I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,184 @@
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <algorithm>
#include <functional>
#include "onnx/defs/function.h"
#include "onnx/defs/reduction/utils.h"
#include "onnx/defs/schema.h"
#include "onnx/defs/tensor_proto_util.h"
namespace ONNX_NAMESPACE {
ONNX_OPERATOR_SET_SCHEMA(
ReduceMax,
20,
OpSchema().FillUsing(ReduceOpGenerator("max", EMPTY_MIN, true, true, nullptr, nullptr, true)));
ONNX_OPERATOR_SET_SCHEMA(
ReduceMin,
20,
OpSchema().FillUsing(ReduceOpGenerator("min", EMPTY_MAX, true, true, nullptr, nullptr, true)));
ONNX_OPERATOR_SET_SCHEMA(ReduceSum, 13, OpSchema().FillUsing(ReduceOpDynamicAxes("sum", EMPTY_ZERO)));
const char* reduce_sum_square_func_body = R"ONNX(
{
data_square = Mul(data, data)
reduced = ReduceSum<keepdims: int = @keepdims>(data_square, axes)
}
)ONNX";
ONNX_OPERATOR_SET_SCHEMA(
ReduceSumSquare,
18,
OpSchema().FillUsing(ReduceFunctionOp("sum square", EMPTY_ZERO, reduce_sum_square_func_body)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMean, 18, OpSchema().FillUsing(ReduceOpDynamicAxes("mean", EMPTY_UNDEFINED)));
ONNX_OPERATOR_SET_SCHEMA(ReduceProd, 18, OpSchema().FillUsing(ReduceOpDynamicAxes("product", EMPTY_ONE)));
const char* reduce_log_sum_func_body = R"ONNX(
{
reduced_sum = ReduceSum<keepdims: int = @keepdims>(data, axes)
reduced = Log (reduced_sum)
}
)ONNX";
ONNX_OPERATOR_SET_SCHEMA(
ReduceLogSum,
18,
OpSchema().FillUsing(ReduceFunctionOp("log sum", EMPTY_MINUS_INF, reduce_log_sum_func_body)));
const char* reduce_log_sum_exp_func_body = R"ONNX(
{
data_double = Cast<to = 11>(data)
data_exp = Exp (data_double)
reduced_sum = ReduceSum<keepdims: int = @keepdims>(data_exp, axes)
reduced_double = Log (reduced_sum)
reduced = CastLike(reduced_double, data)
}
)ONNX";
ONNX_OPERATOR_SET_SCHEMA(
ReduceLogSumExp,
18,
OpSchema().FillUsing(ReduceFunctionOp("log sum exponent", EMPTY_MINUS_INF, reduce_log_sum_exp_func_body)));
const char* reduce_l1_func_body = R"ONNX(
{
data_abs = Abs(data)
reduced = ReduceSum<keepdims: int = @keepdims>(data_abs, axes)
}
)ONNX";
ONNX_OPERATOR_SET_SCHEMA(
ReduceL1,
18,
OpSchema().FillUsing(ReduceFunctionOp("L1 norm", EMPTY_ZERO, reduce_l1_func_body)));
const char* reduce_l2_func_body = R"ONNX(
{
data_square = Mul(data, data)
sum_square = ReduceSum<keepdims: int = @keepdims>(data_square, axes)
sum_square_dbl = Cast <to = 1>(sum_square)
sqrt = Sqrt(sum_square_dbl)
reduced = CastLike(sqrt, data)
}
)ONNX";
ONNX_OPERATOR_SET_SCHEMA(
ReduceL2,
18,
OpSchema().FillUsing(ReduceFunctionOp("L2 norm", EMPTY_ZERO, reduce_l2_func_body)));
std::function<void(OpSchema&)> ArgReduceDocGenerator(const char* name) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Computes the indices of the {name} elements of the input tensor's element along the
provided axis. The resulting tensor has the same rank as the input if keepdims equals 1.
If keepdims equals 0, then the resulting tensor has the reduced dimension pruned.
If select_last_index is True (default False), the index of the last occurrence of the {name}
is selected if the {name} appears more than once in the input. Otherwise the index of the
first occurrence is selected.
The type of the output tensor is integer.)DOC";
ReplaceAll(doc, "{name}", name););
schema.SetDoc(doc.c_str());
schema.Attr(
"axis",
"The axis in which to compute the arg indices. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Attr(
"select_last_index",
"Whether to select the last index or the first index if the {name} appears in multiple indices, default is False (first index).",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable);
schema.Output(
0,
"reduced",
"Reduced output tensor with integer data type.",
"tensor(int64)",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable);
schema.TypeConstraint(
"T", OpSchema::all_numeric_types_ir4(), "Constrain input and output types to all numeric tensors.");
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// set output element type to int64
updateOutputElemType(ctx, 0, TensorProto_DataType_INT64);
if (!hasNInputShapes(ctx, 1)) {
return;
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
int64_t input_ndim = input_shape.dim_size();
int64_t axis = 0; // default to 0
auto axis_proto = ctx.getAttribute("axis");
if (axis_proto) {
axis = axis_proto->i();
if (axis < -input_ndim || axis >= input_ndim) {
fail_shape_inference("'axis' must be in [-rank(indices), rank(indices)-1]");
}
if (axis < 0)
axis += input_ndim;
}
int64_t keep_dims = 1;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
// do we need handle negative axis?
for (int i = 0; i < input_ndim; ++i) {
if (i != axis) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
}
ONNX_OPERATOR_SET_SCHEMA(ArgMax, 13, OpSchema().FillUsing(ArgReduceDocGenerator("max")));
ONNX_OPERATOR_SET_SCHEMA(ArgMin, 13, OpSchema().FillUsing(ArgReduceDocGenerator("min")));
} // namespace ONNX_NAMESPACE

View File

@ -0,0 +1,446 @@
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <algorithm>
#include <functional>
#include "onnx/defs/reduction/utils.h"
#include "onnx/defs/schema.h"
namespace ONNX_NAMESPACE {
std::vector<std::string> GetSupportedDataTypesForReductionOps_opset12(bool supports8bit) {
if (supports8bit) {
auto data_types = OpSchema::numeric_types_for_math_reduction();
data_types.push_back("tensor(uint8)");
data_types.push_back("tensor(int8)");
return data_types;
}
return OpSchema::numeric_types_for_math_reduction();
}
std::function<void(OpSchema&)> ReduceDocGenerator_opset12(const char* name, bool supports_8bit_datatypes = false) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Computes the {name} of the input tensor's element along the provided axes. The resulting
tensor has the same rank as the input if keepdims equals 1. If keepdims equal 0, then
the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy defaults keepdims to
False instead of True.)DOC";
ReplaceAll(doc, "{name}", name););
schema.SetDoc(doc.c_str());
schema.Attr(
"axes",
"A list of integers, along which to reduce. The default is to reduce over "
"all the dimensions of the input tensor. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INTS,
OPTIONAL_VALUE);
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Input(0, "data", "An input tensor.", "T");
schema.Output(0, "reduced", "Reduced output tensor.", "T");
schema.TypeConstraint(
"T",
GetSupportedDataTypesForReductionOps_opset12(supports_8bit_datatypes),
supports_8bit_datatypes ? "Constrain input and output types to high-precision and 8 bit numeric tensors."
: "Constrain input and output types to high-precision numeric tensors.");
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
int64_t keep_dims = 1;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
int64_t input_ndim = input_shape.dim_size();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
std::vector<int64_t> axes;
auto axes_proto = ctx.getAttribute("axes");
if (axes_proto)
axes.assign(axes_proto->ints().begin(), axes_proto->ints().end());
for (size_t i = 0; i < axes.size(); ++i) {
if (axes[i] < -input_ndim || axes[i] >= input_ndim) {
fail_shape_inference("axis must be in [-rank, rank-1]. input rank was ", input_ndim);
}
if (axes[i] < 0)
axes[i] += input_ndim;
}
// do we need handle negative axis?
for (int i = 0; i < input_ndim; ++i) {
// axes empty means reduce all dim
if (!axes.empty() && std::find(axes.begin(), axes.end(), i) == axes.end()) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
}
ONNX_OPERATOR_SET_SCHEMA(ReduceMax, 12, OpSchema().FillUsing(ReduceDocGenerator_opset12("max", true)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMin, 12, OpSchema().FillUsing(ReduceDocGenerator_opset12("min", true)));
ONNX_OPERATOR_SET_SCHEMA(ReduceSum, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("sum")));
ONNX_OPERATOR_SET_SCHEMA(ReduceSumSquare, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("sum square")));
ONNX_OPERATOR_SET_SCHEMA(ReduceMean, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("mean")));
ONNX_OPERATOR_SET_SCHEMA(ReduceProd, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("product")));
ONNX_OPERATOR_SET_SCHEMA(ReduceLogSum, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("log sum")));
ONNX_OPERATOR_SET_SCHEMA(ReduceLogSumExp, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("log sum exponent")));
ONNX_OPERATOR_SET_SCHEMA(ReduceL1, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("L1 norm")));
ONNX_OPERATOR_SET_SCHEMA(ReduceL2, 11, OpSchema().FillUsing(ReduceDocGenerator_opset12("L2 norm")));
std::function<void(OpSchema&)> ArgReduceDocGenerator_opset12(const char* name) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Computes the indices of the {name} elements of the input tensor's element along the
provided axis. The resulting tensor has the same rank as the input if keepdims equals 1.
If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
If select_last_index is True (default False), the index of the last occurrence of the {name}
is selected if the {name} appears more than once in the input. Otherwise the index of the
first occurrence is selected.
The type of the output tensor is integer.)DOC";
ReplaceAll(doc, "{name}", name););
schema.SetDoc(doc.c_str());
schema.Attr(
"axis",
"The axis in which to compute the arg indices. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Attr(
"select_last_index",
"Whether to select the last index or the first index if the {name} appears in multiple indices, default is False (first index).",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Input(0, "data", "An input tensor.", "T");
schema.Output(0, "reduced", "Reduced output tensor with integer data type.", "tensor(int64)");
schema.TypeConstraint(
"T", OpSchema::all_numeric_types(), "Constrain input and output types to all numeric tensors.");
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// set output element type to int64
updateOutputElemType(ctx, 0, TensorProto_DataType_INT64);
if (!hasNInputShapes(ctx, 1)) {
return;
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
int64_t input_ndim = input_shape.dim_size();
int64_t axis = 0; // default to 0
auto axis_proto = ctx.getAttribute("axis");
if (axis_proto) {
axis = axis_proto->i();
if (axis < -input_ndim || axis >= input_ndim) {
fail_shape_inference("'axis' must be in [-rank(indices), rank(indices)-1]");
}
if (axis < 0)
axis += input_ndim;
}
int64_t keep_dims = 1;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
// do we need handle negative axis?
for (int i = 0; i < input_ndim; ++i) {
if (i != axis) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
} // namespace ONNX_NAMESPACE
ONNX_OPERATOR_SET_SCHEMA(ArgMax, 12, OpSchema().FillUsing(ArgReduceDocGenerator_opset12("max")));
ONNX_OPERATOR_SET_SCHEMA(ArgMin, 12, OpSchema().FillUsing(ArgReduceDocGenerator_opset12("min")));
std::function<void(OpSchema&)> ReduceDocGenerator_opset1(const char* name, const char* empty_value, int opset = 1) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Computes the {name} of the input tensor's element along the provided axes. The resulting
tensor has the same rank as the input if keepdims equals 1. If keepdims equal 0, then
the resulted tensor have the reduced dimension pruned. Input tensors of rank zero are
valid. Reduction over an empty set of values yields {empty_value}.
The above behavior is similar to numpy, with the exception that numpy defaults keepdims to
False instead of True.)DOC";
ReplaceAll(doc, "{name}", name););
ReplaceAll(doc, "{empty_value}", empty_value);
schema.SetDoc(doc.c_str());
schema.Attr(
"axes",
opset >= 11 ? "A list of integers, along which to reduce. The default is to reduce over "
"all the dimensions of the input tensor. Accepted range is [-r, r-1] where r = rank(data)."
: "A list of integers, along which to reduce. The default is to reduce over "
"all the dimensions of the input tensor.",
AttributeProto::INTS,
OPTIONAL_VALUE);
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Input(0, "data", "An input tensor.", "T");
schema.Output(0, "reduced", "Reduced output tensor.", "T");
schema.TypeConstraint(
"T",
OpSchema::numeric_types_for_math_reduction(),
"Constrain input and output types to high-precision numeric tensors.");
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
int64_t keep_dims = 1;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
int64_t input_ndim = input_shape.dim_size();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
std::vector<int64_t> axes;
auto axes_proto = ctx.getAttribute("axes");
if (axes_proto)
axes.assign(axes_proto->ints().begin(), axes_proto->ints().end());
for (size_t i = 0; i < axes.size(); ++i) {
if (axes[i] < 0)
axes[i] += input_ndim;
}
// do we need handle negative axis?
for (int i = 0; i < input_ndim; ++i) {
// axes empty means reduce all dim
if (!axes.empty() && std::find(axes.begin(), axes.end(), i) == axes.end()) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
}
ONNX_OPERATOR_SET_SCHEMA(ReduceMax, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("max", EMPTY_MIN)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMin, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("min", EMPTY_MAX)));
ONNX_OPERATOR_SET_SCHEMA(ReduceSum, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("sum", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceSumSquare, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("sum square", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMean, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("mean", EMPTY_UNDEFINED)));
ONNX_OPERATOR_SET_SCHEMA(ReduceProd, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("product", EMPTY_ONE)));
ONNX_OPERATOR_SET_SCHEMA(ReduceLogSum, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("log sum", EMPTY_MINUS_INF)));
ONNX_OPERATOR_SET_SCHEMA(
ReduceLogSumExp,
1,
OpSchema().FillUsing(ReduceDocGenerator_opset1("log sum exponent", EMPTY_MINUS_INF)));
ONNX_OPERATOR_SET_SCHEMA(ReduceL1, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("L1 norm", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceL2, 1, OpSchema().FillUsing(ReduceDocGenerator_opset1("L2 norm", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMax, 11, OpSchema().FillUsing(ReduceDocGenerator_opset1("max", EMPTY_MIN, 11)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMin, 11, OpSchema().FillUsing(ReduceDocGenerator_opset1("min", EMPTY_MAX, 11)));
std::function<void(OpSchema&)> ArgReduceDocGenerator_opset1(const char* name) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Computes the indices of the {name} elements of the input tensor's element along the
provided axis. The resulting tensor has the same rank as the input if keepdims equals 1.
If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The type of the output tensor is integer.)DOC";
ReplaceAll(doc, "{name}", name););
schema.SetDoc(doc.c_str());
schema.Attr("axis", "The axis in which to compute the arg indices.", AttributeProto::INT, static_cast<int64_t>(0));
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Input(0, "data", "An input tensor.", "T");
schema.Output(0, "reduced", "Reduced output tensor with integer data type.", "tensor(int64)");
schema.TypeConstraint(
"T", OpSchema::all_numeric_types(), "Constrain input and output types to all numeric tensors.");
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// set output element type to int64
updateOutputElemType(ctx, 0, TensorProto_DataType_INT64);
if (!hasNInputShapes(ctx, 1)) {
return;
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
int64_t input_ndim = input_shape.dim_size();
int64_t axis = 0; // default to 0
auto axis_proto = ctx.getAttribute("axis");
if (axis_proto) {
axis = axis_proto->i();
if (axis < 0)
axis += input_ndim;
}
int64_t keep_dims = 1;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
// do we need handle negative axis?
for (int i = 0; i < input_ndim; ++i) {
if (i != axis) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
} // namespace ONNX_NAMESPACE
ONNX_OPERATOR_SET_SCHEMA(ArgMax, 1, OpSchema().FillUsing(ArgReduceDocGenerator_opset1("max")));
ONNX_OPERATOR_SET_SCHEMA(ArgMin, 1, OpSchema().FillUsing(ArgReduceDocGenerator_opset1("min")));
std::function<void(OpSchema&)> ArgReduceDocGenerator_opset11(const char* name) {
return [=](OpSchema& schema) {
std::string doc = R"DOC(
Computes the indices of the {name} elements of the input tensor's element along the
provided axis. The resulting tensor has the same rank as the input if keepdims equals 1.
If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
The input tensor must not be empty.
The type of the output tensor is integer.)DOC";
ReplaceAll(doc, "{name}", name);
schema.SetDoc(doc.c_str());
schema.Attr(
"axis",
"The axis in which to compute the arg indices. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Input(0, "data", "An input tensor.", "T");
schema.Output(0, "reduced", "Reduced output tensor with integer data type.", "tensor(int64)");
schema.TypeConstraint(
"T", OpSchema::all_numeric_types(), "Constrain input and output types to all numeric tensors.");
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// set output element type to int64
updateOutputElemType(ctx, 0, TensorProto_DataType_INT64);
if (!hasNInputShapes(ctx, 1)) {
return;
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
int64_t input_ndim = input_shape.dim_size();
int64_t axis = 0; // default to 0
auto axis_proto = ctx.getAttribute("axis");
if (axis_proto) {
axis = axis_proto->i();
if (axis < -input_ndim || axis >= input_ndim) {
fail_shape_inference("'axis' must be in [-rank(indices), rank(indices)-1]");
}
if (axis < 0)
axis += input_ndim;
}
int64_t keep_dims = 1;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
// do we need handle negative axis?
for (int i = 0; i < input_ndim; ++i) {
if (i != axis) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
} // namespace ONNX_NAMESPACE
ONNX_OPERATOR_SET_SCHEMA(ArgMax, 11, OpSchema().FillUsing(ArgReduceDocGenerator_opset11("max")));
ONNX_OPERATOR_SET_SCHEMA(ArgMin, 11, OpSchema().FillUsing(ArgReduceDocGenerator_opset11("min")));
ONNX_OPERATOR_SET_SCHEMA(ReduceMax, 13, OpSchema().FillUsing(ReduceOpGenerator("max", EMPTY_MIN, true)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMin, 13, OpSchema().FillUsing(ReduceOpGenerator("min", EMPTY_MAX, true)));
ONNX_OPERATOR_SET_SCHEMA(ReduceSumSquare, 13, OpSchema().FillUsing(ReduceOpGenerator("sum square", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMean, 13, OpSchema().FillUsing(ReduceOpGenerator("mean", EMPTY_UNDEFINED)));
ONNX_OPERATOR_SET_SCHEMA(ReduceProd, 13, OpSchema().FillUsing(ReduceOpGenerator("product", EMPTY_ONE)));
ONNX_OPERATOR_SET_SCHEMA(ReduceLogSum, 13, OpSchema().FillUsing(ReduceOpGenerator("log sum", EMPTY_MINUS_INF)));
ONNX_OPERATOR_SET_SCHEMA(
ReduceLogSumExp,
13,
OpSchema().FillUsing(ReduceOpGenerator("log sum exponent", EMPTY_MINUS_INF)));
ONNX_OPERATOR_SET_SCHEMA(ReduceL1, 13, OpSchema().FillUsing(ReduceOpGenerator("L1 norm", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceL2, 13, OpSchema().FillUsing(ReduceOpGenerator("L2 norm", EMPTY_ZERO)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMax, 18, OpSchema().FillUsing(ReduceOpGenerator("max", EMPTY_MIN, true, true)));
ONNX_OPERATOR_SET_SCHEMA(ReduceMin, 18, OpSchema().FillUsing(ReduceOpGenerator("min", EMPTY_MAX, true, true)));
} // namespace ONNX_NAMESPACE

View File

@ -0,0 +1,163 @@
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/reduction/utils.h"
#include <algorithm>
#include <string>
#include <vector>
namespace ONNX_NAMESPACE {
std::vector<std::string> GetSupportedDataTypesForReductionOps(bool supports8bit, bool supports_bool) {
auto data_types = OpSchema::numeric_types_for_math_reduction_ir4();
if (supports8bit) {
data_types.push_back("tensor(uint8)");
data_types.push_back("tensor(int8)");
}
if (supports_bool) {
data_types.push_back("tensor(bool)");
}
return data_types;
}
std::function<void(OpSchema&)> ReduceOpGenerator(
const char* name,
const char* empty_value,
bool supports_8bit_datatypes,
bool axes_input,
const char* func_body,
ContextDependentFunctionBodyBuilder function_builder,
bool supports_boolean_datatype /* = false */) {
return [=](OpSchema& schema) {
std::string doc = R"DOC(
Computes the {name} of the input tensor's elements along the provided axes. The resulting
tensor has the same rank as the input if `keepdims` equals 1. If `keepdims` equals 0, then
the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are
valid. Reduction over an empty set of values yields {empty_value}.
)DOC";
if (supports_boolean_datatype) {
doc += R"DOC(
If the input data type is Boolean, the comparison should consider `False < True`.)DOC";
}
doc += R"DOC(
The above behavior is similar to numpy, with the exception that numpy defaults `keepdims`
to `False` instead of `True`.)DOC";
ReplaceAll(doc, "{name}", name);
ReplaceAll(doc, "{empty_value}", empty_value);
POPULATE_OP_DOC_STR(doc = doc;);
schema.SetDoc(doc.c_str());
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable);
if (axes_input) {
schema.Attr(
"noop_with_empty_axes",
"Defines behavior if 'axes' is empty. Default behavior with 'false' is to reduce all axes. "
"When axes is empty and this attribute is set to true, input tensor will not be reduced,"
"and the output tensor would be equivalent to input tensor.",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Input(
1,
"axes",
"Optional input list of integers, along which to reduce. "
"The default is to reduce over all the dimensions of the input tensor if 'noop_with_empty_axes' is false, "
"else act as an Identity op when 'noop_with_empty_axes' is true. "
"Accepted range is [-r, r-1] where r = rank(data).",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable);
} else {
schema.Attr(
"axes",
"A list of integers, along which to reduce. The default is to reduce over "
"all the dimensions of the input tensor. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INTS,
OPTIONAL_VALUE);
}
schema.Output(0, "reduced", "Reduced output tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable);
schema.TypeConstraint(
"T",
GetSupportedDataTypesForReductionOps(supports_8bit_datatypes, supports_boolean_datatype),
supports_boolean_datatype ? "Constrain input and output types to numeric and Boolean tensors."
: "Constrain input and output types to numeric tensors.");
if (func_body) {
schema.FunctionBody(func_body);
} else if (function_builder) {
schema.SetContextDependentFunctionBodyBuilder(function_builder);
}
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
int64_t keep_dims = 1, noop_with_empty_axes = 0;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
auto noop_attr_proto = ctx.getAttribute("noop_with_empty_axes");
if (noop_attr_proto) {
noop_with_empty_axes = noop_attr_proto->i();
}
std::vector<int64_t> axes;
if (ctx.hasInput(1)) { // axes is input
if (ctx.getAttribute("axes")) {
fail_shape_inference("axes as an input and attribute cannot be specified at the same time.");
}
const TensorProto* axesInitializer = ctx.getInputData(1);
if (axesInitializer == nullptr) {
// skip if axes is not an initializer
return;
}
std::vector<int64_t> axes_values = ParseData<int64_t>(axesInitializer);
axes.assign(axes_values.begin(), axes_values.end());
} else { // axes is attribute
auto axes_proto = ctx.getAttribute("axes");
if (axes_proto)
axes.assign(axes_proto->ints().begin(), axes_proto->ints().end());
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
if (noop_with_empty_axes && axes.empty()) {
propagateShapeFromInputToOutput(ctx, 0, 0);
return;
}
int64_t input_ndim = input_shape.dim_size();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
for (size_t i = 0; i < axes.size(); ++i) {
if (axes[i] < -input_ndim || axes[i] >= input_ndim) {
fail_shape_inference("axis must be in [-rank, rank-1]. input rank was ", input_ndim);
}
if (axes[i] < 0)
axes[i] += input_ndim;
}
for (int i = 0; i < input_ndim; ++i) {
// axes empty means reduce all dim
if (!axes.empty() && std::find(axes.begin(), axes.end(), i) == axes.end()) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
}
} // namespace ONNX_NAMESPACE

View File

@ -0,0 +1,42 @@
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <cmath>
#include "onnx/defs/schema.h"
#include "onnx/defs/tensor_proto_util.h"
namespace ONNX_NAMESPACE {
// Constants used to indicate value returned by reduction of an empty set of values.
constexpr const char* EMPTY_ZERO = "0";
constexpr const char* EMPTY_ONE = "1";
constexpr const char* EMPTY_UNDEFINED = "undefined";
constexpr const char* EMPTY_MIN =
"minus infinity (if supported by the datatype) or the minimum value of the data type otherwise";
constexpr const char* EMPTY_MAX =
"plus infinity (if supported by the datatype) or the maximum value of the data type otherwise";
constexpr const char* EMPTY_MINUS_INF = "minus infinity (if supported by the datatype) or undefined otherwise";
std::function<void(OpSchema&)> ReduceOpGenerator(
const char* name,
const char* empty_value,
bool supports_8bit_datatypes = false,
bool axes_input = false,
const char* func_body = nullptr,
ContextDependentFunctionBodyBuilder function_builder = nullptr,
bool supports_boolean_datatype = false);
inline std::function<void(OpSchema&)> ReduceOpDynamicAxes(const char* name, const char* empty_value) {
return ReduceOpGenerator(name, empty_value, false, true, nullptr, nullptr, false);
}
inline std::function<void(OpSchema&)>
ReduceFunctionOp(const char* name, const char* empty_value, const char* func_body) {
return ReduceOpGenerator(name, empty_value, false, true, func_body);
}
} // namespace ONNX_NAMESPACE