptions)
if odd is not None:
return not odd
return
if ask(Q.imaginary(expr.exp), assumptions):
imlog = ask(Q.imaginary(log(expr.base)), assumptions)
if imlog is not None:
# I**i -> real, log(I) is imag;
# (2*I)**i -> complex, log(2*I) is not imag
return imlog
if ask(Q.real(expr.base), assumptions):
if ask(Q.real(expr.exp), assumptions):
if expr.exp.is_Rational and \
ask(Q.even(expr.exp.q), assumptions):
return ask(Q.positive(expr.base), assumptions)
elif ask(Q.integer(expr.exp), assumptions):
return True
elif ask(Q.positive(expr.base), assumptions):
return True
elif ask(Q.negative(expr.base), assumptions):
return False
@RealPredicate.register_many(cos, sin)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return True
@RealPredicate.register(exp)
def _(expr, assumptions):
return ask(
Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions
)
@RealPredicate.register(log)
def _(expr, assumptions):
return ask(Q.positive(expr.args[0]), assumptions)
@RealPredicate.register_many(Determinant, MatrixElement, Trace)
def _(expr, assumptions):
return ask(Q.real_elements(expr.args[0]), assumptions)
# ExtendedRealPredicate
@ExtendedRealPredicate.register(object)
def _(expr, assumptions):
return ask(Q.negative_infinite(expr)
| Q.negative(expr)
| Q.zero(expr)
| Q.positive(expr)
| Q.positive_infinite(expr),
assumptions)
@ExtendedRealPredicate.register_many(Infinity, NegativeInfinity)
def _(expr, assumptions):
return True
@ExtendedRealPredicate.register_many(Add, Mul, Pow) # type:ignore
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.extended_real)
# HermitianPredicate
@HermitianPredicate.register(object) # type:ignore
def _(expr, assumptions):
if isinstance(expr, MatrixBase):
return None
return ask(Q.real(expr), assumptions)
@HermitianPredicate.register(Add) # type:ignore
def _(expr, assumptions):
"""
* Hermitian + Hermitian -> Hermitian
* Hermitian + !Hermitian -> !Hermitian
"""
if expr.is_number:
raise MDNotImplementedError
return test_closed_group(expr, assumptions, Q.hermitian)
@HermitianPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
"""
As long as there is at most only one noncommutative term:
* Hermitian*Hermitian -> Hermitian
* Hermitian*Antihermitian -> !Hermitian
* Antihermitian*Antihermitian -> Hermitian
"""
if expr.is_number:
raise MDNotImplementedError
nccount = 0
result = True
for arg in expr.args:
if ask(Q.antihermitian(arg), assumptions):
result = result ^ True
elif not ask(Q.hermitian(arg), assumptions):
break
if ask(~Q.commutative(arg), assumptions):
nccount += 1
if nccount > 1:
break
else:
return result
@HermitianPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
"""
* Hermitian**Integer -> Hermitian
"""
if expr.is_number:
raise MDNotImplementedError
if expr.base == E:
if ask(Q.hermitian(expr.exp), assumptions):
return True
raise MDNotImplementedError
if ask(Q.hermitian(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
return True
raise MDNotImplementedError
@HermitianPredicate.register_many(cos, sin) # type:ignore
def _(expr, assumptions):
if ask(Q.hermitian(expr.args[0]), assumptions):
return True
raise MDNotImplementedError
@HermitianPredicate.register(exp) # type:ignore
def _(expr, assumptions):
if ask(Q.hermitian(expr.exp), assumptions):
return True
raise MDNotImplementedError
@HermitianPredicate.register(MatrixBase) # type:ignore
def _(mat, assumptions):
rows, cols = mat.shape
ret_val = True
for i in range(rows):
for j in range(i, cols):
cond = fuzzy_bool(Eq(mat[i, j], conjugate(mat[j, i])))
if cond is None:
ret_val = None
if cond == False:
return False
if ret_val is None:
raise MDNotImplementedError
return ret_val
# ComplexPredicate
@ComplexPredicate.register_many(Abs, cos, exp, im, ImaginaryUnit, log, Number, # type:ignore
NumberSymbol, re, sin)
def _(expr, assumptions):
return True
@ComplexPredicate.register_many(Infinity, NegativeInfinity) # type:ignore
def _(expr, assumptions):
return False
@ComplexPredicate.register(Expr) # type:ignore
def _(expr, assumptions):
ret = expr.is_complex
if ret is None:
raise MDNotImplementedError
return ret
@ComplexPredicate.register_many(Add, Mul) # type:ignore
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.complex)
@ComplexPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
if expr.base == E:
return True
return test_closed_group(expr, assumptions, Q.complex)
@ComplexPredicate.register_many(Determinant, MatrixElement, Trace) # type:ignore
def _(expr, assumptions):
return ask(Q.complex_elements(expr.args[0]), assumptions)
@ComplexPredicate.register(NaN) # type:ignore
def _(expr, assumptions):
return None
# ImaginaryPredicate
def _Imaginary_number(expr, assumptions):
# let as_real_imag() work first since the expression may
# be simpler to evaluate
r = expr.as_real_imag()[0].evalf(2)
if r._prec != 1:
return not r
# allow None to be returned if we couldn't show for sure
# that r was 0
@ImaginaryPredicate.register(ImaginaryUnit) # type:ignore
def _(expr, assumptions):
return True
@ImaginaryPredicate.register(Expr) # type:ignore
def _(expr, assumptions):
ret = expr.is_imaginary
if ret is None:
raise MDNotImplementedError
return ret
@ImaginaryPredicate.register(Add) # type:ignore
def _(expr, assumptions):
"""
* Imaginary + Imaginary -> Imaginary
* Imaginary + Complex -> ?
* Imaginary + Real -> !Imaginary
"""
if expr.is_number:
return _Imaginary_number(expr, assumptions)
reals = 0
for arg in expr.args:
if ask(Q.imaginary(arg), assumptions):
pass
elif ask(Q.real(arg), assumptions):
reals += 1
else:
break
else:
if reals == 0:
return True
if reals in (1, len(expr.args)):
# two reals could sum 0 thus giving an imaginary
return False
@ImaginaryPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
"""
* Real*Imaginary -> Imaginary
* Imaginary*Imaginary -> Real
"""
if expr.is_number:
return _Imaginary_number(expr, assumptions)
result = False
reals = 0
for arg in expr.args:
if ask(Q.imaginary(arg), assumptions):
result = result ^ True
elif not ask(Q.real(arg), assumptions):
break
else:
if reals == len(expr.args):
return False
return result
@ImaginaryPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
"""
* Imaginary**Odd -> Imaginary
* Imaginary**Even -> Real
* b**Imaginary -> !Imaginary if exponent is an integer
multiple of I*pi/log(b)
* Imaginary**Real -> ?
* Positive**Real -> Real
* Negative**Integer -> Real
* Negative**(Integer/2) -> Imaginary
* Negative**Real -> not Imaginary if exponent is not Rational
"""
if expr.is_number:
return _Imaginary_number(expr, assumptions)
if expr.base == E:
a = expr.exp/I/pi
return ask(Q.integer(2*a) & ~Q.integer(a), assumptions)
if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
if ask(Q.imaginary(expr.base.exp), assumptions):
if ask(Q.imaginary(expr.exp), assumptions):
return False
i = expr.base.exp/I/pi
if ask(Q.integer(2*i), assumptions):
return ask(Q.imaginary((S.NegativeOne**i)**expr.exp), assumptions)
if ask(Q.imaginary(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
odd = ask(Q.odd(expr.exp), assumptions)
if odd is not None:
return odd
return
if ask(Q.imaginary(expr.exp), assumptions):
imlog = ask(Q.imaginary(log(expr.base)), assumptions)
if imlog is not None:
# I**i -> real; (2*I)**i -> complex ==> not imaginary
return False
if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions):
if ask(Q.positive(expr.base), assumptions):
return False
else:
rat = ask(Q.rational(expr.exp), assumptions)
if not rat:
return rat
if ask(Q.integer(expr.exp), assumptions):
return False
else:
half = ask(Q.integer(2*expr.exp), assumptions)
if half:
return ask(Q.negative(expr.base), assumptions)
return half
@ImaginaryPredicate.register(log) # type:ignore
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
if ask(Q.positive(expr.args[0]), assumptions):
return False
return
# XXX it should be enough to do
# return ask(Q.nonpositive(expr.args[0]), assumptions)
# but ask(Q.nonpositive(exp(x)), Q.imaginary(x)) -> None;
# it should return True since exp(x) will be either 0 or complex
if expr.args[0].func == exp or (expr.args[0].is_Pow and expr.args[0].base == E):
if expr.args[0].exp in [I, -I]:
return True
im = ask(Q.imaginary(expr.args[0]), assumptions)
if im is False:
return False
@ImaginaryPredicate.register(exp) # type:ignore
def _(expr, assumptions):
a = expr.exp/I/pi
return ask(Q.integer(2*a) & ~Q.integer(a), assumptions)
@ImaginaryPredicate.register_many(Number, NumberSymbol) # type:ignore
def _(expr, assumptions):
return not (expr.as_real_imag()[1] == 0)
@ImaginaryPredicate.register(NaN) # type:ignore
def _(expr, assumptions):
return None
# AntihermitianPredicate
@AntihermitianPredicate.register(object) # type:ignore
def _(expr, assumptions):
if isinstance(expr, MatrixBase):
return None
if ask(Q.zero(expr), assumptions):
return True
return ask(Q.imaginary(expr), assumptions)
@AntihermitianPredicate.register(Add) # type:ignore
def _(expr, assumptions):
"""
* Antihermitian + Antihermitian -> Antihermitian
* Antihermitian + !Antihermitian -> !Antihermitian
"""
if expr.is_number:
raise MDNotImplementedError
return test_closed_group(expr, assumptions, Q.antihermitian)
@AntihermitianPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
"""
As long as there is at most only one noncommutative term:
* Hermitian*Hermitian -> !Antihermitian
* Hermitian*Antihermitian -> Antihermitian
* Antihermitian*Antihermitian -> !Antihermitian
"""
if expr.is_number:
raise MDNotImplementedError
nccount = 0
result = False
for arg in expr.args:
if ask(Q.antihermitian(arg), assumptions):
result = result ^ True
elif not ask(Q.hermitian(arg), assumptions):
break
if ask(~Q.commutative(arg), assumptions):
nccount += 1
if nccount > 1:
break
else:
return result
@AntihermitianPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
"""
* Hermitian**Integer -> !Antihermitian
* Antihermitian**Even -> !Antihermitian
* Antihermitian**Odd -> Antihermitian
"""
if expr.is_number:
raise MDNotImplementedError
if ask(Q.hermitian(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
return False
elif ask(Q.antihermitian(expr.base), assumptions):
if ask(Q.even(expr.exp), assumptions):
return False
elif ask(Q.odd(expr.exp), assumptions):
return True
raise MDNotImplementedError
@AntihermitianPredicate.register(MatrixBase) # type:ignore
def _(mat, assumptions):
rows, cols = mat.shape
ret_val = True
for i in range(rows):
for j in range(i, cols):
cond = fuzzy_bool(Eq(mat[i, j], -conjugate(mat[j, i])))
if cond is None:
ret_val = None
if cond == False:
return False
if ret_val is None:
raise MDNotImplementedError
return ret_val
# AlgebraicPredicate
@AlgebraicPredicate.register_many(AlgebraicNumber, Float, GoldenRatio, # type:ignore
ImaginaryUnit, TribonacciConstant)
def _(expr, assumptions):
return True
@AlgebraicPredicate.register_many(ComplexInfinity, Exp1, Infinity, # type:ignore
NegativeInfinity, Pi)
def _(expr, assumptions):
return False
@AlgebraicPredicate.register_many(Add, Mul) # type:ignore
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.algebraic)
@AlgebraicPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
if expr.base == E:
if ask(Q.algebraic(expr.exp), assumptions):
return ask(~Q.nonzero(expr.exp), assumptions)
return
return expr.exp.is_Rational and ask(Q.algebraic(expr.base), assumptions)
@AlgebraicPredicate.register(Rational) # type:ignore
def _(expr, assumptions):
return expr.q != 0
@AlgebraicPredicate.register_many(asin, atan, cos, sin, tan) # type:ignore
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.algebraic(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@AlgebraicPredicate.register(exp) # type:ignore
def _(expr, assumptions):
x = expr.exp
if ask(Q.algebraic(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@AlgebraicPredicate.register_many(acot, cot) # type:ignore
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.algebraic(x), assumptions):
return False
@AlgebraicPredicate.register_many(acos, log) # type:ignore
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.algebraic(x), assumptions):
return ask(~Q.nonzero(x - 1), assumptions)