I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,136 @@
from typing import Any, Callable, Dict, Iterable, Optional
import torch
from torch.optim import Optimizer
class RMSpropTFLike(Optimizer):
r"""Implements RMSprop algorithm with closer match to Tensorflow version.
For reproducibility with original stable-baselines. Use this
version with e.g. A2C for stabler learning than with the PyTorch
RMSProp. Based on the PyTorch v1.5.0 implementation of RMSprop.
See a more throughout conversion in pytorch-image-models repository:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/rmsprop_tf.py
Changes to the original RMSprop:
- Move epsilon inside square root
- Initialize squared gradient to ones rather than zeros
Proposed by G. Hinton in his
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.
The centered version first appears in `Generating Sequences
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
The implementation here takes the square root of the gradient average before
adding epsilon (note that TensorFlow interchanges these two operations). The effective
learning rate is thus :math:`\alpha/(\sqrt{v} + \epsilon)` where :math:`\alpha`
is the scheduled learning rate and :math:`v` is the weighted moving average
of the squared gradient.
:params: iterable of parameters to optimize or dicts defining
parameter groups
:param lr: learning rate (default: 1e-2)
:param momentum: momentum factor (default: 0)
:param alpha: smoothing constant (default: 0.99)
:param eps: term added to the denominator to improve
numerical stability (default: 1e-8)
:param centered: if ``True``, compute the centered RMSProp,
the gradient is normalized by an estimation of its variance
:param weight_decay: weight decay (L2 penalty) (default: 0)
"""
def __init__(
self,
params: Iterable[torch.nn.Parameter],
lr: float = 1e-2,
alpha: float = 0.99,
eps: float = 1e-8,
weight_decay: float = 0,
momentum: float = 0,
centered: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= momentum:
raise ValueError(f"Invalid momentum value: {momentum}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if not 0.0 <= alpha:
raise ValueError(f"Invalid alpha value: {alpha}")
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay)
super().__init__(params, defaults)
def __setstate__(self, state: Dict[str, Any]) -> None:
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("momentum", 0)
group.setdefault("centered", False)
@torch.no_grad()
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: # type: ignore[override]
"""Performs a single optimization step.
:param closure: A closure that reevaluates the model
and returns the loss.
:return: loss
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError("RMSpropTF does not support sparse gradients")
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# PyTorch initialized to zeros here
state["square_avg"] = torch.ones_like(p, memory_format=torch.preserve_format)
if group["momentum"] > 0:
state["momentum_buffer"] = torch.zeros_like(p, memory_format=torch.preserve_format)
if group["centered"]:
state["grad_avg"] = torch.zeros_like(p, memory_format=torch.preserve_format)
square_avg = state["square_avg"]
alpha = group["alpha"]
state["step"] += 1
if group["weight_decay"] != 0:
grad = grad.add(p, alpha=group["weight_decay"])
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha)
if group["centered"]:
grad_avg = state["grad_avg"]
grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha)
# PyTorch added epsilon after square root
# avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_().add_(group['eps'])
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add_(group["eps"]).sqrt_()
else:
# PyTorch added epsilon after square root
# avg = square_avg.sqrt().add_(group['eps'])
avg = square_avg.add(group["eps"]).sqrt_()
if group["momentum"] > 0:
buf = state["momentum_buffer"]
buf.mul_(group["momentum"]).addcdiv_(grad, avg)
p.add_(buf, alpha=-group["lr"])
else:
p.addcdiv_(grad, avg, value=-group["lr"])
return loss