I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,13 @@
from .graph import Graph
from .digraph import DiGraph
from .multigraph import MultiGraph
from .multidigraph import MultiDiGraph
from .function import *
from .graphviews import subgraph_view, reverse_view
from networkx.classes import filters
from networkx.classes import coreviews
from networkx.classes import graphviews
from networkx.classes import reportviews

View File

@ -0,0 +1,431 @@
"""Views of core data structures such as nested Mappings (e.g. dict-of-dicts).
These ``Views`` often restrict element access, with either the entire view or
layers of nested mappings being read-only.
"""
from collections.abc import Mapping
__all__ = [
"AtlasView",
"AdjacencyView",
"MultiAdjacencyView",
"UnionAtlas",
"UnionAdjacency",
"UnionMultiInner",
"UnionMultiAdjacency",
"FilterAtlas",
"FilterAdjacency",
"FilterMultiInner",
"FilterMultiAdjacency",
]
class AtlasView(Mapping):
"""An AtlasView is a Read-only Mapping of Mappings.
It is a View into a dict-of-dict data structure.
The inner level of dict is read-write. But the
outer level is read-only.
See Also
========
AdjacencyView: View into dict-of-dict-of-dict
MultiAdjacencyView: View into dict-of-dict-of-dict-of-dict
"""
__slots__ = ("_atlas",)
def __getstate__(self):
return {"_atlas": self._atlas}
def __setstate__(self, state):
self._atlas = state["_atlas"]
def __init__(self, d):
self._atlas = d
def __len__(self):
return len(self._atlas)
def __iter__(self):
return iter(self._atlas)
def __getitem__(self, key):
return self._atlas[key]
def copy(self):
return {n: self[n].copy() for n in self._atlas}
def __str__(self):
return str(self._atlas) # {nbr: self[nbr] for nbr in self})
def __repr__(self):
return f"{self.__class__.__name__}({self._atlas!r})"
class AdjacencyView(AtlasView):
"""An AdjacencyView is a Read-only Map of Maps of Maps.
It is a View into a dict-of-dict-of-dict data structure.
The inner level of dict is read-write. But the
outer levels are read-only.
See Also
========
AtlasView: View into dict-of-dict
MultiAdjacencyView: View into dict-of-dict-of-dict-of-dict
"""
__slots__ = () # Still uses AtlasView slots names _atlas
def __getitem__(self, name):
return AtlasView(self._atlas[name])
def copy(self):
return {n: self[n].copy() for n in self._atlas}
class MultiAdjacencyView(AdjacencyView):
"""An MultiAdjacencyView is a Read-only Map of Maps of Maps of Maps.
It is a View into a dict-of-dict-of-dict-of-dict data structure.
The inner level of dict is read-write. But the
outer levels are read-only.
See Also
========
AtlasView: View into dict-of-dict
AdjacencyView: View into dict-of-dict-of-dict
"""
__slots__ = () # Still uses AtlasView slots names _atlas
def __getitem__(self, name):
return AdjacencyView(self._atlas[name])
def copy(self):
return {n: self[n].copy() for n in self._atlas}
class UnionAtlas(Mapping):
"""A read-only union of two atlases (dict-of-dict).
The two dict-of-dicts represent the inner dict of
an Adjacency: `G.succ[node]` and `G.pred[node]`.
The inner level of dict of both hold attribute key:value
pairs and is read-write. But the outer level is read-only.
See Also
========
UnionAdjacency: View into dict-of-dict-of-dict
UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict
"""
__slots__ = ("_succ", "_pred")
def __getstate__(self):
return {"_succ": self._succ, "_pred": self._pred}
def __setstate__(self, state):
self._succ = state["_succ"]
self._pred = state["_pred"]
def __init__(self, succ, pred):
self._succ = succ
self._pred = pred
def __len__(self):
return len(self._succ.keys() | self._pred.keys())
def __iter__(self):
return iter(set(self._succ.keys()) | set(self._pred.keys()))
def __getitem__(self, key):
try:
return self._succ[key]
except KeyError:
return self._pred[key]
def copy(self):
result = {nbr: dd.copy() for nbr, dd in self._succ.items()}
for nbr, dd in self._pred.items():
if nbr in result:
result[nbr].update(dd)
else:
result[nbr] = dd.copy()
return result
def __str__(self):
return str({nbr: self[nbr] for nbr in self})
def __repr__(self):
return f"{self.__class__.__name__}({self._succ!r}, {self._pred!r})"
class UnionAdjacency(Mapping):
"""A read-only union of dict Adjacencies as a Map of Maps of Maps.
The two input dict-of-dict-of-dicts represent the union of
`G.succ` and `G.pred`. Return values are UnionAtlas
The inner level of dict is read-write. But the
middle and outer levels are read-only.
succ : a dict-of-dict-of-dict {node: nbrdict}
pred : a dict-of-dict-of-dict {node: nbrdict}
The keys for the two dicts should be the same
See Also
========
UnionAtlas: View into dict-of-dict
UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict
"""
__slots__ = ("_succ", "_pred")
def __getstate__(self):
return {"_succ": self._succ, "_pred": self._pred}
def __setstate__(self, state):
self._succ = state["_succ"]
self._pred = state["_pred"]
def __init__(self, succ, pred):
# keys must be the same for two input dicts
assert len(set(succ.keys()) ^ set(pred.keys())) == 0
self._succ = succ
self._pred = pred
def __len__(self):
return len(self._succ) # length of each dict should be the same
def __iter__(self):
return iter(self._succ)
def __getitem__(self, nbr):
return UnionAtlas(self._succ[nbr], self._pred[nbr])
def copy(self):
return {n: self[n].copy() for n in self._succ}
def __str__(self):
return str({nbr: self[nbr] for nbr in self})
def __repr__(self):
return f"{self.__class__.__name__}({self._succ!r}, {self._pred!r})"
class UnionMultiInner(UnionAtlas):
"""A read-only union of two inner dicts of MultiAdjacencies.
The two input dict-of-dict-of-dicts represent the union of
`G.succ[node]` and `G.pred[node]` for MultiDiGraphs.
Return values are UnionAtlas.
The inner level of dict is read-write. But the outer levels are read-only.
See Also
========
UnionAtlas: View into dict-of-dict
UnionAdjacency: View into dict-of-dict-of-dict
UnionMultiAdjacency: View into dict-of-dict-of-dict-of-dict
"""
__slots__ = () # Still uses UnionAtlas slots names _succ, _pred
def __getitem__(self, node):
in_succ = node in self._succ
in_pred = node in self._pred
if in_succ:
if in_pred:
return UnionAtlas(self._succ[node], self._pred[node])
return UnionAtlas(self._succ[node], {})
return UnionAtlas({}, self._pred[node])
def copy(self):
nodes = set(self._succ.keys()) | set(self._pred.keys())
return {n: self[n].copy() for n in nodes}
class UnionMultiAdjacency(UnionAdjacency):
"""A read-only union of two dict MultiAdjacencies.
The two input dict-of-dict-of-dict-of-dicts represent the union of
`G.succ` and `G.pred` for MultiDiGraphs. Return values are UnionAdjacency.
The inner level of dict is read-write. But the outer levels are read-only.
See Also
========
UnionAtlas: View into dict-of-dict
UnionMultiInner: View into dict-of-dict-of-dict
"""
__slots__ = () # Still uses UnionAdjacency slots names _succ, _pred
def __getitem__(self, node):
return UnionMultiInner(self._succ[node], self._pred[node])
class FilterAtlas(Mapping): # nodedict, nbrdict, keydict
"""A read-only Mapping of Mappings with filtering criteria for nodes.
It is a view into a dict-of-dict data structure, and it selects only
nodes that meet the criteria defined by ``NODE_OK``.
See Also
========
FilterAdjacency
FilterMultiInner
FilterMultiAdjacency
"""
def __init__(self, d, NODE_OK):
self._atlas = d
self.NODE_OK = NODE_OK
def __len__(self):
# check whether NODE_OK stores the number of nodes as `length`
# or the nodes themselves as a set `nodes`. If not, count the nodes.
if hasattr(self.NODE_OK, "length"):
return self.NODE_OK.length
if hasattr(self.NODE_OK, "nodes"):
return len(self.NODE_OK.nodes & self._atlas.keys())
return sum(1 for n in self._atlas if self.NODE_OK(n))
def __iter__(self):
try: # check that NODE_OK has attr 'nodes'
node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas)
except AttributeError:
node_ok_shorter = False
if node_ok_shorter:
return (n for n in self.NODE_OK.nodes if n in self._atlas)
return (n for n in self._atlas if self.NODE_OK(n))
def __getitem__(self, key):
if key in self._atlas and self.NODE_OK(key):
return self._atlas[key]
raise KeyError(f"Key {key} not found")
def __str__(self):
return str({nbr: self[nbr] for nbr in self})
def __repr__(self):
return f"{self.__class__.__name__}({self._atlas!r}, {self.NODE_OK!r})"
class FilterAdjacency(Mapping): # edgedict
"""A read-only Mapping of Mappings with filtering criteria for nodes and edges.
It is a view into a dict-of-dict-of-dict data structure, and it selects nodes
and edges that satisfy specific criteria defined by ``NODE_OK`` and ``EDGE_OK``,
respectively.
See Also
========
FilterAtlas
FilterMultiInner
FilterMultiAdjacency
"""
def __init__(self, d, NODE_OK, EDGE_OK):
self._atlas = d
self.NODE_OK = NODE_OK
self.EDGE_OK = EDGE_OK
def __len__(self):
# check whether NODE_OK stores the number of nodes as `length`
# or the nodes themselves as a set `nodes`. If not, count the nodes.
if hasattr(self.NODE_OK, "length"):
return self.NODE_OK.length
if hasattr(self.NODE_OK, "nodes"):
return len(self.NODE_OK.nodes & self._atlas.keys())
return sum(1 for n in self._atlas if self.NODE_OK(n))
def __iter__(self):
try: # check that NODE_OK has attr 'nodes'
node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas)
except AttributeError:
node_ok_shorter = False
if node_ok_shorter:
return (n for n in self.NODE_OK.nodes if n in self._atlas)
return (n for n in self._atlas if self.NODE_OK(n))
def __getitem__(self, node):
if node in self._atlas and self.NODE_OK(node):
def new_node_ok(nbr):
return self.NODE_OK(nbr) and self.EDGE_OK(node, nbr)
return FilterAtlas(self._atlas[node], new_node_ok)
raise KeyError(f"Key {node} not found")
def __str__(self):
return str({nbr: self[nbr] for nbr in self})
def __repr__(self):
name = self.__class__.__name__
return f"{name}({self._atlas!r}, {self.NODE_OK!r}, {self.EDGE_OK!r})"
class FilterMultiInner(FilterAdjacency): # muliedge_seconddict
"""A read-only Mapping of Mappings with filtering criteria for nodes and edges.
It is a view into a dict-of-dict-of-dict-of-dict data structure, and it selects nodes
and edges that meet specific criteria defined by ``NODE_OK`` and ``EDGE_OK``.
See Also
========
FilterAtlas
FilterAdjacency
FilterMultiAdjacency
"""
def __iter__(self):
try: # check that NODE_OK has attr 'nodes'
node_ok_shorter = 2 * len(self.NODE_OK.nodes) < len(self._atlas)
except AttributeError:
node_ok_shorter = False
if node_ok_shorter:
my_nodes = (n for n in self.NODE_OK.nodes if n in self._atlas)
else:
my_nodes = (n for n in self._atlas if self.NODE_OK(n))
for n in my_nodes:
some_keys_ok = False
for key in self._atlas[n]:
if self.EDGE_OK(n, key):
some_keys_ok = True
break
if some_keys_ok is True:
yield n
def __getitem__(self, nbr):
if nbr in self._atlas and self.NODE_OK(nbr):
def new_node_ok(key):
return self.EDGE_OK(nbr, key)
return FilterAtlas(self._atlas[nbr], new_node_ok)
raise KeyError(f"Key {nbr} not found")
class FilterMultiAdjacency(FilterAdjacency): # multiedgedict
"""A read-only Mapping of Mappings with filtering criteria
for nodes and edges.
It is a view into a dict-of-dict-of-dict-of-dict data structure,
and it selects nodes and edges that satisfy specific criteria
defined by ``NODE_OK`` and ``EDGE_OK``, respectively.
See Also
========
FilterAtlas
FilterAdjacency
FilterMultiInner
"""
def __getitem__(self, node):
if node in self._atlas and self.NODE_OK(node):
def edge_ok(nbr, key):
return self.NODE_OK(nbr) and self.EDGE_OK(node, nbr, key)
return FilterMultiInner(self._atlas[node], self.NODE_OK, edge_ok)
raise KeyError(f"Key {node} not found")

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,95 @@
"""Filter factories to hide or show sets of nodes and edges.
These filters return the function used when creating `SubGraph`.
"""
__all__ = [
"no_filter",
"hide_nodes",
"hide_edges",
"hide_multiedges",
"hide_diedges",
"hide_multidiedges",
"show_nodes",
"show_edges",
"show_multiedges",
"show_diedges",
"show_multidiedges",
]
def no_filter(*items):
"""Returns a filter function that always evaluates to True."""
return True
def hide_nodes(nodes):
"""Returns a filter function that hides specific nodes."""
nodes = set(nodes)
return lambda node: node not in nodes
def hide_diedges(edges):
"""Returns a filter function that hides specific directed edges."""
edges = {(u, v) for u, v in edges}
return lambda u, v: (u, v) not in edges
def hide_edges(edges):
"""Returns a filter function that hides specific undirected edges."""
alledges = set(edges) | {(v, u) for (u, v) in edges}
return lambda u, v: (u, v) not in alledges
def hide_multidiedges(edges):
"""Returns a filter function that hides specific multi-directed edges."""
edges = {(u, v, k) for u, v, k in edges}
return lambda u, v, k: (u, v, k) not in edges
def hide_multiedges(edges):
"""Returns a filter function that hides specific multi-undirected edges."""
alledges = set(edges) | {(v, u, k) for (u, v, k) in edges}
return lambda u, v, k: (u, v, k) not in alledges
# write show_nodes as a class to make SubGraph pickleable
class show_nodes:
"""Filter class to show specific nodes.
Attach the set of nodes as an attribute to speed up this commonly used filter
Note that another allowed attribute for filters is to store the number of nodes
on the filter as attribute `length` (used in `__len__`). It is a user
responsibility to ensure this attribute is accurate if present.
"""
def __init__(self, nodes):
self.nodes = set(nodes)
def __call__(self, node):
return node in self.nodes
def show_diedges(edges):
"""Returns a filter function that shows specific directed edges."""
edges = {(u, v) for u, v in edges}
return lambda u, v: (u, v) in edges
def show_edges(edges):
"""Returns a filter function that shows specific undirected edges."""
alledges = set(edges) | {(v, u) for (u, v) in edges}
return lambda u, v: (u, v) in alledges
def show_multidiedges(edges):
"""Returns a filter function that shows specific multi-directed edges."""
edges = {(u, v, k) for u, v, k in edges}
return lambda u, v, k: (u, v, k) in edges
def show_multiedges(edges):
"""Returns a filter function that shows specific multi-undirected edges."""
alledges = set(edges) | {(v, u, k) for (u, v, k) in edges}
return lambda u, v, k: (u, v, k) in alledges

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,269 @@
"""View of Graphs as SubGraph, Reverse, Directed, Undirected.
In some algorithms it is convenient to temporarily morph
a graph to exclude some nodes or edges. It should be better
to do that via a view than to remove and then re-add.
In other algorithms it is convenient to temporarily morph
a graph to reverse directed edges, or treat a directed graph
as undirected, etc. This module provides those graph views.
The resulting views are essentially read-only graphs that
report data from the original graph object. We provide an
attribute G._graph which points to the underlying graph object.
Note: Since graphviews look like graphs, one can end up with
view-of-view-of-view chains. Be careful with chains because
they become very slow with about 15 nested views.
For the common simple case of node induced subgraphs created
from the graph class, we short-cut the chain by returning a
subgraph of the original graph directly rather than a subgraph
of a subgraph. We are careful not to disrupt any edge filter in
the middle subgraph. In general, determining how to short-cut
the chain is tricky and much harder with restricted_views than
with induced subgraphs.
Often it is easiest to use .copy() to avoid chains.
"""
import networkx as nx
from networkx.classes.coreviews import (
FilterAdjacency,
FilterAtlas,
FilterMultiAdjacency,
UnionAdjacency,
UnionMultiAdjacency,
)
from networkx.classes.filters import no_filter
from networkx.exception import NetworkXError
from networkx.utils import not_implemented_for
__all__ = ["generic_graph_view", "subgraph_view", "reverse_view"]
def generic_graph_view(G, create_using=None):
"""Returns a read-only view of `G`.
The graph `G` and its attributes are not copied but viewed through the new graph object
of the same class as `G` (or of the class specified in `create_using`).
Parameters
----------
G : graph
A directed/undirected graph/multigraph.
create_using : NetworkX graph constructor, optional (default=None)
Graph type to create. If graph instance, then cleared before populated.
If `None`, then the appropriate Graph type is inferred from `G`.
Returns
-------
newG : graph
A view of the input graph `G` and its attributes as viewed through
the `create_using` class.
Raises
------
NetworkXError
If `G` is a multigraph (or multidigraph) but `create_using` is not, or vice versa.
Notes
-----
The returned graph view is read-only (cannot modify the graph).
Yet the view reflects any changes in `G`. The intent is to mimic dict views.
Examples
--------
>>> G = nx.Graph()
>>> G.add_edge(1, 2, weight=0.3)
>>> G.add_edge(2, 3, weight=0.5)
>>> G.edges(data=True)
EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})])
The view exposes the attributes from the original graph.
>>> viewG = nx.graphviews.generic_graph_view(G)
>>> viewG.edges(data=True)
EdgeDataView([(1, 2, {'weight': 0.3}), (2, 3, {'weight': 0.5})])
Changes to `G` are reflected in `viewG`.
>>> G.remove_edge(2, 3)
>>> G.edges(data=True)
EdgeDataView([(1, 2, {'weight': 0.3})])
>>> viewG.edges(data=True)
EdgeDataView([(1, 2, {'weight': 0.3})])
We can change the graph type with the `create_using` parameter.
>>> type(G)
<class 'networkx.classes.graph.Graph'>
>>> viewDG = nx.graphviews.generic_graph_view(G, create_using=nx.DiGraph)
>>> type(viewDG)
<class 'networkx.classes.digraph.DiGraph'>
"""
if create_using is None:
newG = G.__class__()
else:
newG = nx.empty_graph(0, create_using)
if G.is_multigraph() != newG.is_multigraph():
raise NetworkXError("Multigraph for G must agree with create_using")
newG = nx.freeze(newG)
# create view by assigning attributes from G
newG._graph = G
newG.graph = G.graph
newG._node = G._node
if newG.is_directed():
if G.is_directed():
newG._succ = G._succ
newG._pred = G._pred
# newG._adj is synced with _succ
else:
newG._succ = G._adj
newG._pred = G._adj
# newG._adj is synced with _succ
elif G.is_directed():
if G.is_multigraph():
newG._adj = UnionMultiAdjacency(G._succ, G._pred)
else:
newG._adj = UnionAdjacency(G._succ, G._pred)
else:
newG._adj = G._adj
return newG
def subgraph_view(G, *, filter_node=no_filter, filter_edge=no_filter):
"""View of `G` applying a filter on nodes and edges.
`subgraph_view` provides a read-only view of the input graph that excludes
nodes and edges based on the outcome of two filter functions `filter_node`
and `filter_edge`.
The `filter_node` function takes one argument --- the node --- and returns
`True` if the node should be included in the subgraph, and `False` if it
should not be included.
The `filter_edge` function takes two (or three arguments if `G` is a
multi-graph) --- the nodes describing an edge, plus the edge-key if
parallel edges are possible --- and returns `True` if the edge should be
included in the subgraph, and `False` if it should not be included.
Both node and edge filter functions are called on graph elements as they
are queried, meaning there is no up-front cost to creating the view.
Parameters
----------
G : networkx.Graph
A directed/undirected graph/multigraph
filter_node : callable, optional
A function taking a node as input, which returns `True` if the node
should appear in the view.
filter_edge : callable, optional
A function taking as input the two nodes describing an edge (plus the
edge-key if `G` is a multi-graph), which returns `True` if the edge
should appear in the view.
Returns
-------
graph : networkx.Graph
A read-only graph view of the input graph.
Examples
--------
>>> G = nx.path_graph(6)
Filter functions operate on the node, and return `True` if the node should
appear in the view:
>>> def filter_node(n1):
... return n1 != 5
>>> view = nx.subgraph_view(G, filter_node=filter_node)
>>> view.nodes()
NodeView((0, 1, 2, 3, 4))
We can use a closure pattern to filter graph elements based on additional
data --- for example, filtering on edge data attached to the graph:
>>> G[3][4]["cross_me"] = False
>>> def filter_edge(n1, n2):
... return G[n1][n2].get("cross_me", True)
>>> view = nx.subgraph_view(G, filter_edge=filter_edge)
>>> view.edges()
EdgeView([(0, 1), (1, 2), (2, 3), (4, 5)])
>>> view = nx.subgraph_view(
... G,
... filter_node=filter_node,
... filter_edge=filter_edge,
... )
>>> view.nodes()
NodeView((0, 1, 2, 3, 4))
>>> view.edges()
EdgeView([(0, 1), (1, 2), (2, 3)])
"""
newG = nx.freeze(G.__class__())
newG._NODE_OK = filter_node
newG._EDGE_OK = filter_edge
# create view by assigning attributes from G
newG._graph = G
newG.graph = G.graph
newG._node = FilterAtlas(G._node, filter_node)
if G.is_multigraph():
Adj = FilterMultiAdjacency
def reverse_edge(u, v, k=None):
return filter_edge(v, u, k)
else:
Adj = FilterAdjacency
def reverse_edge(u, v, k=None):
return filter_edge(v, u)
if G.is_directed():
newG._succ = Adj(G._succ, filter_node, filter_edge)
newG._pred = Adj(G._pred, filter_node, reverse_edge)
# newG._adj is synced with _succ
else:
newG._adj = Adj(G._adj, filter_node, filter_edge)
return newG
@not_implemented_for("undirected")
def reverse_view(G):
"""View of `G` with edge directions reversed
`reverse_view` returns a read-only view of the input graph where
edge directions are reversed.
Identical to digraph.reverse(copy=False)
Parameters
----------
G : networkx.DiGraph
Returns
-------
graph : networkx.DiGraph
Examples
--------
>>> G = nx.DiGraph()
>>> G.add_edge(1, 2)
>>> G.add_edge(2, 3)
>>> G.edges()
OutEdgeView([(1, 2), (2, 3)])
>>> view = nx.reverse_view(G)
>>> view.edges()
OutEdgeView([(2, 1), (3, 2)])
"""
newG = generic_graph_view(G)
newG._succ, newG._pred = G._pred, G._succ
# newG._adj is synced with _succ
return newG

View File

@ -0,0 +1,966 @@
"""Base class for MultiDiGraph."""
from copy import deepcopy
from functools import cached_property
import networkx as nx
from networkx import convert
from networkx.classes.coreviews import MultiAdjacencyView
from networkx.classes.digraph import DiGraph
from networkx.classes.multigraph import MultiGraph
from networkx.classes.reportviews import (
DiMultiDegreeView,
InMultiDegreeView,
InMultiEdgeView,
OutMultiDegreeView,
OutMultiEdgeView,
)
from networkx.exception import NetworkXError
__all__ = ["MultiDiGraph"]
class MultiDiGraph(MultiGraph, DiGraph):
"""A directed graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge
can hold optional data or attributes.
A MultiDiGraph holds directed edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes. By convention `None` is not used as a node.
Edges are represented as links between nodes with optional
key/value attributes.
Parameters
----------
incoming_graph_data : input graph (optional, default: None)
Data to initialize graph. If None (default) an empty
graph is created. The data can be any format that is supported
by the to_networkx_graph() function, currently including edge list,
dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
sparse matrix, or PyGraphviz graph.
multigraph_input : bool or None (default None)
Note: Only used when `incoming_graph_data` is a dict.
If True, `incoming_graph_data` is assumed to be a
dict-of-dict-of-dict-of-dict structure keyed by
node to neighbor to edge keys to edge data for multi-edges.
A NetworkXError is raised if this is not the case.
If False, :func:`to_networkx_graph` is used to try to determine
the dict's graph data structure as either a dict-of-dict-of-dict
keyed by node to neighbor to edge data, or a dict-of-iterable
keyed by node to neighbors.
If None, the treatment for True is tried, but if it fails,
the treatment for False is tried.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also
--------
Graph
DiGraph
MultiGraph
Examples
--------
Create an empty graph structure (a "null graph") with no nodes and
no edges.
>>> G = nx.MultiDiGraph()
G can be grown in several ways.
**Nodes:**
Add one node at a time:
>>> G.add_node(1)
Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).
>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))
>>> H = nx.path_graph(10)
>>> G.add_nodes_from(H)
In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.
>>> G.add_node(H)
**Edges:**
G can also be grown by adding edges.
Add one edge,
>>> key = G.add_edge(1, 2)
a list of edges,
>>> keys = G.add_edges_from([(1, 2), (1, 3)])
or a collection of edges,
>>> keys = G.add_edges_from(H.edges)
If some edges connect nodes not yet in the graph, the nodes
are added automatically. If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.
>>> keys = G.add_edges_from([(4, 5, dict(route=282)), (4, 5, dict(route=37))])
>>> G[4]
AdjacencyView({5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}})
**Attributes:**
Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.
>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
Add node attributes using add_node(), add_nodes_from() or G.nodes
>>> G.add_node(1, time="5pm")
>>> G.add_nodes_from([3], time="2pm")
>>> G.nodes[1]
{'time': '5pm'}
>>> G.nodes[1]["room"] = 714
>>> del G.nodes[1]["room"] # remove attribute
>>> list(G.nodes(data=True))
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edges.
>>> key = G.add_edge(1, 2, weight=4.7)
>>> keys = G.add_edges_from([(3, 4), (4, 5)], color="red")
>>> keys = G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
>>> G[1][2][0]["weight"] = 4.7
>>> G.edges[1, 2, 0]["weight"] = 4
Warning: we protect the graph data structure by making `G.edges[1,
2, 0]` a read-only dict-like structure. However, you can assign to
attributes in e.g. `G.edges[1, 2, 0]`. Thus, use 2 sets of brackets
to add/change data attributes: `G.edges[1, 2, 0]['weight'] = 4`
(for multigraphs the edge key is required: `MG.edges[u, v,
key][name] = value`).
**Shortcuts:**
Many common graph features allow python syntax to speed reporting.
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n < 3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict-like view mapping neighbor -> edge key -> edge attributes
AdjacencyView({2: {0: {'weight': 4}, 1: {'color': 'blue'}}})
Often the best way to traverse all edges of a graph is via the neighbors.
The neighbors are available as an adjacency-view `G.adj` object or via
the method `G.adjacency()`.
>>> for n, nbrsdict in G.adjacency():
... for nbr, keydict in nbrsdict.items():
... for key, eattr in keydict.items():
... if "weight" in eattr:
... # Do something useful with the edges
... pass
But the edges() method is often more convenient:
>>> for u, v, keys, weight in G.edges(data="weight", keys=True):
... if weight is not None:
... # Do something useful with the edges
... pass
**Reporting:**
Simple graph information is obtained using methods and object-attributes.
Reporting usually provides views instead of containers to reduce memory
usage. The views update as the graph is updated similarly to dict-views.
The objects `nodes`, `edges` and `adj` provide access to data attributes
via lookup (e.g. `nodes[n]`, `edges[u, v, k]`, `adj[u][v]`) and iteration
(e.g. `nodes.items()`, `nodes.data('color')`,
`nodes.data('color', default='blue')` and similarly for `edges`)
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
For details on these and other miscellaneous methods, see below.
**Subclasses (Advanced):**
The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
The outer dict (node_dict) holds adjacency information keyed by node.
The next dict (adjlist_dict) represents the adjacency information
and holds edge_key dicts keyed by neighbor. The edge_key dict holds
each edge_attr dict keyed by edge key. The inner dict
(edge_attr_dict) represents the edge data and holds edge attribute
values keyed by attribute names.
Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names are
node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory,
adjlist_outer_dict_factory, edge_key_dict_factory, edge_attr_dict_factory
and graph_attr_dict_factory.
node_dict_factory : function, (default: dict)
Factory function to be used to create the dict containing node
attributes, keyed by node id.
It should require no arguments and return a dict-like object
node_attr_dict_factory: function, (default: dict)
Factory function to be used to create the node attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object
adjlist_outer_dict_factory : function, (default: dict)
Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node.
It should require no arguments and return a dict-like object.
adjlist_inner_dict_factory : function, (default: dict)
Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor.
It should require no arguments and return a dict-like object.
edge_key_dict_factory : function, (default: dict)
Factory function to be used to create the edge key dict
which holds edge data keyed by edge key.
It should require no arguments and return a dict-like object.
edge_attr_dict_factory : function, (default: dict)
Factory function to be used to create the edge attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object.
graph_attr_dict_factory : function, (default: dict)
Factory function to be used to create the graph attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object.
Typically, if your extension doesn't impact the data structure all
methods will inherited without issue except: `to_directed/to_undirected`.
By default these methods create a DiGraph/Graph class and you probably
want them to create your extension of a DiGraph/Graph. To facilitate
this we define two class variables that you can set in your subclass.
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
Class to create a new graph structure in the `to_directed` method.
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
to_undirected_class : callable, (default: Graph or MultiGraph)
Class to create a new graph structure in the `to_undirected` method.
If `None`, a NetworkX class (Graph or MultiGraph) is used.
**Subclassing Example**
Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.
>>> class ThinGraph(nx.Graph):
... all_edge_dict = {"weight": 1}
...
... def single_edge_dict(self):
... return self.all_edge_dict
...
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2, 1)
>>> G[2][1]
{'weight': 1}
>>> G.add_edge(2, 2)
>>> G[2][1] is G[2][2]
True
"""
# node_dict_factory = dict # already assigned in Graph
# adjlist_outer_dict_factory = dict
# adjlist_inner_dict_factory = dict
edge_key_dict_factory = dict
# edge_attr_dict_factory = dict
def __init__(self, incoming_graph_data=None, multigraph_input=None, **attr):
"""Initialize a graph with edges, name, or graph attributes.
Parameters
----------
incoming_graph_data : input graph
Data to initialize graph. If incoming_graph_data=None (default)
an empty graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a 2D NumPy array, a
SciPy sparse array, or a PyGraphviz graph.
multigraph_input : bool or None (default None)
Note: Only used when `incoming_graph_data` is a dict.
If True, `incoming_graph_data` is assumed to be a
dict-of-dict-of-dict-of-dict structure keyed by
node to neighbor to edge keys to edge data for multi-edges.
A NetworkXError is raised if this is not the case.
If False, :func:`to_networkx_graph` is used to try to determine
the dict's graph data structure as either a dict-of-dict-of-dict
keyed by node to neighbor to edge data, or a dict-of-iterable
keyed by node to neighbors.
If None, the treatment for True is tried, but if it fails,
the treatment for False is tried.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also
--------
convert
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name="my graph")
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)
Arbitrary graph attribute pairs (key=value) may be assigned
>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
"""
# multigraph_input can be None/True/False. So check "is not False"
if isinstance(incoming_graph_data, dict) and multigraph_input is not False:
DiGraph.__init__(self)
try:
convert.from_dict_of_dicts(
incoming_graph_data, create_using=self, multigraph_input=True
)
self.graph.update(attr)
except Exception as err:
if multigraph_input is True:
raise nx.NetworkXError(
f"converting multigraph_input raised:\n{type(err)}: {err}"
)
DiGraph.__init__(self, incoming_graph_data, **attr)
else:
DiGraph.__init__(self, incoming_graph_data, **attr)
@cached_property
def adj(self):
"""Graph adjacency object holding the neighbors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
For directed graphs, `G.adj` holds outgoing (successor) info.
"""
return MultiAdjacencyView(self._succ)
@cached_property
def succ(self):
"""Graph adjacency object holding the successors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
For directed graphs, `G.succ` is identical to `G.adj`.
"""
return MultiAdjacencyView(self._succ)
@cached_property
def pred(self):
"""Graph adjacency object holding the predecessors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edgekey-dict. So `G.adj[3][2][0]['color'] = 'blue'` sets
the color of the edge `(3, 2, 0)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
"""
return MultiAdjacencyView(self._pred)
def add_edge(self, u_for_edge, v_for_edge, key=None, **attr):
"""Add an edge between u and v.
The nodes u and v will be automatically added if they are
not already in the graph.
Edge attributes can be specified with keywords or by directly
accessing the edge's attribute dictionary. See examples below.
Parameters
----------
u_for_edge, v_for_edge : nodes
Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.
key : hashable identifier, optional (default=lowest unused integer)
Used to distinguish multiedges between a pair of nodes.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using
keyword arguments.
Returns
-------
The edge key assigned to the edge.
See Also
--------
add_edges_from : add a collection of edges
Notes
-----
To replace/update edge data, use the optional key argument
to identify a unique edge. Otherwise a new edge will be created.
NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights. Convert to Graph using edge attribute
'weight' to enable weighted graph algorithms.
Default keys are generated using the method `new_edge_key()`.
This method can be overridden by subclassing the base class and
providing a custom `new_edge_key()` method.
Examples
--------
The following all add the edge e=(1, 2) to graph G:
>>> G = nx.MultiDiGraph()
>>> e = (1, 2)
>>> key = G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
1
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
[2]
Associate data to edges using keywords:
>>> key = G.add_edge(1, 2, weight=3)
>>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
For non-string attribute keys, use subscript notation.
>>> ekey = G.add_edge(1, 2)
>>> G[1][2][0].update({0: 5})
>>> G.edges[1, 2, 0].update({0: 5})
"""
u, v = u_for_edge, v_for_edge
# add nodes
if u not in self._succ:
if u is None:
raise ValueError("None cannot be a node")
self._succ[u] = self.adjlist_inner_dict_factory()
self._pred[u] = self.adjlist_inner_dict_factory()
self._node[u] = self.node_attr_dict_factory()
if v not in self._succ:
if v is None:
raise ValueError("None cannot be a node")
self._succ[v] = self.adjlist_inner_dict_factory()
self._pred[v] = self.adjlist_inner_dict_factory()
self._node[v] = self.node_attr_dict_factory()
if key is None:
key = self.new_edge_key(u, v)
if v in self._succ[u]:
keydict = self._adj[u][v]
datadict = keydict.get(key, self.edge_attr_dict_factory())
datadict.update(attr)
keydict[key] = datadict
else:
# selfloops work this way without special treatment
datadict = self.edge_attr_dict_factory()
datadict.update(attr)
keydict = self.edge_key_dict_factory()
keydict[key] = datadict
self._succ[u][v] = keydict
self._pred[v][u] = keydict
nx._clear_cache(self)
return key
def remove_edge(self, u, v, key=None):
"""Remove an edge between u and v.
Parameters
----------
u, v : nodes
Remove an edge between nodes u and v.
key : hashable identifier, optional (default=None)
Used to distinguish multiple edges between a pair of nodes.
If None, remove a single edge between u and v. If there are
multiple edges, removes the last edge added in terms of
insertion order.
Raises
------
NetworkXError
If there is not an edge between u and v, or
if there is no edge with the specified key.
See Also
--------
remove_edges_from : remove a collection of edges
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.remove_edge(0, 1)
>>> e = (1, 2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
For multiple edges
>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned
[0, 1, 2]
When ``key=None`` (the default), edges are removed in the opposite
order that they were added:
>>> G.remove_edge(1, 2)
>>> G.edges(keys=True)
OutMultiEdgeView([(1, 2, 0), (1, 2, 1)])
For edges with keys
>>> G = nx.MultiDiGraph()
>>> G.add_edge(1, 2, key="first")
'first'
>>> G.add_edge(1, 2, key="second")
'second'
>>> G.remove_edge(1, 2, key="first")
>>> G.edges(keys=True)
OutMultiEdgeView([(1, 2, 'second')])
"""
try:
d = self._adj[u][v]
except KeyError as err:
raise NetworkXError(f"The edge {u}-{v} is not in the graph.") from err
# remove the edge with specified data
if key is None:
d.popitem()
else:
try:
del d[key]
except KeyError as err:
msg = f"The edge {u}-{v} with key {key} is not in the graph."
raise NetworkXError(msg) from err
if len(d) == 0:
# remove the key entries if last edge
del self._succ[u][v]
del self._pred[v][u]
nx._clear_cache(self)
@cached_property
def edges(self):
"""An OutMultiEdgeView of the Graph as G.edges or G.edges().
edges(self, nbunch=None, data=False, keys=False, default=None)
The OutMultiEdgeView provides set-like operations on the edge-tuples
as well as edge attribute lookup. When called, it also provides
an EdgeDataView object which allows control of access to edge
attributes (but does not provide set-like operations).
Hence, ``G.edges[u, v, k]['color']`` provides the value of the color
attribute for the edge from ``u`` to ``v`` with key ``k`` while
``for (u, v, k, c) in G.edges(data='color', default='red', keys=True):``
iterates through all the edges yielding the color attribute with
default `'red'` if no color attribute exists.
Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data). If ``keys=True`` is not
provided, the tuples will just be (node, neighbor, data), but
multiple tuples with the same node and neighbor will be
generated when multiple edges between two nodes exist.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges from these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]).
If True, return edge attribute dict in 3-tuple (u, v, ddict).
If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge, creating (u, v, k,
d) tuples when data is also requested (the default) and (u,
v, k) tuples when data is not requested.
default : value, optional (default=None)
Value used for edges that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
edges : OutMultiEdgeView
A view of edge attributes, usually it iterates over (u, v)
(u, v, k) or (u, v, k, d) tuples of edges, but can also be
used for attribute lookup as ``edges[u, v, k]['foo']``.
Notes
-----
Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2])
>>> key = G.add_edge(2, 3, weight=5)
>>> key2 = G.add_edge(1, 2) # second edge between these nodes
>>> [e for e in G.edges()]
[(0, 1), (1, 2), (1, 2), (2, 3)]
>>> list(G.edges(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges(data="weight", default=1))
[(0, 1, 1), (1, 2, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (1, 2, 1), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True))
[(0, 1, 0, {}), (1, 2, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data="weight", default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
>>> list(G.edges([0, 2]))
[(0, 1), (2, 3)]
>>> list(G.edges(0))
[(0, 1)]
>>> list(G.edges(1))
[(1, 2), (1, 2)]
See Also
--------
in_edges, out_edges
"""
return OutMultiEdgeView(self)
# alias out_edges to edges
@cached_property
def out_edges(self):
return OutMultiEdgeView(self)
out_edges.__doc__ = edges.__doc__
@cached_property
def in_edges(self):
"""A view of the in edges of the graph as G.in_edges or G.in_edges().
in_edges(self, nbunch=None, data=False, keys=False, default=None)
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]).
If True, return edge attribute dict in 3-tuple (u, v, ddict).
If False, return 2-tuple (u, v).
keys : bool, optional (default=False)
If True, return edge keys with each edge, creating 3-tuples
(u, v, k) or with data, 4-tuples (u, v, k, d).
default : value, optional (default=None)
Value used for edges that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
in_edges : InMultiEdgeView or InMultiEdgeDataView
A view of edge attributes, usually it iterates over (u, v)
or (u, v, k) or (u, v, k, d) tuples of edges, but can also be
used for attribute lookup as `edges[u, v, k]['foo']`.
See Also
--------
edges
"""
return InMultiEdgeView(self)
@cached_property
def degree(self):
"""A DegreeView for the Graph as G.degree or G.degree().
The node degree is the number of edges adjacent to the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.
This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The name of an edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.
Returns
-------
DiMultiDegreeView or int
If multiple nodes are requested (the default), returns a `DiMultiDegreeView`
mapping nodes to their degree.
If a single node is requested, returns the degree of the node as an integer.
See Also
--------
out_degree, in_degree
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.degree(0) # node 0 with degree 1
1
>>> list(G.degree([0, 1, 2]))
[(0, 1), (1, 2), (2, 2)]
>>> G.add_edge(0, 1) # parallel edge
1
>>> list(G.degree([0, 1, 2])) # parallel edges are counted
[(0, 2), (1, 3), (2, 2)]
"""
return DiMultiDegreeView(self)
@cached_property
def in_degree(self):
"""A DegreeView for (node, in_degree) or in_degree for single node.
The node in-degree is the number of edges pointing into the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.
This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.
Returns
-------
If a single node is requested
deg : int
Degree of the node
OR if multiple nodes are requested
nd_iter : iterator
The iterator returns two-tuples of (node, in-degree).
See Also
--------
degree, out_degree
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.in_degree(0) # node 0 with degree 0
0
>>> list(G.in_degree([0, 1, 2]))
[(0, 0), (1, 1), (2, 1)]
>>> G.add_edge(0, 1) # parallel edge
1
>>> list(G.in_degree([0, 1, 2])) # parallel edges counted
[(0, 0), (1, 2), (2, 1)]
"""
return InMultiDegreeView(self)
@cached_property
def out_degree(self):
"""Returns an iterator for (node, out-degree) or out-degree for single node.
out_degree(self, nbunch=None, weight=None)
The node out-degree is the number of edges pointing out of the node.
This function returns the out-degree for a single node or an iterator
for a bunch of nodes or if nothing is passed as argument.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights.
Returns
-------
If a single node is requested
deg : int
Degree of the node
OR if multiple nodes are requested
nd_iter : iterator
The iterator returns two-tuples of (node, out-degree).
See Also
--------
degree, in_degree
Examples
--------
>>> G = nx.MultiDiGraph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> G.out_degree(0) # node 0 with degree 1
1
>>> list(G.out_degree([0, 1, 2]))
[(0, 1), (1, 1), (2, 1)]
>>> G.add_edge(0, 1) # parallel edge
1
>>> list(G.out_degree([0, 1, 2])) # counts parallel edges
[(0, 2), (1, 1), (2, 1)]
"""
return OutMultiDegreeView(self)
def is_multigraph(self):
"""Returns True if graph is a multigraph, False otherwise."""
return True
def is_directed(self):
"""Returns True if graph is directed, False otherwise."""
return True
def to_undirected(self, reciprocal=False, as_view=False):
"""Returns an undirected representation of the digraph.
Parameters
----------
reciprocal : bool (optional)
If True only keep edges that appear in both directions
in the original digraph.
as_view : bool (optional, default=False)
If True return an undirected view of the original directed graph.
Returns
-------
G : MultiGraph
An undirected graph with the same name and nodes and
with edge (u, v, data) if either (u, v, data) or (v, u, data)
is in the digraph. If both edges exist in digraph and
their edge data is different, only one edge is created
with an arbitrary choice of which edge data to use.
You must check and correct for this manually if desired.
See Also
--------
MultiGraph, copy, add_edge, add_edges_from
Notes
-----
This returns a "deepcopy" of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.
This is in contrast to the similar D=MultiDiGraph(G) which
returns a shallow copy of the data.
See the Python copy module for more information on shallow
and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed MultiDiGraph to use dict-like
objects in the data structure, those changes do not transfer
to the MultiGraph created by this method.
Examples
--------
>>> G = nx.path_graph(2) # or MultiGraph, etc
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> list(G2.edges)
[(0, 1)]
"""
graph_class = self.to_undirected_class()
if as_view is True:
return nx.graphviews.generic_graph_view(self, graph_class)
# deepcopy when not a view
G = graph_class()
G.graph.update(deepcopy(self.graph))
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
if reciprocal is True:
G.add_edges_from(
(u, v, key, deepcopy(data))
for u, nbrs in self._adj.items()
for v, keydict in nbrs.items()
for key, data in keydict.items()
if v in self._pred[u] and key in self._pred[u][v]
)
else:
G.add_edges_from(
(u, v, key, deepcopy(data))
for u, nbrs in self._adj.items()
for v, keydict in nbrs.items()
for key, data in keydict.items()
)
return G
def reverse(self, copy=True):
"""Returns the reverse of the graph.
The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.
Parameters
----------
copy : bool optional (default=True)
If True, return a new DiGraph holding the reversed edges.
If False, the reverse graph is created using a view of
the original graph.
"""
if copy:
H = self.__class__()
H.graph.update(deepcopy(self.graph))
H.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
H.add_edges_from(
(v, u, k, deepcopy(d))
for u, v, k, d in self.edges(keys=True, data=True)
)
return H
return nx.reverse_view(self)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,185 @@
# This file contains utilities for testing the dispatching feature
# A full test of all dispatchable algorithms is performed by
# modifying the pytest invocation and setting an environment variable
# NETWORKX_TEST_BACKEND=nx_loopback pytest
# This is comprehensive, but only tests the `test_override_dispatch`
# function in networkx.classes.backends.
# To test the `_dispatchable` function directly, several tests scattered throughout
# NetworkX have been augmented to test normal and dispatch mode.
# Searching for `dispatch_interface` should locate the specific tests.
import networkx as nx
from networkx import DiGraph, Graph, MultiDiGraph, MultiGraph, PlanarEmbedding
from networkx.classes.reportviews import NodeView
class LoopbackGraph(Graph):
__networkx_backend__ = "nx_loopback"
class LoopbackDiGraph(DiGraph):
__networkx_backend__ = "nx_loopback"
class LoopbackMultiGraph(MultiGraph):
__networkx_backend__ = "nx_loopback"
class LoopbackMultiDiGraph(MultiDiGraph):
__networkx_backend__ = "nx_loopback"
class LoopbackPlanarEmbedding(PlanarEmbedding):
__networkx_backend__ = "nx_loopback"
def convert(graph):
if isinstance(graph, PlanarEmbedding):
return LoopbackPlanarEmbedding(graph)
if isinstance(graph, MultiDiGraph):
return LoopbackMultiDiGraph(graph)
if isinstance(graph, MultiGraph):
return LoopbackMultiGraph(graph)
if isinstance(graph, DiGraph):
return LoopbackDiGraph(graph)
if isinstance(graph, Graph):
return LoopbackGraph(graph)
raise TypeError(f"Unsupported type of graph: {type(graph)}")
class LoopbackBackendInterface:
def __getattr__(self, item):
try:
return nx.utils.backends._registered_algorithms[item].orig_func
except KeyError:
raise AttributeError(item) from None
@staticmethod
def convert_from_nx(
graph,
*,
edge_attrs=None,
node_attrs=None,
preserve_edge_attrs=None,
preserve_node_attrs=None,
preserve_graph_attrs=None,
name=None,
graph_name=None,
):
if name in {
# Raise if input graph changes. See test_dag.py::test_topological_sort6
"lexicographical_topological_sort",
"topological_generations",
"topological_sort",
# Would be nice to some day avoid these cutoffs of full testing
}:
return graph
if isinstance(graph, NodeView):
# Convert to a Graph with only nodes (no edges)
new_graph = Graph()
new_graph.add_nodes_from(graph.items())
graph = new_graph
G = LoopbackGraph()
elif not isinstance(graph, Graph):
raise TypeError(
f"Bad type for graph argument {graph_name} in {name}: {type(graph)}"
)
elif graph.__class__ in {Graph, LoopbackGraph}:
G = LoopbackGraph()
elif graph.__class__ in {DiGraph, LoopbackDiGraph}:
G = LoopbackDiGraph()
elif graph.__class__ in {MultiGraph, LoopbackMultiGraph}:
G = LoopbackMultiGraph()
elif graph.__class__ in {MultiDiGraph, LoopbackMultiDiGraph}:
G = LoopbackMultiDiGraph()
elif graph.__class__ in {PlanarEmbedding, LoopbackPlanarEmbedding}:
G = LoopbackDiGraph() # or LoopbackPlanarEmbedding
else:
# Would be nice to handle these better some day
# nx.algorithms.approximation.kcomponents._AntiGraph
# nx.classes.tests.test_multidigraph.MultiDiGraphSubClass
# nx.classes.tests.test_multigraph.MultiGraphSubClass
G = graph.__class__()
if preserve_graph_attrs:
G.graph.update(graph.graph)
# add nodes
G.add_nodes_from(graph)
if preserve_node_attrs:
for n, dd in G._node.items():
dd.update(graph.nodes[n])
elif node_attrs:
for n, dd in G._node.items():
dd.update(
(attr, graph._node[n].get(attr, default))
for attr, default in node_attrs.items()
if default is not None or attr in graph._node[n]
)
# tools to build datadict and keydict
if preserve_edge_attrs:
def G_new_datadict(old_dd):
return G.edge_attr_dict_factory(old_dd)
elif edge_attrs:
def G_new_datadict(old_dd):
return G.edge_attr_dict_factory(
(attr, old_dd.get(attr, default))
for attr, default in edge_attrs.items()
if default is not None or attr in old_dd
)
else:
def G_new_datadict(old_dd):
return G.edge_attr_dict_factory()
if G.is_multigraph():
def G_new_inner(keydict):
kd = G.adjlist_inner_dict_factory(
(k, G_new_datadict(dd)) for k, dd in keydict.items()
)
return kd
else:
G_new_inner = G_new_datadict
# add edges keeping the same order in _adj and _pred
G_adj = G._adj
if G.is_directed():
for n, nbrs in graph._adj.items():
G_adj[n].update((nbr, G_new_inner(dd)) for nbr, dd in nbrs.items())
# ensure same datadict for pred and adj; and pred order of graph._pred
G_pred = G._pred
for n, nbrs in graph._pred.items():
G_pred[n].update((nbr, G_adj[nbr][n]) for nbr in nbrs)
else: # undirected
for n, nbrs in graph._adj.items():
# ensure same datadict for both ways; and adj order of graph._adj
G_adj[n].update(
(nbr, G_adj[nbr][n] if n in G_adj[nbr] else G_new_inner(dd))
for nbr, dd in nbrs.items()
)
return G
@staticmethod
def convert_to_nx(obj, *, name=None):
return obj
@staticmethod
def on_start_tests(items):
# Verify that items can be xfailed
for item in items:
assert hasattr(item, "add_marker")
def can_run(self, name, args, kwargs):
# It is unnecessary to define this function if algorithms are fully supported.
# We include it for illustration purposes.
return hasattr(self, name)
backend_interface = LoopbackBackendInterface()

View File

@ -0,0 +1,475 @@
"""Original NetworkX graph tests"""
import pytest
import networkx as nx
from networkx import convert_node_labels_to_integers as cnlti
from networkx.utils import edges_equal, nodes_equal
class HistoricalTests:
@classmethod
def setup_class(cls):
cls.null = nx.null_graph()
cls.P1 = cnlti(nx.path_graph(1), first_label=1)
cls.P3 = cnlti(nx.path_graph(3), first_label=1)
cls.P10 = cnlti(nx.path_graph(10), first_label=1)
cls.K1 = cnlti(nx.complete_graph(1), first_label=1)
cls.K3 = cnlti(nx.complete_graph(3), first_label=1)
cls.K4 = cnlti(nx.complete_graph(4), first_label=1)
cls.K5 = cnlti(nx.complete_graph(5), first_label=1)
cls.K10 = cnlti(nx.complete_graph(10), first_label=1)
cls.G = nx.Graph
def test_name(self):
G = self.G(name="test")
assert G.name == "test"
H = self.G()
assert H.name == ""
# Nodes
def test_add_remove_node(self):
G = self.G()
G.add_node("A")
assert G.has_node("A")
G.remove_node("A")
assert not G.has_node("A")
def test_nonhashable_node(self):
# Test if a non-hashable object is in the Graph. A python dict will
# raise a TypeError, but for a Graph class a simple False should be
# returned (see Graph __contains__). If it cannot be a node then it is
# not a node.
G = self.G()
assert not G.has_node(["A"])
assert not G.has_node({"A": 1})
def test_add_nodes_from(self):
G = self.G()
G.add_nodes_from(list("ABCDEFGHIJKL"))
assert G.has_node("L")
G.remove_nodes_from(["H", "I", "J", "K", "L"])
G.add_nodes_from([1, 2, 3, 4])
assert sorted(G.nodes(), key=str) == [
1,
2,
3,
4,
"A",
"B",
"C",
"D",
"E",
"F",
"G",
]
# test __iter__
assert sorted(G, key=str) == [1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G"]
def test_contains(self):
G = self.G()
G.add_node("A")
assert "A" in G
assert [] not in G # never raise a Key or TypeError in this test
assert {1: 1} not in G
def test_add_remove(self):
# Test add_node and remove_node acting for various nbunch
G = self.G()
G.add_node("m")
assert G.has_node("m")
G.add_node("m") # no complaints
pytest.raises(nx.NetworkXError, G.remove_node, "j")
G.remove_node("m")
assert list(G) == []
def test_nbunch_is_list(self):
G = self.G()
G.add_nodes_from(list("ABCD"))
G.add_nodes_from(self.P3) # add nbunch of nodes (nbunch=Graph)
assert sorted(G.nodes(), key=str) == [1, 2, 3, "A", "B", "C", "D"]
G.remove_nodes_from(self.P3) # remove nbunch of nodes (nbunch=Graph)
assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D"]
def test_nbunch_is_set(self):
G = self.G()
nbunch = set("ABCDEFGHIJKL")
G.add_nodes_from(nbunch)
assert G.has_node("L")
def test_nbunch_dict(self):
# nbunch is a dict with nodes as keys
G = self.G()
nbunch = set("ABCDEFGHIJKL")
G.add_nodes_from(nbunch)
nbunch = {"I": "foo", "J": 2, "K": True, "L": "spam"}
G.remove_nodes_from(nbunch)
assert sorted(G.nodes(), key=str), ["A", "B", "C", "D", "E", "F", "G", "H"]
def test_nbunch_iterator(self):
G = self.G()
G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
n_iter = self.P3.nodes()
G.add_nodes_from(n_iter)
assert sorted(G.nodes(), key=str) == [
1,
2,
3,
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
]
n_iter = self.P3.nodes() # rebuild same iterator
G.remove_nodes_from(n_iter) # remove nbunch of nodes (nbunch=iterator)
assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D", "E", "F", "G", "H"]
def test_nbunch_graph(self):
G = self.G()
G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
nbunch = self.K3
G.add_nodes_from(nbunch)
assert sorted(G.nodes(), key=str), [
1,
2,
3,
"A",
"B",
"C",
"D",
"E",
"F",
"G",
"H",
]
# Edges
def test_add_edge(self):
G = self.G()
pytest.raises(TypeError, G.add_edge, "A")
G.add_edge("A", "B") # testing add_edge()
G.add_edge("A", "B") # should fail silently
assert G.has_edge("A", "B")
assert not G.has_edge("A", "C")
assert G.has_edge(*("A", "B"))
if G.is_directed():
assert not G.has_edge("B", "A")
else:
# G is undirected, so B->A is an edge
assert G.has_edge("B", "A")
G.add_edge("A", "C") # test directedness
G.add_edge("C", "A")
G.remove_edge("C", "A")
if G.is_directed():
assert G.has_edge("A", "C")
else:
assert not G.has_edge("A", "C")
assert not G.has_edge("C", "A")
def test_self_loop(self):
G = self.G()
G.add_edge("A", "A") # test self loops
assert G.has_edge("A", "A")
G.remove_edge("A", "A")
G.add_edge("X", "X")
assert G.has_node("X")
G.remove_node("X")
G.add_edge("A", "Z") # should add the node silently
assert G.has_node("Z")
def test_add_edges_from(self):
G = self.G()
G.add_edges_from([("B", "C")]) # test add_edges_from()
assert G.has_edge("B", "C")
if G.is_directed():
assert not G.has_edge("C", "B")
else:
assert G.has_edge("C", "B") # undirected
G.add_edges_from([("D", "F"), ("B", "D")])
assert G.has_edge("D", "F")
assert G.has_edge("B", "D")
if G.is_directed():
assert not G.has_edge("D", "B")
else:
assert G.has_edge("D", "B") # undirected
def test_add_edges_from2(self):
G = self.G()
# after failing silently, should add 2nd edge
G.add_edges_from([tuple("IJ"), list("KK"), tuple("JK")])
assert G.has_edge(*("I", "J"))
assert G.has_edge(*("K", "K"))
assert G.has_edge(*("J", "K"))
if G.is_directed():
assert not G.has_edge(*("K", "J"))
else:
assert G.has_edge(*("K", "J"))
def test_add_edges_from3(self):
G = self.G()
G.add_edges_from(zip(list("ACD"), list("CDE")))
assert G.has_edge("D", "E")
assert not G.has_edge("E", "C")
def test_remove_edge(self):
G = self.G()
G.add_nodes_from([1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H"])
G.add_edges_from(zip(list("MNOP"), list("NOPM")))
assert G.has_edge("O", "P")
assert G.has_edge("P", "M")
G.remove_node("P") # tests remove_node()'s handling of edges.
assert not G.has_edge("P", "M")
pytest.raises(TypeError, G.remove_edge, "M")
G.add_edge("N", "M")
assert G.has_edge("M", "N")
G.remove_edge("M", "N")
assert not G.has_edge("M", "N")
# self loop fails silently
G.remove_edges_from([list("HI"), list("DF"), tuple("KK"), tuple("JK")])
assert not G.has_edge("H", "I")
assert not G.has_edge("J", "K")
G.remove_edges_from([list("IJ"), list("KK"), list("JK")])
assert not G.has_edge("I", "J")
G.remove_nodes_from(set("ZEFHIMNO"))
G.add_edge("J", "K")
def test_edges_nbunch(self):
# Test G.edges(nbunch) with various forms of nbunch
G = self.G()
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
# node not in nbunch should be quietly ignored
pytest.raises(nx.NetworkXError, G.edges, 6)
assert list(G.edges("Z")) == [] # iterable non-node
# nbunch can be an empty list
assert list(G.edges([])) == []
if G.is_directed():
elist = [("A", "B"), ("A", "C"), ("B", "D")]
else:
elist = [("A", "B"), ("A", "C"), ("B", "C"), ("B", "D")]
# nbunch can be a list
assert edges_equal(list(G.edges(["A", "B"])), elist)
# nbunch can be a set
assert edges_equal(G.edges({"A", "B"}), elist)
# nbunch can be a graph
G1 = self.G()
G1.add_nodes_from("AB")
assert edges_equal(G.edges(G1), elist)
# nbunch can be a dict with nodes as keys
ndict = {"A": "thing1", "B": "thing2"}
assert edges_equal(G.edges(ndict), elist)
# nbunch can be a single node
assert edges_equal(list(G.edges("A")), [("A", "B"), ("A", "C")])
assert nodes_equal(sorted(G), ["A", "B", "C", "D"])
# nbunch can be nothing (whole graph)
assert edges_equal(
list(G.edges()),
[("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")],
)
def test_degree(self):
G = self.G()
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
assert G.degree("A") == 2
# degree of single node in iterable container must return dict
assert list(G.degree(["A"])) == [("A", 2)]
assert sorted(d for n, d in G.degree(["A", "B"])) == [2, 3]
assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3]
def test_degree2(self):
H = self.G()
H.add_edges_from([(1, 24), (1, 2)])
assert sorted(d for n, d in H.degree([1, 24])) == [1, 2]
def test_degree_graph(self):
P3 = nx.path_graph(3)
P5 = nx.path_graph(5)
# silently ignore nodes not in P3
assert dict(d for n, d in P3.degree(["A", "B"])) == {}
# nbunch can be a graph
assert sorted(d for n, d in P5.degree(P3)) == [1, 2, 2]
# nbunch can be a graph that's way too big
assert sorted(d for n, d in P3.degree(P5)) == [1, 1, 2]
assert list(P5.degree([])) == []
assert dict(P5.degree([])) == {}
def test_null(self):
null = nx.null_graph()
assert list(null.degree()) == []
assert dict(null.degree()) == {}
def test_order_size(self):
G = self.G()
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
assert G.order() == 4
assert G.size() == 5
assert G.number_of_edges() == 5
assert G.number_of_edges("A", "B") == 1
assert G.number_of_edges("A", "D") == 0
def test_copy(self):
G = self.G()
H = G.copy() # copy
assert H.adj == G.adj
assert H.name == G.name
assert H is not G
def test_subgraph(self):
G = self.G()
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
SG = G.subgraph(["A", "B", "D"])
assert nodes_equal(list(SG), ["A", "B", "D"])
assert edges_equal(list(SG.edges()), [("A", "B"), ("B", "D")])
def test_to_directed(self):
G = self.G()
if not G.is_directed():
G.add_edges_from(
[("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
)
DG = G.to_directed()
assert DG is not G # directed copy or copy
assert DG.is_directed()
assert DG.name == G.name
assert DG.adj == G.adj
assert sorted(DG.out_edges(list("AB"))) == [
("A", "B"),
("A", "C"),
("B", "A"),
("B", "C"),
("B", "D"),
]
DG.remove_edge("A", "B")
assert DG.has_edge("B", "A") # this removes B-A but not A-B
assert not DG.has_edge("A", "B")
def test_to_undirected(self):
G = self.G()
if G.is_directed():
G.add_edges_from(
[("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
)
UG = G.to_undirected() # to_undirected
assert UG is not G
assert not UG.is_directed()
assert G.is_directed()
assert UG.name == G.name
assert UG.adj != G.adj
assert sorted(UG.edges(list("AB"))) == [
("A", "B"),
("A", "C"),
("B", "C"),
("B", "D"),
]
assert sorted(UG.edges(["A", "B"])) == [
("A", "B"),
("A", "C"),
("B", "C"),
("B", "D"),
]
UG.remove_edge("A", "B")
assert not UG.has_edge("B", "A")
assert not UG.has_edge("A", "B")
def test_neighbors(self):
G = self.G()
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
G.add_nodes_from("GJK")
assert sorted(G["A"]) == ["B", "C"]
assert sorted(G.neighbors("A")) == ["B", "C"]
assert sorted(G.neighbors("A")) == ["B", "C"]
assert sorted(G.neighbors("G")) == []
pytest.raises(nx.NetworkXError, G.neighbors, "j")
def test_iterators(self):
G = self.G()
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")])
G.add_nodes_from("GJK")
assert sorted(G.nodes()) == ["A", "B", "C", "D", "G", "J", "K"]
assert edges_equal(
G.edges(), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]
)
assert sorted(v for k, v in G.degree()) == [0, 0, 0, 2, 2, 3, 3]
assert sorted(G.degree(), key=str) == [
("A", 2),
("B", 3),
("C", 3),
("D", 2),
("G", 0),
("J", 0),
("K", 0),
]
assert sorted(G.neighbors("A")) == ["B", "C"]
pytest.raises(nx.NetworkXError, G.neighbors, "X")
G.clear()
assert nx.number_of_nodes(G) == 0
assert nx.number_of_edges(G) == 0
def test_null_subgraph(self):
# Subgraph of a null graph is a null graph
nullgraph = nx.null_graph()
G = nx.null_graph()
H = G.subgraph([])
assert nx.is_isomorphic(H, nullgraph)
def test_empty_subgraph(self):
# Subgraph of an empty graph is an empty graph. test 1
nullgraph = nx.null_graph()
E5 = nx.empty_graph(5)
E10 = nx.empty_graph(10)
H = E10.subgraph([])
assert nx.is_isomorphic(H, nullgraph)
H = E10.subgraph([1, 2, 3, 4, 5])
assert nx.is_isomorphic(H, E5)
def test_complete_subgraph(self):
# Subgraph of a complete graph is a complete graph
K1 = nx.complete_graph(1)
K3 = nx.complete_graph(3)
K5 = nx.complete_graph(5)
H = K5.subgraph([1, 2, 3])
assert nx.is_isomorphic(H, K3)
def test_subgraph_nbunch(self):
nullgraph = nx.null_graph()
K1 = nx.complete_graph(1)
K3 = nx.complete_graph(3)
K5 = nx.complete_graph(5)
# Test G.subgraph(nbunch), where nbunch is a single node
H = K5.subgraph(1)
assert nx.is_isomorphic(H, K1)
# Test G.subgraph(nbunch), where nbunch is a set
H = K5.subgraph({1})
assert nx.is_isomorphic(H, K1)
# Test G.subgraph(nbunch), where nbunch is an iterator
H = K5.subgraph(iter(K3))
assert nx.is_isomorphic(H, K3)
# Test G.subgraph(nbunch), where nbunch is another graph
H = K5.subgraph(K3)
assert nx.is_isomorphic(H, K3)
H = K5.subgraph([9])
assert nx.is_isomorphic(H, nullgraph)
def test_node_tuple_issue(self):
H = self.G()
# Test error handling of tuple as a node
pytest.raises(nx.NetworkXError, H.remove_node, (1, 2))
H.remove_nodes_from([(1, 2)]) # no error
pytest.raises(nx.NetworkXError, H.neighbors, (1, 2))

View File

@ -0,0 +1,362 @@
import pickle
import pytest
import networkx as nx
class TestAtlasView:
# node->data
def setup_method(self):
self.d = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}}
self.av = nx.classes.coreviews.AtlasView(self.d)
def test_pickle(self):
view = self.av
pview = pickle.loads(pickle.dumps(view, -1))
assert view == pview
assert view.__slots__ == pview.__slots__
pview = pickle.loads(pickle.dumps(view))
assert view == pview
assert view.__slots__ == pview.__slots__
def test_len(self):
assert len(self.av) == len(self.d)
def test_iter(self):
assert list(self.av) == list(self.d)
def test_getitem(self):
assert self.av[1] is self.d[1]
assert self.av[2]["color"] == 1
pytest.raises(KeyError, self.av.__getitem__, 3)
def test_copy(self):
avcopy = self.av.copy()
assert avcopy[0] == self.av[0]
assert avcopy == self.av
assert avcopy[0] is not self.av[0]
assert avcopy is not self.av
avcopy[5] = {}
assert avcopy != self.av
avcopy[0]["ht"] = 4
assert avcopy[0] != self.av[0]
self.av[0]["ht"] = 4
assert avcopy[0] == self.av[0]
del self.av[0]["ht"]
assert not hasattr(self.av, "__setitem__")
def test_items(self):
assert sorted(self.av.items()) == sorted(self.d.items())
def test_str(self):
out = str(self.d)
assert str(self.av) == out
def test_repr(self):
out = "AtlasView(" + str(self.d) + ")"
assert repr(self.av) == out
class TestAdjacencyView:
# node->nbr->data
def setup_method(self):
dd = {"color": "blue", "weight": 1.2}
self.nd = {0: dd, 1: {}, 2: {"color": 1}}
self.adj = {3: self.nd, 0: {3: dd}, 1: {}, 2: {3: {"color": 1}}}
self.adjview = nx.classes.coreviews.AdjacencyView(self.adj)
def test_pickle(self):
view = self.adjview
pview = pickle.loads(pickle.dumps(view, -1))
assert view == pview
assert view.__slots__ == pview.__slots__
def test_len(self):
assert len(self.adjview) == len(self.adj)
def test_iter(self):
assert list(self.adjview) == list(self.adj)
def test_getitem(self):
assert self.adjview[1] is not self.adj[1]
assert self.adjview[3][0] is self.adjview[0][3]
assert self.adjview[2][3]["color"] == 1
pytest.raises(KeyError, self.adjview.__getitem__, 4)
def test_copy(self):
avcopy = self.adjview.copy()
assert avcopy[0] == self.adjview[0]
assert avcopy[0] is not self.adjview[0]
avcopy[2][3]["ht"] = 4
assert avcopy[2] != self.adjview[2]
self.adjview[2][3]["ht"] = 4
assert avcopy[2] == self.adjview[2]
del self.adjview[2][3]["ht"]
assert not hasattr(self.adjview, "__setitem__")
def test_items(self):
view_items = sorted((n, dict(d)) for n, d in self.adjview.items())
assert view_items == sorted(self.adj.items())
def test_str(self):
out = str(dict(self.adj))
assert str(self.adjview) == out
def test_repr(self):
out = self.adjview.__class__.__name__ + "(" + str(self.adj) + ")"
assert repr(self.adjview) == out
class TestMultiAdjacencyView(TestAdjacencyView):
# node->nbr->key->data
def setup_method(self):
dd = {"color": "blue", "weight": 1.2}
self.kd = {0: dd, 1: {}, 2: {"color": 1}}
self.nd = {3: self.kd, 0: {3: dd}, 1: {0: {}}, 2: {3: {"color": 1}}}
self.adj = {3: self.nd, 0: {3: {3: dd}}, 1: {}, 2: {3: {8: {}}}}
self.adjview = nx.classes.coreviews.MultiAdjacencyView(self.adj)
def test_getitem(self):
assert self.adjview[1] is not self.adj[1]
assert self.adjview[3][0][3] is self.adjview[0][3][3]
assert self.adjview[3][2][3]["color"] == 1
pytest.raises(KeyError, self.adjview.__getitem__, 4)
def test_copy(self):
avcopy = self.adjview.copy()
assert avcopy[0] == self.adjview[0]
assert avcopy[0] is not self.adjview[0]
avcopy[2][3][8]["ht"] = 4
assert avcopy[2] != self.adjview[2]
self.adjview[2][3][8]["ht"] = 4
assert avcopy[2] == self.adjview[2]
del self.adjview[2][3][8]["ht"]
assert not hasattr(self.adjview, "__setitem__")
class TestUnionAtlas:
# node->data
def setup_method(self):
self.s = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}}
self.p = {3: {"color": "blue", "weight": 1.2}, 4: {}, 2: {"watch": 2}}
self.av = nx.classes.coreviews.UnionAtlas(self.s, self.p)
def test_pickle(self):
view = self.av
pview = pickle.loads(pickle.dumps(view, -1))
assert view == pview
assert view.__slots__ == pview.__slots__
def test_len(self):
assert len(self.av) == len(self.s.keys() | self.p.keys()) == 5
def test_iter(self):
assert set(self.av) == set(self.s) | set(self.p)
def test_getitem(self):
assert self.av[0] is self.s[0]
assert self.av[4] is self.p[4]
assert self.av[2]["color"] == 1
pytest.raises(KeyError, self.av[2].__getitem__, "watch")
pytest.raises(KeyError, self.av.__getitem__, 8)
def test_copy(self):
avcopy = self.av.copy()
assert avcopy[0] == self.av[0]
assert avcopy[0] is not self.av[0]
assert avcopy is not self.av
avcopy[5] = {}
assert avcopy != self.av
avcopy[0]["ht"] = 4
assert avcopy[0] != self.av[0]
self.av[0]["ht"] = 4
assert avcopy[0] == self.av[0]
del self.av[0]["ht"]
assert not hasattr(self.av, "__setitem__")
def test_items(self):
expected = dict(self.p.items())
expected.update(self.s)
assert sorted(self.av.items()) == sorted(expected.items())
def test_str(self):
out = str(dict(self.av))
assert str(self.av) == out
def test_repr(self):
out = f"{self.av.__class__.__name__}({self.s}, {self.p})"
assert repr(self.av) == out
class TestUnionAdjacency:
# node->nbr->data
def setup_method(self):
dd = {"color": "blue", "weight": 1.2}
self.nd = {0: dd, 1: {}, 2: {"color": 1}}
self.s = {3: self.nd, 0: {}, 1: {}, 2: {3: {"color": 1}}}
self.p = {3: {}, 0: {3: dd}, 1: {0: {}}, 2: {1: {"color": 1}}}
self.adjview = nx.classes.coreviews.UnionAdjacency(self.s, self.p)
def test_pickle(self):
view = self.adjview
pview = pickle.loads(pickle.dumps(view, -1))
assert view == pview
assert view.__slots__ == pview.__slots__
def test_len(self):
assert len(self.adjview) == len(self.s)
def test_iter(self):
assert sorted(self.adjview) == sorted(self.s)
def test_getitem(self):
assert self.adjview[1] is not self.s[1]
assert self.adjview[3][0] is self.adjview[0][3]
assert self.adjview[2][3]["color"] == 1
pytest.raises(KeyError, self.adjview.__getitem__, 4)
def test_copy(self):
avcopy = self.adjview.copy()
assert avcopy[0] == self.adjview[0]
assert avcopy[0] is not self.adjview[0]
avcopy[2][3]["ht"] = 4
assert avcopy[2] != self.adjview[2]
self.adjview[2][3]["ht"] = 4
assert avcopy[2] == self.adjview[2]
del self.adjview[2][3]["ht"]
assert not hasattr(self.adjview, "__setitem__")
def test_str(self):
out = str(dict(self.adjview))
assert str(self.adjview) == out
def test_repr(self):
clsname = self.adjview.__class__.__name__
out = f"{clsname}({self.s}, {self.p})"
assert repr(self.adjview) == out
class TestUnionMultiInner(TestUnionAdjacency):
# nbr->key->data
def setup_method(self):
dd = {"color": "blue", "weight": 1.2}
self.kd = {7: {}, "ekey": {}, 9: {"color": 1}}
self.s = {3: self.kd, 0: {7: dd}, 1: {}, 2: {"key": {"color": 1}}}
self.p = {3: {}, 0: {3: dd}, 1: {}, 2: {1: {"span": 2}}}
self.adjview = nx.classes.coreviews.UnionMultiInner(self.s, self.p)
def test_len(self):
assert len(self.adjview) == len(self.s.keys() | self.p.keys()) == 4
def test_getitem(self):
assert self.adjview[1] is not self.s[1]
assert self.adjview[0][7] is self.adjview[0][3]
assert self.adjview[2]["key"]["color"] == 1
assert self.adjview[2][1]["span"] == 2
pytest.raises(KeyError, self.adjview.__getitem__, 4)
pytest.raises(KeyError, self.adjview[1].__getitem__, "key")
def test_copy(self):
avcopy = self.adjview.copy()
assert avcopy[0] == self.adjview[0]
assert avcopy[0] is not self.adjview[0]
avcopy[2][1]["width"] = 8
assert avcopy[2] != self.adjview[2]
self.adjview[2][1]["width"] = 8
assert avcopy[2] == self.adjview[2]
del self.adjview[2][1]["width"]
assert not hasattr(self.adjview, "__setitem__")
assert hasattr(avcopy, "__setitem__")
class TestUnionMultiAdjacency(TestUnionAdjacency):
# node->nbr->key->data
def setup_method(self):
dd = {"color": "blue", "weight": 1.2}
self.kd = {7: {}, 8: {}, 9: {"color": 1}}
self.nd = {3: self.kd, 0: {9: dd}, 1: {8: {}}, 2: {9: {"color": 1}}}
self.s = {3: self.nd, 0: {3: {7: dd}}, 1: {}, 2: {3: {8: {}}}}
self.p = {3: {}, 0: {3: {9: dd}}, 1: {}, 2: {1: {8: {}}}}
self.adjview = nx.classes.coreviews.UnionMultiAdjacency(self.s, self.p)
def test_getitem(self):
assert self.adjview[1] is not self.s[1]
assert self.adjview[3][0][9] is self.adjview[0][3][9]
assert self.adjview[3][2][9]["color"] == 1
pytest.raises(KeyError, self.adjview.__getitem__, 4)
def test_copy(self):
avcopy = self.adjview.copy()
assert avcopy[0] == self.adjview[0]
assert avcopy[0] is not self.adjview[0]
avcopy[2][3][8]["ht"] = 4
assert avcopy[2] != self.adjview[2]
self.adjview[2][3][8]["ht"] = 4
assert avcopy[2] == self.adjview[2]
del self.adjview[2][3][8]["ht"]
assert not hasattr(self.adjview, "__setitem__")
assert hasattr(avcopy, "__setitem__")
class TestFilteredGraphs:
def setup_method(self):
self.Graphs = [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
def test_hide_show_nodes(self):
SubGraph = nx.subgraph_view
for Graph in self.Graphs:
G = nx.path_graph(4, Graph)
SG = G.subgraph([2, 3])
RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
assert SG.nodes == RG.nodes
assert SG.edges == RG.edges
SGC = SG.copy()
RGC = RG.copy()
assert SGC.nodes == RGC.nodes
assert SGC.edges == RGC.edges
def test_str_repr(self):
SubGraph = nx.subgraph_view
for Graph in self.Graphs:
G = nx.path_graph(4, Graph)
SG = G.subgraph([2, 3])
RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
str(SG.adj)
str(RG.adj)
repr(SG.adj)
repr(RG.adj)
str(SG.adj[2])
str(RG.adj[2])
repr(SG.adj[2])
repr(RG.adj[2])
def test_copy(self):
SubGraph = nx.subgraph_view
for Graph in self.Graphs:
G = nx.path_graph(4, Graph)
SG = G.subgraph([2, 3])
RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
RsG = SubGraph(G, filter_node=nx.filters.show_nodes([2, 3]))
assert G.adj.copy() == G.adj
assert G.adj[2].copy() == G.adj[2]
assert SG.adj.copy() == SG.adj
assert SG.adj[2].copy() == SG.adj[2]
assert RG.adj.copy() == RG.adj
assert RG.adj[2].copy() == RG.adj[2]
assert RsG.adj.copy() == RsG.adj
assert RsG.adj[2].copy() == RsG.adj[2]

View File

@ -0,0 +1,331 @@
import pytest
import networkx as nx
from networkx.utils import nodes_equal
from .test_graph import BaseAttrGraphTester, BaseGraphTester
from .test_graph import TestEdgeSubgraph as _TestGraphEdgeSubgraph
from .test_graph import TestGraph as _TestGraph
class BaseDiGraphTester(BaseGraphTester):
def test_has_successor(self):
G = self.K3
assert G.has_successor(0, 1)
assert not G.has_successor(0, -1)
def test_successors(self):
G = self.K3
assert sorted(G.successors(0)) == [1, 2]
with pytest.raises(nx.NetworkXError):
G.successors(-1)
def test_has_predecessor(self):
G = self.K3
assert G.has_predecessor(0, 1)
assert not G.has_predecessor(0, -1)
def test_predecessors(self):
G = self.K3
assert sorted(G.predecessors(0)) == [1, 2]
with pytest.raises(nx.NetworkXError):
G.predecessors(-1)
def test_edges(self):
G = self.K3
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
assert sorted(G.edges([0, 1])) == [(0, 1), (0, 2), (1, 0), (1, 2)]
with pytest.raises(nx.NetworkXError):
G.edges(-1)
def test_out_edges(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
with pytest.raises(nx.NetworkXError):
G.out_edges(-1)
def test_out_edges_dir(self):
G = self.P3
assert sorted(G.out_edges()) == [(0, 1), (1, 2)]
assert sorted(G.out_edges(0)) == [(0, 1)]
assert sorted(G.out_edges(2)) == []
def test_out_edges_data(self):
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
assert sorted(G.out_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
assert sorted(G.out_edges(0, data=True)) == [(0, 1, {"data": 0})]
assert sorted(G.out_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
assert sorted(G.out_edges(0, data="data")) == [(0, 1, 0)]
def test_in_edges_dir(self):
G = self.P3
assert sorted(G.in_edges()) == [(0, 1), (1, 2)]
assert sorted(G.in_edges(0)) == []
assert sorted(G.in_edges(2)) == [(1, 2)]
def test_in_edges_data(self):
G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
assert sorted(G.in_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
assert sorted(G.in_edges(1, data=True)) == [(0, 1, {"data": 0})]
assert sorted(G.in_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
assert sorted(G.in_edges(1, data="data")) == [(0, 1, 0)]
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
assert G.degree(0) == 4
assert list(G.degree(iter([0]))) == [(0, 4)] # run through iterator
def test_in_degree(self):
G = self.K3
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
assert G.in_degree(0) == 2
assert list(G.in_degree(iter([0]))) == [(0, 2)] # run through iterator
def test_out_degree(self):
G = self.K3
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
assert G.out_degree(0) == 2
assert list(G.out_degree(iter([0]))) == [(0, 2)]
def test_size(self):
G = self.K3
assert G.size() == 6
assert G.number_of_edges() == 6
def test_to_undirected_reciprocal(self):
G = self.Graph()
G.add_edge(1, 2)
assert G.to_undirected().has_edge(1, 2)
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
G.add_edge(2, 1)
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
def test_reverse_copy(self):
G = nx.DiGraph([(0, 1), (1, 2)])
R = G.reverse()
assert sorted(R.edges()) == [(1, 0), (2, 1)]
R.remove_edge(1, 0)
assert sorted(R.edges()) == [(2, 1)]
assert sorted(G.edges()) == [(0, 1), (1, 2)]
def test_reverse_nocopy(self):
G = nx.DiGraph([(0, 1), (1, 2)])
R = G.reverse(copy=False)
assert sorted(R.edges()) == [(1, 0), (2, 1)]
with pytest.raises(nx.NetworkXError):
R.remove_edge(1, 0)
def test_reverse_hashable(self):
class Foo:
pass
x = Foo()
y = Foo()
G = nx.DiGraph()
G.add_edge(x, y)
assert nodes_equal(G.nodes(), G.reverse().nodes())
assert [(y, x)] == list(G.reverse().edges())
def test_di_cache_reset(self):
G = self.K3.copy()
old_succ = G.succ
assert id(G.succ) == id(old_succ)
old_adj = G.adj
assert id(G.adj) == id(old_adj)
G._succ = {}
assert id(G.succ) != id(old_succ)
assert id(G.adj) != id(old_adj)
old_pred = G.pred
assert id(G.pred) == id(old_pred)
G._pred = {}
assert id(G.pred) != id(old_pred)
def test_di_attributes_cached(self):
G = self.K3.copy()
assert id(G.in_edges) == id(G.in_edges)
assert id(G.out_edges) == id(G.out_edges)
assert id(G.in_degree) == id(G.in_degree)
assert id(G.out_degree) == id(G.out_degree)
assert id(G.succ) == id(G.succ)
assert id(G.pred) == id(G.pred)
class BaseAttrDiGraphTester(BaseDiGraphTester, BaseAttrGraphTester):
def test_edges_data(self):
G = self.K3
all_edges = [
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
]
assert sorted(G.edges(data=True)) == all_edges
assert sorted(G.edges(0, data=True)) == all_edges[:2]
assert sorted(G.edges([0, 1], data=True)) == all_edges[:4]
with pytest.raises(nx.NetworkXError):
G.edges(-1, True)
def test_in_degree_weighted(self):
G = self.K3.copy()
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.in_degree(weight="weight")) == [(0, 2), (1, 1.3), (2, 2)]
assert dict(G.in_degree(weight="weight")) == {0: 2, 1: 1.3, 2: 2}
assert G.in_degree(1, weight="weight") == 1.3
assert sorted(G.in_degree(weight="other")) == [(0, 2), (1, 2.2), (2, 2)]
assert dict(G.in_degree(weight="other")) == {0: 2, 1: 2.2, 2: 2}
assert G.in_degree(1, weight="other") == 2.2
assert list(G.in_degree(iter([1]), weight="other")) == [(1, 2.2)]
def test_out_degree_weighted(self):
G = self.K3.copy()
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.out_degree(weight="weight")) == [(0, 1.3), (1, 2), (2, 2)]
assert dict(G.out_degree(weight="weight")) == {0: 1.3, 1: 2, 2: 2}
assert G.out_degree(0, weight="weight") == 1.3
assert sorted(G.out_degree(weight="other")) == [(0, 2.2), (1, 2), (2, 2)]
assert dict(G.out_degree(weight="other")) == {0: 2.2, 1: 2, 2: 2}
assert G.out_degree(0, weight="other") == 2.2
assert list(G.out_degree(iter([0]), weight="other")) == [(0, 2.2)]
class TestDiGraph(BaseAttrDiGraphTester, _TestGraph):
"""Tests specific to dict-of-dict-of-dict digraph data structure"""
def setup_method(self):
self.Graph = nx.DiGraph
# build dict-of-dict-of-dict K3
ed1, ed2, ed3, ed4, ed5, ed6 = ({}, {}, {}, {}, {}, {})
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = self.k3adj # K3._adj is synced with K3._succ
self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
ed1, ed2 = ({}, {})
self.P3 = self.Graph()
self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
# P3._adj is synced with P3._succ
self.P3._node = {}
self.P3._node[0] = {}
self.P3._node[1] = {}
self.P3._node[2] = {}
def test_data_input(self):
G = self.Graph({1: [2], 2: [1]}, name="test")
assert G.name == "test"
assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
assert sorted(G.succ.items()) == [(1, {2: {}}), (2, {1: {}})]
assert sorted(G.pred.items()) == [(1, {2: {}}), (2, {1: {}})]
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G.adj == {0: {1: {}}, 1: {}}
assert G.succ == {0: {1: {}}, 1: {}}
assert G.pred == {0: {}, 1: {0: {}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G.adj == {0: {1: {}}, 1: {}}
assert G.succ == {0: {1: {}}, 1: {}}
assert G.pred == {0: {}, 1: {0: {}}}
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edge(None, 3)
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 2, {"data": 3})], data=2)
assert G.adj == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
assert G.succ == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
assert G.pred == {0: {}, 1: {0: {"data": 2}}, 2: {0: {"data": 3}}}
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0,)]) # too few in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
with pytest.raises(TypeError):
G.add_edges_from([0]) # not a tuple
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edges_from([(None, 3), (3, 2)])
def test_remove_edge(self):
G = self.K3.copy()
G.remove_edge(0, 1)
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
def test_remove_edges_from(self):
G = self.K3.copy()
G.remove_edges_from([(0, 1)])
assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
G.remove_edges_from([(0, 0)]) # silent fail
def test_clear(self):
G = self.K3
G.graph["name"] = "K3"
G.clear()
assert list(G.nodes) == []
assert G.succ == {}
assert G.pred == {}
assert G.graph == {}
def test_clear_edges(self):
G = self.K3
G.graph["name"] = "K3"
nodes = list(G.nodes)
G.clear_edges()
assert list(G.nodes) == nodes
expected = {0: {}, 1: {}, 2: {}}
assert G.succ == expected
assert G.pred == expected
assert list(G.edges) == []
assert G.graph["name"] == "K3"
class TestEdgeSubgraph(_TestGraphEdgeSubgraph):
"""Unit tests for the :meth:`DiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a doubly-linked path graph on five nodes.
G = nx.DiGraph(nx.path_graph(5))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.edges[0, 1]["name"] = "edge01"
G.edges[3, 4]["name"] = "edge34"
G.graph["name"] = "graph"
# Get the subgraph induced by the first and last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1), (3, 4)])
def test_pred_succ(self):
"""Test that nodes are added to predecessors and successors.
For more information, see GitHub issue #2370.
"""
G = nx.DiGraph()
G.add_edge(0, 1)
H = G.edge_subgraph([(0, 1)])
assert list(H.predecessors(0)) == []
assert list(H.successors(0)) == [1]
assert list(H.predecessors(1)) == [0]
assert list(H.successors(1)) == []

View File

@ -0,0 +1,111 @@
"""Original NetworkX graph tests"""
import pytest
import networkx
import networkx as nx
from .historical_tests import HistoricalTests
class TestDiGraphHistorical(HistoricalTests):
@classmethod
def setup_class(cls):
HistoricalTests.setup_class()
cls.G = nx.DiGraph
def test_in_degree(self):
G = self.G()
G.add_nodes_from("GJK")
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
assert sorted(d for n, d in G.in_degree()) == [0, 0, 0, 0, 1, 2, 2]
assert dict(G.in_degree()) == {
"A": 0,
"C": 2,
"B": 1,
"D": 2,
"G": 0,
"K": 0,
"J": 0,
}
def test_out_degree(self):
G = self.G()
G.add_nodes_from("GJK")
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
assert sorted(v for k, v in G.in_degree()) == [0, 0, 0, 0, 1, 2, 2]
assert dict(G.out_degree()) == {
"A": 2,
"C": 1,
"B": 2,
"D": 0,
"G": 0,
"K": 0,
"J": 0,
}
def test_degree_digraph(self):
H = nx.DiGraph()
H.add_edges_from([(1, 24), (1, 2)])
assert sorted(d for n, d in H.in_degree([1, 24])) == [0, 1]
assert sorted(d for n, d in H.out_degree([1, 24])) == [0, 2]
assert sorted(d for n, d in H.degree([1, 24])) == [1, 2]
def test_neighbors(self):
G = self.G()
G.add_nodes_from("GJK")
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
assert sorted(G.neighbors("C")) == ["D"]
assert sorted(G["C"]) == ["D"]
assert sorted(G.neighbors("A")) == ["B", "C"]
pytest.raises(nx.NetworkXError, G.neighbors, "j")
pytest.raises(nx.NetworkXError, G.neighbors, "j")
def test_successors(self):
G = self.G()
G.add_nodes_from("GJK")
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
assert sorted(G.successors("A")) == ["B", "C"]
assert sorted(G.successors("A")) == ["B", "C"]
assert sorted(G.successors("G")) == []
assert sorted(G.successors("D")) == []
assert sorted(G.successors("G")) == []
pytest.raises(nx.NetworkXError, G.successors, "j")
pytest.raises(nx.NetworkXError, G.successors, "j")
def test_predecessors(self):
G = self.G()
G.add_nodes_from("GJK")
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("B", "C"), ("C", "D")])
assert sorted(G.predecessors("C")) == ["A", "B"]
assert sorted(G.predecessors("C")) == ["A", "B"]
assert sorted(G.predecessors("G")) == []
assert sorted(G.predecessors("A")) == []
assert sorted(G.predecessors("G")) == []
assert sorted(G.predecessors("A")) == []
assert sorted(G.successors("D")) == []
pytest.raises(nx.NetworkXError, G.predecessors, "j")
pytest.raises(nx.NetworkXError, G.predecessors, "j")
def test_reverse(self):
G = nx.complete_graph(10)
H = G.to_directed()
HR = H.reverse()
assert nx.is_isomorphic(H, HR)
assert sorted(H.edges()) == sorted(HR.edges())
def test_reverse2(self):
H = nx.DiGraph()
foo = [H.add_edge(u, u + 1) for u in range(5)]
HR = H.reverse()
for u in range(5):
assert HR.has_edge(u + 1, u)
def test_reverse3(self):
H = nx.DiGraph()
H.add_nodes_from([1, 2, 3, 4])
HR = H.reverse()
assert sorted(HR.nodes()) == [1, 2, 3, 4]

View File

@ -0,0 +1,177 @@
import pytest
import networkx as nx
class TestFilterFactory:
def test_no_filter(self):
nf = nx.filters.no_filter
assert nf()
assert nf(1)
assert nf(2, 1)
def test_hide_nodes(self):
f = nx.classes.filters.hide_nodes([1, 2, 3])
assert not f(1)
assert not f(2)
assert not f(3)
assert f(4)
assert f(0)
assert f("a")
pytest.raises(TypeError, f, 1, 2)
pytest.raises(TypeError, f)
def test_show_nodes(self):
f = nx.classes.filters.show_nodes([1, 2, 3])
assert f(1)
assert f(2)
assert f(3)
assert not f(4)
assert not f(0)
assert not f("a")
pytest.raises(TypeError, f, 1, 2)
pytest.raises(TypeError, f)
def test_hide_edges(self):
factory = nx.classes.filters.hide_edges
f = factory([(1, 2), (3, 4)])
assert not f(1, 2)
assert not f(3, 4)
assert not f(4, 3)
assert f(2, 3)
assert f(0, -1)
assert f("a", "b")
pytest.raises(TypeError, f, 1, 2, 3)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2, 3)])
def test_show_edges(self):
factory = nx.classes.filters.show_edges
f = factory([(1, 2), (3, 4)])
assert f(1, 2)
assert f(3, 4)
assert f(4, 3)
assert not f(2, 3)
assert not f(0, -1)
assert not f("a", "b")
pytest.raises(TypeError, f, 1, 2, 3)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2, 3)])
def test_hide_diedges(self):
factory = nx.classes.filters.hide_diedges
f = factory([(1, 2), (3, 4)])
assert not f(1, 2)
assert not f(3, 4)
assert f(4, 3)
assert f(2, 3)
assert f(0, -1)
assert f("a", "b")
pytest.raises(TypeError, f, 1, 2, 3)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2, 3)])
def test_show_diedges(self):
factory = nx.classes.filters.show_diedges
f = factory([(1, 2), (3, 4)])
assert f(1, 2)
assert f(3, 4)
assert not f(4, 3)
assert not f(2, 3)
assert not f(0, -1)
assert not f("a", "b")
pytest.raises(TypeError, f, 1, 2, 3)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2, 3)])
def test_hide_multiedges(self):
factory = nx.classes.filters.hide_multiedges
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
assert not f(1, 2, 0)
assert not f(1, 2, 1)
assert f(1, 2, 2)
assert f(3, 4, 0)
assert not f(3, 4, 1)
assert not f(4, 3, 1)
assert f(4, 3, 0)
assert f(2, 3, 0)
assert f(0, -1, 0)
assert f("a", "b", 0)
pytest.raises(TypeError, f, 1, 2, 3, 4)
pytest.raises(TypeError, f, 1, 2)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2)])
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
def test_show_multiedges(self):
factory = nx.classes.filters.show_multiedges
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
assert f(1, 2, 0)
assert f(1, 2, 1)
assert not f(1, 2, 2)
assert not f(3, 4, 0)
assert f(3, 4, 1)
assert f(4, 3, 1)
assert not f(4, 3, 0)
assert not f(2, 3, 0)
assert not f(0, -1, 0)
assert not f("a", "b", 0)
pytest.raises(TypeError, f, 1, 2, 3, 4)
pytest.raises(TypeError, f, 1, 2)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2)])
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
def test_hide_multidiedges(self):
factory = nx.classes.filters.hide_multidiedges
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
assert not f(1, 2, 0)
assert not f(1, 2, 1)
assert f(1, 2, 2)
assert f(3, 4, 0)
assert not f(3, 4, 1)
assert f(4, 3, 1)
assert f(4, 3, 0)
assert f(2, 3, 0)
assert f(0, -1, 0)
assert f("a", "b", 0)
pytest.raises(TypeError, f, 1, 2, 3, 4)
pytest.raises(TypeError, f, 1, 2)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2)])
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
def test_show_multidiedges(self):
factory = nx.classes.filters.show_multidiedges
f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
assert f(1, 2, 0)
assert f(1, 2, 1)
assert not f(1, 2, 2)
assert not f(3, 4, 0)
assert f(3, 4, 1)
assert not f(4, 3, 1)
assert not f(4, 3, 0)
assert not f(2, 3, 0)
assert not f(0, -1, 0)
assert not f("a", "b", 0)
pytest.raises(TypeError, f, 1, 2, 3, 4)
pytest.raises(TypeError, f, 1, 2)
pytest.raises(TypeError, f, 1)
pytest.raises(TypeError, f)
pytest.raises(TypeError, factory, [1, 2, 3])
pytest.raises(ValueError, factory, [(1, 2)])
pytest.raises(ValueError, factory, [(1, 2, 3, 4)])

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,920 @@
import gc
import pickle
import platform
import weakref
import pytest
import networkx as nx
from networkx.utils import edges_equal, graphs_equal, nodes_equal
class BaseGraphTester:
"""Tests for data-structure independent graph class features."""
def test_contains(self):
G = self.K3
assert 1 in G
assert 4 not in G
assert "b" not in G
assert [] not in G # no exception for nonhashable
assert {1: 1} not in G # no exception for nonhashable
def test_order(self):
G = self.K3
assert len(G) == 3
assert G.order() == 3
assert G.number_of_nodes() == 3
def test_nodes(self):
G = self.K3
assert isinstance(G._node, G.node_dict_factory)
assert isinstance(G._adj, G.adjlist_outer_dict_factory)
assert all(
isinstance(adj, G.adjlist_inner_dict_factory) for adj in G._adj.values()
)
assert sorted(G.nodes()) == self.k3nodes
assert sorted(G.nodes(data=True)) == [(0, {}), (1, {}), (2, {})]
def test_none_node(self):
G = self.Graph()
with pytest.raises(ValueError):
G.add_node(None)
with pytest.raises(ValueError):
G.add_nodes_from([None])
with pytest.raises(ValueError):
G.add_edge(0, None)
with pytest.raises(ValueError):
G.add_edges_from([(0, None)])
def test_has_node(self):
G = self.K3
assert G.has_node(1)
assert not G.has_node(4)
assert not G.has_node([]) # no exception for nonhashable
assert not G.has_node({1: 1}) # no exception for nonhashable
def test_has_edge(self):
G = self.K3
assert G.has_edge(0, 1)
assert not G.has_edge(0, -1)
def test_neighbors(self):
G = self.K3
assert sorted(G.neighbors(0)) == [1, 2]
with pytest.raises(nx.NetworkXError):
G.neighbors(-1)
@pytest.mark.skipif(
platform.python_implementation() == "PyPy", reason="PyPy gc is different"
)
def test_memory_leak(self):
G = self.Graph()
def count_objects_of_type(_type):
# Iterating over all objects tracked by gc can include weak references
# whose weakly-referenced objects may no longer exist. Calling `isinstance`
# on such a weak reference will raise ReferenceError. There are at least
# three workarounds for this: one is to compare type names instead of using
# `isinstance` such as `type(obj).__name__ == typename`, another is to use
# `type(obj) == _type`, and the last is to ignore ProxyTypes as we do below.
# NOTE: even if this safeguard is deemed unnecessary to pass NetworkX tests,
# we should still keep it for maximum safety for other NetworkX backends.
return sum(
1
for obj in gc.get_objects()
if not isinstance(obj, weakref.ProxyTypes) and isinstance(obj, _type)
)
gc.collect()
before = count_objects_of_type(self.Graph)
G.copy()
gc.collect()
after = count_objects_of_type(self.Graph)
assert before == after
# test a subgraph of the base class
class MyGraph(self.Graph):
pass
gc.collect()
G = MyGraph()
before = count_objects_of_type(MyGraph)
G.copy()
gc.collect()
after = count_objects_of_type(MyGraph)
assert before == after
def test_edges(self):
G = self.K3
assert isinstance(G._adj, G.adjlist_outer_dict_factory)
assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
assert edges_equal(G.edges(0), [(0, 1), (0, 2)])
assert edges_equal(G.edges([0, 1]), [(0, 1), (0, 2), (1, 2)])
with pytest.raises(nx.NetworkXError):
G.edges(-1)
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.degree()) == {0: 2, 1: 2, 2: 2}
assert G.degree(0) == 2
with pytest.raises(nx.NetworkXError):
G.degree(-1) # node not in graph
def test_size(self):
G = self.K3
assert G.size() == 3
assert G.number_of_edges() == 3
def test_nbunch_iter(self):
G = self.K3
assert nodes_equal(G.nbunch_iter(), self.k3nodes) # all nodes
assert nodes_equal(G.nbunch_iter(0), [0]) # single node
assert nodes_equal(G.nbunch_iter([0, 1]), [0, 1]) # sequence
# sequence with none in graph
assert nodes_equal(G.nbunch_iter([-1]), [])
# string sequence with none in graph
assert nodes_equal(G.nbunch_iter("foo"), [])
# node not in graph doesn't get caught upon creation of iterator
bunch = G.nbunch_iter(-1)
# but gets caught when iterator used
with pytest.raises(nx.NetworkXError, match="is not a node or a sequence"):
list(bunch)
# unhashable doesn't get caught upon creation of iterator
bunch = G.nbunch_iter([0, 1, 2, {}])
# but gets caught when iterator hits the unhashable
with pytest.raises(
nx.NetworkXError, match="in sequence nbunch is not a valid node"
):
list(bunch)
def test_nbunch_iter_node_format_raise(self):
# Tests that a node that would have failed string formatting
# doesn't cause an error when attempting to raise a
# :exc:`nx.NetworkXError`.
# For more information, see pull request #1813.
G = self.Graph()
nbunch = [("x", set())]
with pytest.raises(nx.NetworkXError):
list(G.nbunch_iter(nbunch))
def test_selfloop_degree(self):
G = self.Graph()
G.add_edge(1, 1)
assert sorted(G.degree()) == [(1, 2)]
assert dict(G.degree()) == {1: 2}
assert G.degree(1) == 2
assert sorted(G.degree([1])) == [(1, 2)]
assert G.degree(1, weight="weight") == 2
def test_selfloops(self):
G = self.K3.copy()
G.add_edge(0, 0)
assert nodes_equal(nx.nodes_with_selfloops(G), [0])
assert edges_equal(nx.selfloop_edges(G), [(0, 0)])
assert nx.number_of_selfloops(G) == 1
G.remove_edge(0, 0)
G.add_edge(0, 0)
G.remove_edges_from([(0, 0)])
G.add_edge(1, 1)
G.remove_node(1)
G.add_edge(0, 0)
G.add_edge(1, 1)
G.remove_nodes_from([0, 1])
def test_cache_reset(self):
G = self.K3.copy()
old_adj = G.adj
assert id(G.adj) == id(old_adj)
G._adj = {}
assert id(G.adj) != id(old_adj)
old_nodes = G.nodes
assert id(G.nodes) == id(old_nodes)
G._node = {}
assert id(G.nodes) != id(old_nodes)
def test_attributes_cached(self):
G = self.K3.copy()
assert id(G.nodes) == id(G.nodes)
assert id(G.edges) == id(G.edges)
assert id(G.degree) == id(G.degree)
assert id(G.adj) == id(G.adj)
class BaseAttrGraphTester(BaseGraphTester):
"""Tests of graph class attribute features."""
def test_weighted_degree(self):
G = self.Graph()
G.add_edge(1, 2, weight=2, other=3)
G.add_edge(2, 3, weight=3, other=4)
assert sorted(d for n, d in G.degree(weight="weight")) == [2, 3, 5]
assert dict(G.degree(weight="weight")) == {1: 2, 2: 5, 3: 3}
assert G.degree(1, weight="weight") == 2
assert nodes_equal((G.degree([1], weight="weight")), [(1, 2)])
assert nodes_equal((d for n, d in G.degree(weight="other")), [3, 7, 4])
assert dict(G.degree(weight="other")) == {1: 3, 2: 7, 3: 4}
assert G.degree(1, weight="other") == 3
assert edges_equal((G.degree([1], weight="other")), [(1, 3)])
def add_attributes(self, G):
G.graph["foo"] = []
G.nodes[0]["foo"] = []
G.remove_edge(1, 2)
ll = []
G.add_edge(1, 2, foo=ll)
G.add_edge(2, 1, foo=ll)
def test_name(self):
G = self.Graph(name="")
assert G.name == ""
G = self.Graph(name="test")
assert G.name == "test"
def test_str_unnamed(self):
G = self.Graph()
G.add_edges_from([(1, 2), (2, 3)])
assert str(G) == f"{type(G).__name__} with 3 nodes and 2 edges"
def test_str_named(self):
G = self.Graph(name="foo")
G.add_edges_from([(1, 2), (2, 3)])
assert str(G) == f"{type(G).__name__} named 'foo' with 3 nodes and 2 edges"
def test_graph_chain(self):
G = self.Graph([(0, 1), (1, 2)])
DG = G.to_directed(as_view=True)
SDG = DG.subgraph([0, 1])
RSDG = SDG.reverse(copy=False)
assert G is DG._graph
assert DG is SDG._graph
assert SDG is RSDG._graph
def test_copy(self):
G = self.Graph()
G.add_node(0)
G.add_edge(1, 2)
self.add_attributes(G)
# copy edge datadict but any container attr are same
H = G.copy()
self.graphs_equal(H, G)
self.different_attrdict(H, G)
self.shallow_copy_attrdict(H, G)
def test_class_copy(self):
G = self.Graph()
G.add_node(0)
G.add_edge(1, 2)
self.add_attributes(G)
# copy edge datadict but any container attr are same
H = G.__class__(G)
self.graphs_equal(H, G)
self.different_attrdict(H, G)
self.shallow_copy_attrdict(H, G)
def test_fresh_copy(self):
G = self.Graph()
G.add_node(0)
G.add_edge(1, 2)
self.add_attributes(G)
# copy graph structure but use fresh datadict
H = G.__class__()
H.add_nodes_from(G)
H.add_edges_from(G.edges())
assert len(G.nodes[0]) == 1
ddict = G.adj[1][2][0] if G.is_multigraph() else G.adj[1][2]
assert len(ddict) == 1
assert len(H.nodes[0]) == 0
ddict = H.adj[1][2][0] if H.is_multigraph() else H.adj[1][2]
assert len(ddict) == 0
def is_deepcopy(self, H, G):
self.graphs_equal(H, G)
self.different_attrdict(H, G)
self.deep_copy_attrdict(H, G)
def deep_copy_attrdict(self, H, G):
self.deepcopy_graph_attr(H, G)
self.deepcopy_node_attr(H, G)
self.deepcopy_edge_attr(H, G)
def deepcopy_graph_attr(self, H, G):
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] != H.graph["foo"]
def deepcopy_node_attr(self, H, G):
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
def deepcopy_edge_attr(self, H, G):
assert G[1][2]["foo"] == H[1][2]["foo"]
G[1][2]["foo"].append(1)
assert G[1][2]["foo"] != H[1][2]["foo"]
def is_shallow_copy(self, H, G):
self.graphs_equal(H, G)
self.shallow_copy_attrdict(H, G)
def shallow_copy_attrdict(self, H, G):
self.shallow_copy_graph_attr(H, G)
self.shallow_copy_node_attr(H, G)
self.shallow_copy_edge_attr(H, G)
def shallow_copy_graph_attr(self, H, G):
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] == H.graph["foo"]
def shallow_copy_node_attr(self, H, G):
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
def shallow_copy_edge_attr(self, H, G):
assert G[1][2]["foo"] == H[1][2]["foo"]
G[1][2]["foo"].append(1)
assert G[1][2]["foo"] == H[1][2]["foo"]
def same_attrdict(self, H, G):
old_foo = H[1][2]["foo"]
H.adj[1][2]["foo"] = "baz"
assert G.edges == H.edges
H.adj[1][2]["foo"] = old_foo
assert G.edges == H.edges
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G.nodes == H.nodes
H.nodes[0]["foo"] = old_foo
assert G.nodes == H.nodes
def different_attrdict(self, H, G):
old_foo = H[1][2]["foo"]
H.adj[1][2]["foo"] = "baz"
assert G._adj != H._adj
H.adj[1][2]["foo"] = old_foo
assert G._adj == H._adj
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G._node != H._node
H.nodes[0]["foo"] = old_foo
assert G._node == H._node
def graphs_equal(self, H, G):
assert G._adj == H._adj
assert G._node == H._node
assert G.graph == H.graph
assert G.name == H.name
if not G.is_directed() and not H.is_directed():
assert H._adj[1][2] is H._adj[2][1]
assert G._adj[1][2] is G._adj[2][1]
else: # at least one is directed
if not G.is_directed():
G._pred = G._adj
G._succ = G._adj
if not H.is_directed():
H._pred = H._adj
H._succ = H._adj
assert G._pred == H._pred
assert G._succ == H._succ
assert H._succ[1][2] is H._pred[2][1]
assert G._succ[1][2] is G._pred[2][1]
def test_graph_attr(self):
G = self.K3.copy()
G.graph["foo"] = "bar"
assert isinstance(G.graph, G.graph_attr_dict_factory)
assert G.graph["foo"] == "bar"
del G.graph["foo"]
assert G.graph == {}
H = self.Graph(foo="bar")
assert H.graph["foo"] == "bar"
def test_node_attr(self):
G = self.K3.copy()
G.add_node(1, foo="bar")
assert all(
isinstance(d, G.node_attr_dict_factory) for u, d in G.nodes(data=True)
)
assert nodes_equal(G.nodes(), [0, 1, 2])
assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "bar"}), (2, {})])
G.nodes[1]["foo"] = "baz"
assert nodes_equal(G.nodes(data=True), [(0, {}), (1, {"foo": "baz"}), (2, {})])
assert nodes_equal(G.nodes(data="foo"), [(0, None), (1, "baz"), (2, None)])
assert nodes_equal(
G.nodes(data="foo", default="bar"), [(0, "bar"), (1, "baz"), (2, "bar")]
)
def test_node_attr2(self):
G = self.K3.copy()
a = {"foo": "bar"}
G.add_node(3, **a)
assert nodes_equal(G.nodes(), [0, 1, 2, 3])
assert nodes_equal(
G.nodes(data=True), [(0, {}), (1, {}), (2, {}), (3, {"foo": "bar"})]
)
def test_edge_lookup(self):
G = self.Graph()
G.add_edge(1, 2, foo="bar")
assert edges_equal(G.edges[1, 2], {"foo": "bar"})
def test_edge_attr(self):
G = self.Graph()
G.add_edge(1, 2, foo="bar")
assert all(
isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
)
assert edges_equal(G.edges(data=True), [(1, 2, {"foo": "bar"})])
assert edges_equal(G.edges(data="foo"), [(1, 2, "bar")])
def test_edge_attr2(self):
G = self.Graph()
G.add_edges_from([(1, 2), (3, 4)], foo="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"foo": "foo"}), (3, 4, {"foo": "foo"})]
)
assert edges_equal(G.edges(data="foo"), [(1, 2, "foo"), (3, 4, "foo")])
def test_edge_attr3(self):
G = self.Graph()
G.add_edges_from([(1, 2, {"weight": 32}), (3, 4, {"weight": 64})], foo="foo")
assert edges_equal(
G.edges(data=True),
[
(1, 2, {"foo": "foo", "weight": 32}),
(3, 4, {"foo": "foo", "weight": 64}),
],
)
G.remove_edges_from([(1, 2), (3, 4)])
G.add_edge(1, 2, data=7, spam="bar", bar="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
)
def test_edge_attr4(self):
G = self.Graph()
G.add_edge(1, 2, data=7, spam="bar", bar="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
)
G[1][2]["data"] = 10 # OK to set data like this
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2]["data"] = 20
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
)
G.edges[1, 2]["data"] = 21 # another spelling, "edge"
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2]["listdata"] = [20, 200]
G.adj[1][2]["weight"] = 20
dd = {
"data": 21,
"spam": "bar",
"bar": "foo",
"listdata": [20, 200],
"weight": 20,
}
assert edges_equal(G.edges(data=True), [(1, 2, dd)])
def test_to_undirected(self):
G = self.K3
self.add_attributes(G)
H = nx.Graph(G)
self.is_shallow_copy(H, G)
self.different_attrdict(H, G)
H = G.to_undirected()
self.is_deepcopy(H, G)
def test_to_directed_as_view(self):
H = nx.path_graph(2, create_using=self.Graph)
H2 = H.to_directed(as_view=True)
assert H is H2._graph
assert H2.has_edge(0, 1)
assert H2.has_edge(1, 0) or H.is_directed()
pytest.raises(nx.NetworkXError, H2.add_node, -1)
pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2)
H.add_edge(1, 2)
assert H2.has_edge(1, 2)
assert H2.has_edge(2, 1) or H.is_directed()
def test_to_undirected_as_view(self):
H = nx.path_graph(2, create_using=self.Graph)
H2 = H.to_undirected(as_view=True)
assert H is H2._graph
assert H2.has_edge(0, 1)
assert H2.has_edge(1, 0)
pytest.raises(nx.NetworkXError, H2.add_node, -1)
pytest.raises(nx.NetworkXError, H2.add_edge, 1, 2)
H.add_edge(1, 2)
assert H2.has_edge(1, 2)
assert H2.has_edge(2, 1)
def test_directed_class(self):
G = self.Graph()
class newGraph(G.to_undirected_class()):
def to_directed_class(self):
return newDiGraph
def to_undirected_class(self):
return newGraph
class newDiGraph(G.to_directed_class()):
def to_directed_class(self):
return newDiGraph
def to_undirected_class(self):
return newGraph
G = newDiGraph() if G.is_directed() else newGraph()
H = G.to_directed()
assert isinstance(H, newDiGraph)
H = G.to_undirected()
assert isinstance(H, newGraph)
def test_to_directed(self):
G = self.K3
self.add_attributes(G)
H = nx.DiGraph(G)
self.is_shallow_copy(H, G)
self.different_attrdict(H, G)
H = G.to_directed()
self.is_deepcopy(H, G)
def test_subgraph(self):
G = self.K3
self.add_attributes(G)
H = G.subgraph([0, 1, 2, 5])
self.graphs_equal(H, G)
self.same_attrdict(H, G)
self.shallow_copy_attrdict(H, G)
H = G.subgraph(0)
assert H.adj == {0: {}}
H = G.subgraph([])
assert H.adj == {}
assert G.adj != {}
def test_selfloops_attr(self):
G = self.K3.copy()
G.add_edge(0, 0)
G.add_edge(1, 1, weight=2)
assert edges_equal(
nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})]
)
assert edges_equal(
nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)]
)
class TestGraph(BaseAttrGraphTester):
"""Tests specific to dict-of-dict-of-dict graph data structure"""
def setup_method(self):
self.Graph = nx.Graph
# build dict-of-dict-of-dict K3
ed1, ed2, ed3 = ({}, {}, {})
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.k3adj
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_pickle(self):
G = self.K3
pg = pickle.loads(pickle.dumps(G, -1))
self.graphs_equal(pg, G)
pg = pickle.loads(pickle.dumps(G))
self.graphs_equal(pg, G)
def test_data_input(self):
G = self.Graph({1: [2], 2: [1]}, name="test")
assert G.name == "test"
assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
def test_adjacency(self):
G = self.K3
assert dict(G.adjacency()) == {
0: {1: {}, 2: {}},
1: {0: {}, 2: {}},
2: {0: {}, 1: {}},
}
def test_getitem(self):
G = self.K3
assert G.adj[0] == {1: {}, 2: {}}
assert G[0] == {1: {}, 2: {}}
with pytest.raises(KeyError):
G.__getitem__("j")
with pytest.raises(TypeError):
G.__getitem__(["A"])
def test_add_node(self):
G = self.Graph()
G.add_node(0)
assert G.adj == {0: {}}
# test add attributes
G.add_node(1, c="red")
G.add_node(2, c="blue")
G.add_node(3, c="red")
assert G.nodes[1]["c"] == "red"
assert G.nodes[2]["c"] == "blue"
assert G.nodes[3]["c"] == "red"
# test updating attributes
G.add_node(1, c="blue")
G.add_node(2, c="red")
G.add_node(3, c="blue")
assert G.nodes[1]["c"] == "blue"
assert G.nodes[2]["c"] == "red"
assert G.nodes[3]["c"] == "blue"
def test_add_nodes_from(self):
G = self.Graph()
G.add_nodes_from([0, 1, 2])
assert G.adj == {0: {}, 1: {}, 2: {}}
# test add attributes
G.add_nodes_from([0, 1, 2], c="red")
assert G.nodes[0]["c"] == "red"
assert G.nodes[2]["c"] == "red"
# test that attribute dicts are not the same
assert G.nodes[0] is not G.nodes[1]
# test updating attributes
G.add_nodes_from([0, 1, 2], c="blue")
assert G.nodes[0]["c"] == "blue"
assert G.nodes[2]["c"] == "blue"
assert G.nodes[0] is not G.nodes[1]
# test tuple input
H = self.Graph()
H.add_nodes_from(G.nodes(data=True))
assert H.nodes[0]["c"] == "blue"
assert H.nodes[2]["c"] == "blue"
assert H.nodes[0] is not H.nodes[1]
# specific overrides general
H.add_nodes_from([0, (1, {"c": "green"}), (3, {"c": "cyan"})], c="red")
assert H.nodes[0]["c"] == "red"
assert H.nodes[1]["c"] == "green"
assert H.nodes[2]["c"] == "blue"
assert H.nodes[3]["c"] == "cyan"
def test_remove_node(self):
G = self.K3.copy()
G.remove_node(0)
assert G.adj == {1: {2: {}}, 2: {1: {}}}
with pytest.raises(nx.NetworkXError):
G.remove_node(-1)
# generator here to implement list,set,string...
def test_remove_nodes_from(self):
G = self.K3.copy()
G.remove_nodes_from([0, 1])
assert G.adj == {2: {}}
G.remove_nodes_from([-1]) # silent fail
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G.adj == {0: {1: {}}, 1: {0: {}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G.adj == {0: {1: {}}, 1: {0: {}}}
G = self.Graph()
with pytest.raises(ValueError):
G.add_edge(None, "anything")
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 2, {"weight": 3})])
assert G.adj == {
0: {1: {}, 2: {"weight": 3}},
1: {0: {}},
2: {0: {"weight": 3}},
}
G = self.Graph()
G.add_edges_from([(0, 1), (0, 2, {"weight": 3}), (1, 2, {"data": 4})], data=2)
assert G.adj == {
0: {1: {"data": 2}, 2: {"weight": 3, "data": 2}},
1: {0: {"data": 2}, 2: {"data": 4}},
2: {0: {"weight": 3, "data": 2}, 1: {"data": 4}},
}
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0,)]) # too few in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0, 1, 2, 3)]) # too many in tuple
with pytest.raises(TypeError):
G.add_edges_from([0]) # not a tuple
with pytest.raises(ValueError):
G.add_edges_from([(None, 3), (3, 2)]) # None cannot be a node
def test_remove_edge(self):
G = self.K3.copy()
G.remove_edge(0, 1)
assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
def test_remove_edges_from(self):
G = self.K3.copy()
G.remove_edges_from([(0, 1)])
assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
G.remove_edges_from([(0, 0)]) # silent fail
def test_clear(self):
G = self.K3.copy()
G.graph["name"] = "K3"
G.clear()
assert list(G.nodes) == []
assert G.adj == {}
assert G.graph == {}
def test_clear_edges(self):
G = self.K3.copy()
G.graph["name"] = "K3"
nodes = list(G.nodes)
G.clear_edges()
assert list(G.nodes) == nodes
assert G.adj == {0: {}, 1: {}, 2: {}}
assert list(G.edges) == []
assert G.graph["name"] == "K3"
def test_edges_data(self):
G = self.K3
all_edges = [(0, 1, {}), (0, 2, {}), (1, 2, {})]
assert edges_equal(G.edges(data=True), all_edges)
assert edges_equal(G.edges(0, data=True), [(0, 1, {}), (0, 2, {})])
assert edges_equal(G.edges([0, 1], data=True), all_edges)
with pytest.raises(nx.NetworkXError):
G.edges(-1, True)
def test_get_edge_data(self):
G = self.K3.copy()
assert G.get_edge_data(0, 1) == {}
assert G[0][1] == {}
assert G.get_edge_data(10, 20) is None
assert G.get_edge_data(-1, 0) is None
assert G.get_edge_data(-1, 0, default=1) == 1
def test_update(self):
# specify both edges and nodes
G = self.K3.copy()
G.update(nodes=[3, (4, {"size": 2})], edges=[(4, 5), (6, 7, {"weight": 2})])
nlist = [
(0, {}),
(1, {}),
(2, {}),
(3, {}),
(4, {"size": 2}),
(5, {}),
(6, {}),
(7, {}),
]
assert sorted(G.nodes.data()) == nlist
if G.is_directed():
elist = [
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
(4, 5, {}),
(6, 7, {"weight": 2}),
]
else:
elist = [
(0, 1, {}),
(0, 2, {}),
(1, 2, {}),
(4, 5, {}),
(6, 7, {"weight": 2}),
]
assert sorted(G.edges.data()) == elist
assert G.graph == {}
# no keywords -- order is edges, nodes
G = self.K3.copy()
G.update([(4, 5), (6, 7, {"weight": 2})], [3, (4, {"size": 2})])
assert sorted(G.nodes.data()) == nlist
assert sorted(G.edges.data()) == elist
assert G.graph == {}
# update using only a graph
G = self.Graph()
G.graph["foo"] = "bar"
G.add_node(2, data=4)
G.add_edge(0, 1, weight=0.5)
GG = G.copy()
H = self.Graph()
GG.update(H)
assert graphs_equal(G, GG)
H.update(G)
assert graphs_equal(H, G)
# update nodes only
H = self.Graph()
H.update(nodes=[3, 4])
assert H.nodes ^ {3, 4} == set()
assert H.size() == 0
# update edges only
H = self.Graph()
H.update(edges=[(3, 4)])
assert sorted(H.edges.data()) == [(3, 4, {})]
assert H.size() == 1
# No inputs -> exception
with pytest.raises(nx.NetworkXError):
nx.Graph().update()
class TestEdgeSubgraph:
"""Unit tests for the :meth:`Graph.edge_subgraph` method."""
def setup_method(self):
# Create a path graph on five nodes.
G = nx.path_graph(5)
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.edges[0, 1]["name"] = "edge01"
G.edges[3, 4]["name"] = "edge34"
G.graph["name"] = "graph"
# Get the subgraph induced by the first and last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1), (3, 4)])
def test_correct_nodes(self):
"""Tests that the subgraph has the correct nodes."""
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_correct_edges(self):
"""Tests that the subgraph has the correct edges."""
assert [(0, 1, "edge01"), (3, 4, "edge34")] == sorted(self.H.edges(data="name"))
def test_add_node(self):
"""Tests that adding a node to the original graph does not
affect the nodes of the subgraph.
"""
self.G.add_node(5)
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_remove_node(self):
"""Tests that removing a node in the original graph does
affect the nodes of the subgraph.
"""
self.G.remove_node(0)
assert [1, 3, 4] == sorted(self.H.nodes())
def test_node_attr_dict(self):
"""Tests that the node attribute dictionary of the two graphs is
the same object.
"""
for v in self.H:
assert self.G.nodes[v] == self.H.nodes[v]
# Making a change to G should make a change in H and vice versa.
self.G.nodes[0]["name"] = "foo"
assert self.G.nodes[0] == self.H.nodes[0]
self.H.nodes[1]["name"] = "bar"
assert self.G.nodes[1] == self.H.nodes[1]
def test_edge_attr_dict(self):
"""Tests that the edge attribute dictionary of the two graphs is
the same object.
"""
for u, v in self.H.edges():
assert self.G.edges[u, v] == self.H.edges[u, v]
# Making a change to G should make a change in H and vice versa.
self.G.edges[0, 1]["name"] = "foo"
assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"]
self.H.edges[3, 4]["name"] = "bar"
assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"]
def test_graph_attr_dict(self):
"""Tests that the graph attribute dictionary of the two graphs
is the same object.
"""
assert self.G.graph is self.H.graph

View File

@ -0,0 +1,13 @@
"""Original NetworkX graph tests"""
import networkx
import networkx as nx
from .historical_tests import HistoricalTests
class TestGraphHistorical(HistoricalTests):
@classmethod
def setup_class(cls):
HistoricalTests.setup_class()
cls.G = nx.Graph

View File

@ -0,0 +1,350 @@
import pytest
import networkx as nx
from networkx.utils import edges_equal, nodes_equal
# Note: SubGraph views are not tested here. They have their own testing file
class TestReverseView:
def setup_method(self):
self.G = nx.path_graph(9, create_using=nx.DiGraph())
self.rv = nx.reverse_view(self.G)
def test_pickle(self):
import pickle
rv = self.rv
prv = pickle.loads(pickle.dumps(rv, -1))
assert rv._node == prv._node
assert rv._adj == prv._adj
assert rv.graph == prv.graph
def test_contains(self):
assert (2, 3) in self.G.edges
assert (3, 2) not in self.G.edges
assert (2, 3) not in self.rv.edges
assert (3, 2) in self.rv.edges
def test_iter(self):
expected = sorted(tuple(reversed(e)) for e in self.G.edges)
assert sorted(self.rv.edges) == expected
def test_exceptions(self):
G = nx.Graph()
pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, G)
def test_subclass(self):
class MyGraph(nx.DiGraph):
def my_method(self):
return "me"
def to_directed_class(self):
return MyGraph()
M = MyGraph()
M.add_edge(1, 2)
RM = nx.reverse_view(M)
print("RM class", RM.__class__)
RMC = RM.copy()
print("RMC class", RMC.__class__)
print(RMC.edges)
assert RMC.has_edge(2, 1)
assert RMC.my_method() == "me"
class TestMultiReverseView:
def setup_method(self):
self.G = nx.path_graph(9, create_using=nx.MultiDiGraph())
self.G.add_edge(4, 5)
self.rv = nx.reverse_view(self.G)
def test_pickle(self):
import pickle
rv = self.rv
prv = pickle.loads(pickle.dumps(rv, -1))
assert rv._node == prv._node
assert rv._adj == prv._adj
assert rv.graph == prv.graph
def test_contains(self):
assert (2, 3, 0) in self.G.edges
assert (3, 2, 0) not in self.G.edges
assert (2, 3, 0) not in self.rv.edges
assert (3, 2, 0) in self.rv.edges
assert (5, 4, 1) in self.rv.edges
assert (4, 5, 1) not in self.rv.edges
def test_iter(self):
expected = sorted((v, u, k) for u, v, k in self.G.edges)
assert sorted(self.rv.edges) == expected
def test_exceptions(self):
MG = nx.MultiGraph(self.G)
pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, MG)
def test_generic_multitype():
nxg = nx.graphviews
G = nx.DiGraph([(1, 2)])
with pytest.raises(nx.NetworkXError):
nxg.generic_graph_view(G, create_using=nx.MultiGraph)
G = nx.MultiDiGraph([(1, 2)])
with pytest.raises(nx.NetworkXError):
nxg.generic_graph_view(G, create_using=nx.DiGraph)
class TestToDirected:
def setup_method(self):
self.G = nx.path_graph(9)
self.dv = nx.to_directed(self.G)
self.MG = nx.path_graph(9, create_using=nx.MultiGraph())
self.Mdv = nx.to_directed(self.MG)
def test_directed(self):
assert not self.G.is_directed()
assert self.dv.is_directed()
def test_already_directed(self):
dd = nx.to_directed(self.dv)
Mdd = nx.to_directed(self.Mdv)
assert edges_equal(dd.edges, self.dv.edges)
assert edges_equal(Mdd.edges, self.Mdv.edges)
def test_pickle(self):
import pickle
dv = self.dv
pdv = pickle.loads(pickle.dumps(dv, -1))
assert dv._node == pdv._node
assert dv._succ == pdv._succ
assert dv._pred == pdv._pred
assert dv.graph == pdv.graph
def test_contains(self):
assert (2, 3) in self.G.edges
assert (3, 2) in self.G.edges
assert (2, 3) in self.dv.edges
assert (3, 2) in self.dv.edges
def test_iter(self):
revd = [tuple(reversed(e)) for e in self.G.edges]
expected = sorted(list(self.G.edges) + revd)
assert sorted(self.dv.edges) == expected
class TestToUndirected:
def setup_method(self):
self.DG = nx.path_graph(9, create_using=nx.DiGraph())
self.uv = nx.to_undirected(self.DG)
self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
self.Muv = nx.to_undirected(self.MDG)
def test_directed(self):
assert self.DG.is_directed()
assert not self.uv.is_directed()
def test_already_directed(self):
uu = nx.to_undirected(self.uv)
Muu = nx.to_undirected(self.Muv)
assert edges_equal(uu.edges, self.uv.edges)
assert edges_equal(Muu.edges, self.Muv.edges)
def test_pickle(self):
import pickle
uv = self.uv
puv = pickle.loads(pickle.dumps(uv, -1))
assert uv._node == puv._node
assert uv._adj == puv._adj
assert uv.graph == puv.graph
assert hasattr(uv, "_graph")
def test_contains(self):
assert (2, 3) in self.DG.edges
assert (3, 2) not in self.DG.edges
assert (2, 3) in self.uv.edges
assert (3, 2) in self.uv.edges
def test_iter(self):
expected = sorted(self.DG.edges)
assert sorted(self.uv.edges) == expected
class TestChainsOfViews:
@classmethod
def setup_class(cls):
cls.G = nx.path_graph(9)
cls.DG = nx.path_graph(9, create_using=nx.DiGraph())
cls.MG = nx.path_graph(9, create_using=nx.MultiGraph())
cls.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
cls.Gv = nx.to_undirected(cls.DG)
cls.DGv = nx.to_directed(cls.G)
cls.MGv = nx.to_undirected(cls.MDG)
cls.MDGv = nx.to_directed(cls.MG)
cls.Rv = cls.DG.reverse()
cls.MRv = cls.MDG.reverse()
cls.graphs = [
cls.G,
cls.DG,
cls.MG,
cls.MDG,
cls.Gv,
cls.DGv,
cls.MGv,
cls.MDGv,
cls.Rv,
cls.MRv,
]
for G in cls.graphs:
G.edges, G.nodes, G.degree
def test_pickle(self):
import pickle
for G in self.graphs:
H = pickle.loads(pickle.dumps(G, -1))
assert edges_equal(H.edges, G.edges)
assert nodes_equal(H.nodes, G.nodes)
def test_subgraph_of_subgraph(self):
SGv = nx.subgraph(self.G, range(3, 7))
SDGv = nx.subgraph(self.DG, range(3, 7))
SMGv = nx.subgraph(self.MG, range(3, 7))
SMDGv = nx.subgraph(self.MDG, range(3, 7))
for G in self.graphs + [SGv, SDGv, SMGv, SMDGv]:
SG = nx.induced_subgraph(G, [4, 5, 6])
assert list(SG) == [4, 5, 6]
SSG = SG.subgraph([6, 7])
assert list(SSG) == [6]
# subgraph-subgraph chain is short-cut in base class method
assert SSG._graph is G
def test_restricted_induced_subgraph_chains(self):
"""Test subgraph chains that both restrict and show nodes/edges.
A restricted_view subgraph should allow induced subgraphs using
G.subgraph that automagically without a chain (meaning the result
is a subgraph view of the original graph not a subgraph-of-subgraph.
"""
hide_nodes = [3, 4, 5]
hide_edges = [(6, 7)]
RG = nx.restricted_view(self.G, hide_nodes, hide_edges)
nodes = [4, 5, 6, 7, 8]
SG = nx.induced_subgraph(RG, nodes)
SSG = RG.subgraph(nodes)
assert RG._graph is self.G
assert SSG._graph is self.G
assert SG._graph is RG
assert edges_equal(SG.edges, SSG.edges)
# should be same as morphing the graph
CG = self.G.copy()
CG.remove_nodes_from(hide_nodes)
CG.remove_edges_from(hide_edges)
assert edges_equal(CG.edges(nodes), SSG.edges)
CG.remove_nodes_from([0, 1, 2, 3])
assert edges_equal(CG.edges, SSG.edges)
# switch order: subgraph first, then restricted view
SSSG = self.G.subgraph(nodes)
RSG = nx.restricted_view(SSSG, hide_nodes, hide_edges)
assert RSG._graph is not self.G
assert edges_equal(RSG.edges, CG.edges)
def test_subgraph_copy(self):
for origG in self.graphs:
G = nx.Graph(origG)
SG = G.subgraph([4, 5, 6])
H = SG.copy()
assert type(G) == type(H)
def test_subgraph_todirected(self):
SG = nx.induced_subgraph(self.G, [4, 5, 6])
SSG = SG.to_directed()
assert sorted(SSG) == [4, 5, 6]
assert sorted(SSG.edges) == [(4, 5), (5, 4), (5, 6), (6, 5)]
def test_subgraph_toundirected(self):
SG = nx.induced_subgraph(self.G, [4, 5, 6])
SSG = SG.to_undirected()
assert list(SSG) == [4, 5, 6]
assert sorted(SSG.edges) == [(4, 5), (5, 6)]
def test_reverse_subgraph_toundirected(self):
G = self.DG.reverse(copy=False)
SG = G.subgraph([4, 5, 6])
SSG = SG.to_undirected()
assert list(SSG) == [4, 5, 6]
assert sorted(SSG.edges) == [(4, 5), (5, 6)]
def test_reverse_reverse_copy(self):
G = self.DG.reverse(copy=False)
H = G.reverse(copy=True)
assert H.nodes == self.DG.nodes
assert H.edges == self.DG.edges
G = self.MDG.reverse(copy=False)
H = G.reverse(copy=True)
assert H.nodes == self.MDG.nodes
assert H.edges == self.MDG.edges
def test_subgraph_edgesubgraph_toundirected(self):
G = self.G.copy()
SG = G.subgraph([4, 5, 6])
SSG = SG.edge_subgraph([(4, 5), (5, 4)])
USSG = SSG.to_undirected()
assert list(USSG) == [4, 5]
assert sorted(USSG.edges) == [(4, 5)]
def test_copy_subgraph(self):
G = self.G.copy()
SG = G.subgraph([4, 5, 6])
CSG = SG.copy(as_view=True)
DCSG = SG.copy(as_view=False)
assert hasattr(CSG, "_graph") # is a view
assert not hasattr(DCSG, "_graph") # not a view
def test_copy_disubgraph(self):
G = self.DG.copy()
SG = G.subgraph([4, 5, 6])
CSG = SG.copy(as_view=True)
DCSG = SG.copy(as_view=False)
assert hasattr(CSG, "_graph") # is a view
assert not hasattr(DCSG, "_graph") # not a view
def test_copy_multidisubgraph(self):
G = self.MDG.copy()
SG = G.subgraph([4, 5, 6])
CSG = SG.copy(as_view=True)
DCSG = SG.copy(as_view=False)
assert hasattr(CSG, "_graph") # is a view
assert not hasattr(DCSG, "_graph") # not a view
def test_copy_multisubgraph(self):
G = self.MG.copy()
SG = G.subgraph([4, 5, 6])
CSG = SG.copy(as_view=True)
DCSG = SG.copy(as_view=False)
assert hasattr(CSG, "_graph") # is a view
assert not hasattr(DCSG, "_graph") # not a view
def test_copy_of_view(self):
G = nx.MultiGraph(self.MGv)
assert G.__class__.__name__ == "MultiGraph"
G = G.copy(as_view=True)
assert G.__class__.__name__ == "MultiGraph"
def test_subclass(self):
class MyGraph(nx.DiGraph):
def my_method(self):
return "me"
def to_directed_class(self):
return MyGraph()
for origG in self.graphs:
G = MyGraph(origG)
SG = G.subgraph([4, 5, 6])
H = SG.copy()
assert SG.my_method() == "me"
assert H.my_method() == "me"
assert 3 not in H or 3 in SG

View File

@ -0,0 +1,459 @@
from collections import UserDict
import pytest
import networkx as nx
from networkx.utils import edges_equal
from .test_multigraph import BaseMultiGraphTester
from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph
from .test_multigraph import TestMultiGraph as _TestMultiGraph
class BaseMultiDiGraphTester(BaseMultiGraphTester):
def test_edges(self):
G = self.K3
edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges()) == edges
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
pytest.raises((KeyError, nx.NetworkXError), G.edges, -1)
def test_edges_data(self):
G = self.K3
edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})]
assert sorted(G.edges(data=True)) == edges
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1)
def test_edges_multi(self):
G = self.K3
assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
G.add_edge(0, 1)
assert sorted(G.edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
def test_out_edges(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1)
assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)]
def test_out_edges_multi(self):
G = self.K3
assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
G.add_edge(0, 1, 2)
assert sorted(G.out_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
def test_out_edges_data(self):
G = self.K3
assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
G.remove_edge(0, 1)
G.add_edge(0, 1, data=1)
assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})]
assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)]
assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)]
def test_in_edges(self):
G = self.K3
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1)
G.add_edge(0, 1, 2)
assert sorted(G.in_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)]
def test_in_edges_no_keys(self):
G = self.K3
assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
G.add_edge(0, 1, 2)
assert sorted(G.in_edges()) == [
(0, 1),
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
assert sorted(G.in_edges(data=True, keys=False)) == [
(0, 1, {}),
(0, 1, {}),
(0, 2, {}),
(1, 0, {}),
(1, 2, {}),
(2, 0, {}),
(2, 1, {}),
]
def test_in_edges_data(self):
G = self.K3
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})]
G.remove_edge(1, 0)
G.add_edge(1, 0, data=1)
assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})]
assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)]
assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)]
def is_shallow(self, H, G):
# graph
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] == H.graph["foo"]
# node
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
# edge
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
def is_deep(self, H, G):
# graph
assert G.graph["foo"] == H.graph["foo"]
G.graph["foo"].append(1)
assert G.graph["foo"] != H.graph["foo"]
# node
assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
G.nodes[0]["foo"].append(1)
assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
# edge
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
def test_to_undirected(self):
# MultiDiGraph -> MultiGraph changes number of edges so it is
# not a copy operation... use is_shallow, not is_shallow_copy
G = self.K3
self.add_attributes(G)
H = nx.MultiGraph(G)
# self.is_shallow(H,G)
# the result is traversal order dependent so we
# can't use the is_shallow() test here.
try:
assert edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)])
except AssertionError:
assert edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)])
H = G.to_undirected()
self.is_deep(H, G)
def test_has_successor(self):
G = self.K3
assert G.has_successor(0, 1)
assert not G.has_successor(0, -1)
def test_successors(self):
G = self.K3
assert sorted(G.successors(0)) == [1, 2]
pytest.raises((KeyError, nx.NetworkXError), G.successors, -1)
def test_has_predecessor(self):
G = self.K3
assert G.has_predecessor(0, 1)
assert not G.has_predecessor(0, -1)
def test_predecessors(self):
G = self.K3
assert sorted(G.predecessors(0)) == [1, 2]
pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1)
def test_degree(self):
G = self.K3
assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
assert G.degree(0) == 4
assert list(G.degree(iter([0]))) == [(0, 4)]
G.add_edge(0, 1, weight=0.3, other=1.2)
assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)]
assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)]
def test_in_degree(self):
G = self.K3
assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
assert G.in_degree(0) == 2
assert list(G.in_degree(iter([0]))) == [(0, 2)]
assert G.in_degree(0, weight="weight") == 2
def test_out_degree(self):
G = self.K3
assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
assert G.out_degree(0) == 2
assert list(G.out_degree(iter([0]))) == [(0, 2)]
assert G.out_degree(0, weight="weight") == 2
def test_size(self):
G = self.K3
assert G.size() == 6
assert G.number_of_edges() == 6
G.add_edge(0, 1, weight=0.3, other=1.2)
assert round(G.size(weight="weight"), 2) == 6.3
assert round(G.size(weight="other"), 2) == 7.2
def test_to_undirected_reciprocal(self):
G = self.Graph()
G.add_edge(1, 2)
assert G.to_undirected().has_edge(1, 2)
assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
G.add_edge(2, 1)
assert G.to_undirected(reciprocal=True).has_edge(1, 2)
def test_reverse_copy(self):
G = nx.MultiDiGraph([(0, 1), (0, 1)])
R = G.reverse()
assert sorted(R.edges()) == [(1, 0), (1, 0)]
R.remove_edge(1, 0)
assert sorted(R.edges()) == [(1, 0)]
assert sorted(G.edges()) == [(0, 1), (0, 1)]
def test_reverse_nocopy(self):
G = nx.MultiDiGraph([(0, 1), (0, 1)])
R = G.reverse(copy=False)
assert sorted(R.edges()) == [(1, 0), (1, 0)]
pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0)
def test_di_attributes_cached(self):
G = self.K3.copy()
assert id(G.in_edges) == id(G.in_edges)
assert id(G.out_edges) == id(G.out_edges)
assert id(G.in_degree) == id(G.in_degree)
assert id(G.out_degree) == id(G.out_degree)
assert id(G.succ) == id(G.succ)
assert id(G.pred) == id(G.pred)
class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph):
def setup_method(self):
self.Graph = nx.MultiDiGraph
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = {0: {}, 1: {}, 2: {}}
# K3._adj is synced with K3._succ
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u == v:
continue
d = {0: {}}
self.K3._succ[u][v] = d
self.K3._pred[v][u] = d
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G._adj == {0: {1: {0: {}}}, 1: {}}
assert G._succ == {0: {1: {0: {}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G._adj == {0: {1: {0: {}}}, 1: {}}
assert G._succ == {0: {1: {0: {}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}}}}
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edge(None, 3)
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}}
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
assert G._succ == {
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
1: {},
}
assert G._pred == {
0: {},
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
}
G = self.Graph()
edges = [
(0, 1, {"weight": 3}),
(0, 1, (("weight", 2),)),
(0, 1, 5),
(0, 1, "s"),
]
G.add_edges_from(edges)
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
assert G._succ == {0: {1: keydict}, 1: {}}
assert G._pred == {1: {0: keydict}, 0: {}}
# too few in tuple
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)])
# too many in tuple
pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)])
# not a tuple
pytest.raises(TypeError, G.add_edges_from, [0])
with pytest.raises(ValueError, match="None cannot be a node"):
G.add_edges_from([(None, 3), (3, 2)])
def test_remove_edge(self):
G = self.K3
G.remove_edge(0, 1)
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1)
def test_remove_multiedge(self):
G = self.K3
G.add_edge(0, 1, key="parallel edge")
G.remove_edge(0, 1, key="parallel edge")
assert G._adj == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._succ == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edge(0, 1)
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
def test_remove_edges_from(self):
G = self.K3
G.remove_edges_from([(0, 1)])
assert G._succ == {
0: {2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
assert G._pred == {
0: {1: {0: {}}, 2: {0: {}}},
1: {2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edges_from([(0, 0)]) # silent fail
class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph):
"""Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a quadruply-linked path graph on five nodes.
G = nx.MultiDiGraph()
nx.add_path(G, range(5))
nx.add_path(G, range(5))
nx.add_path(G, reversed(range(5)))
nx.add_path(G, reversed(range(5)))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.adj[0][1][0]["name"] = "edge010"
G.adj[0][1][1]["name"] = "edge011"
G.adj[3][4][0]["name"] = "edge340"
G.adj[3][4][1]["name"] = "edge341"
G.graph["name"] = "graph"
# Get the subgraph induced by one of the first edges and one of
# the last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
class CustomDictClass(UserDict):
pass
class MultiDiGraphSubClass(nx.MultiDiGraph):
node_dict_factory = CustomDictClass # type: ignore[assignment]
node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
class TestMultiDiGraphSubclass(TestMultiDiGraph):
def setup_method(self):
self.Graph = MultiDiGraphSubClass
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = self.K3.adjlist_outer_dict_factory(
{
0: self.K3.adjlist_inner_dict_factory(),
1: self.K3.adjlist_inner_dict_factory(),
2: self.K3.adjlist_inner_dict_factory(),
}
)
# K3._adj is synced with K3._succ
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u == v:
continue
d = {0: {}}
self.K3._succ[u][v] = d
self.K3._pred[v][u] = d
self.K3._node = self.K3.node_dict_factory()
self.K3._node[0] = self.K3.node_attr_dict_factory()
self.K3._node[1] = self.K3.node_attr_dict_factory()
self.K3._node[2] = self.K3.node_attr_dict_factory()

View File

@ -0,0 +1,528 @@
from collections import UserDict
import pytest
import networkx as nx
from networkx.utils import edges_equal
from .test_graph import BaseAttrGraphTester
from .test_graph import TestGraph as _TestGraph
class BaseMultiGraphTester(BaseAttrGraphTester):
def test_has_edge(self):
G = self.K3
assert G.has_edge(0, 1)
assert not G.has_edge(0, -1)
assert G.has_edge(0, 1, 0)
assert not G.has_edge(0, 1, 1)
def test_get_edge_data(self):
G = self.K3
assert G.get_edge_data(0, 1) == {0: {}}
assert G[0][1] == {0: {}}
assert G[0][1][0] == {}
assert G.get_edge_data(10, 20) is None
assert G.get_edge_data(0, 1, 0) == {}
def test_adjacency(self):
G = self.K3
assert dict(G.adjacency()) == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
def deepcopy_edge_attr(self, H, G):
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
def shallow_copy_edge_attr(self, H, G):
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
def graphs_equal(self, H, G):
assert G._adj == H._adj
assert G._node == H._node
assert G.graph == H.graph
assert G.name == H.name
if not G.is_directed() and not H.is_directed():
assert H._adj[1][2][0] is H._adj[2][1][0]
assert G._adj[1][2][0] is G._adj[2][1][0]
else: # at least one is directed
if not G.is_directed():
G._pred = G._adj
G._succ = G._adj
if not H.is_directed():
H._pred = H._adj
H._succ = H._adj
assert G._pred == H._pred
assert G._succ == H._succ
assert H._succ[1][2][0] is H._pred[2][1][0]
assert G._succ[1][2][0] is G._pred[2][1][0]
def same_attrdict(self, H, G):
# same attrdict in the edgedata
old_foo = H[1][2][0]["foo"]
H.adj[1][2][0]["foo"] = "baz"
assert G._adj == H._adj
H.adj[1][2][0]["foo"] = old_foo
assert G._adj == H._adj
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G._node == H._node
H.nodes[0]["foo"] = old_foo
assert G._node == H._node
def different_attrdict(self, H, G):
# used by graph_equal_but_different
old_foo = H[1][2][0]["foo"]
H.adj[1][2][0]["foo"] = "baz"
assert G._adj != H._adj
H.adj[1][2][0]["foo"] = old_foo
assert G._adj == H._adj
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G._node != H._node
H.nodes[0]["foo"] = old_foo
assert G._node == H._node
def test_to_undirected(self):
G = self.K3
self.add_attributes(G)
H = nx.MultiGraph(G)
self.is_shallow_copy(H, G)
H = G.to_undirected()
self.is_deepcopy(H, G)
def test_to_directed(self):
G = self.K3
self.add_attributes(G)
H = nx.MultiDiGraph(G)
self.is_shallow_copy(H, G)
H = G.to_directed()
self.is_deepcopy(H, G)
def test_number_of_edges_selfloops(self):
G = self.K3
G.add_edge(0, 0)
G.add_edge(0, 0)
G.add_edge(0, 0, key="parallel edge")
G.remove_edge(0, 0, key="parallel edge")
assert G.number_of_edges(0, 0) == 2
G.remove_edge(0, 0)
assert G.number_of_edges(0, 0) == 1
def test_edge_lookup(self):
G = self.Graph()
G.add_edge(1, 2, foo="bar")
G.add_edge(1, 2, "key", foo="biz")
assert edges_equal(G.edges[1, 2, 0], {"foo": "bar"})
assert edges_equal(G.edges[1, 2, "key"], {"foo": "biz"})
def test_edge_attr(self):
G = self.Graph()
G.add_edge(1, 2, key="k1", foo="bar")
G.add_edge(1, 2, key="k2", foo="baz")
assert isinstance(G.get_edge_data(1, 2), G.edge_key_dict_factory)
assert all(
isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
)
assert edges_equal(
G.edges(keys=True, data=True),
[(1, 2, "k1", {"foo": "bar"}), (1, 2, "k2", {"foo": "baz"})],
)
assert edges_equal(
G.edges(keys=True, data="foo"), [(1, 2, "k1", "bar"), (1, 2, "k2", "baz")]
)
def test_edge_attr4(self):
G = self.Graph()
G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
)
G[1][2][0]["data"] = 10 # OK to set data like this
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2][0]["data"] = 20
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
)
G.edges[1, 2, 0]["data"] = 21 # another spelling, "edge"
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2][0]["listdata"] = [20, 200]
G.adj[1][2][0]["weight"] = 20
assert edges_equal(
G.edges(data=True),
[
(
1,
2,
{
"data": 21,
"spam": "bar",
"bar": "foo",
"listdata": [20, 200],
"weight": 20,
},
)
],
)
class TestMultiGraph(BaseMultiGraphTester, _TestGraph):
def setup_method(self):
self.Graph = nx.MultiGraph
# build K3
ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}})
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.k3adj
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_data_input(self):
G = self.Graph({1: [2], 2: [1]}, name="test")
assert G.name == "test"
expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})]
assert sorted(G.adj.items()) == expected
def test_data_multigraph_input(self):
# standard case with edge keys and edge data
edata0 = {"w": 200, "s": "foo"}
edata1 = {"w": 201, "s": "bar"}
keydict = {0: edata0, 1: edata1}
dododod = {"a": {"b": keydict}}
multiple_edge = [("a", "b", 0, edata0), ("a", "b", 1, edata1)]
single_edge = [("a", "b", 0, keydict)]
G = self.Graph(dododod, multigraph_input=True)
assert list(G.edges(keys=True, data=True)) == multiple_edge
G = self.Graph(dododod, multigraph_input=None)
assert list(G.edges(keys=True, data=True)) == multiple_edge
G = self.Graph(dododod, multigraph_input=False)
assert list(G.edges(keys=True, data=True)) == single_edge
# test round-trip to_dict_of_dict and MultiGraph constructor
G = self.Graph(dododod, multigraph_input=True)
H = self.Graph(nx.to_dict_of_dicts(G))
assert nx.is_isomorphic(G, H) is True # test that default is True
for mgi in [True, False]:
H = self.Graph(nx.to_dict_of_dicts(G), multigraph_input=mgi)
assert nx.is_isomorphic(G, H) == mgi
# Set up cases for when incoming_graph_data is not multigraph_input
etraits = {"w": 200, "s": "foo"}
egraphics = {"color": "blue", "shape": "box"}
edata = {"traits": etraits, "graphics": egraphics}
dodod1 = {"a": {"b": edata}}
dodod2 = {"a": {"b": etraits}}
dodod3 = {"a": {"b": {"traits": etraits, "s": "foo"}}}
dol = {"a": ["b"]}
multiple_edge = [("a", "b", "traits", etraits), ("a", "b", "graphics", egraphics)]
single_edge = [("a", "b", 0, {})] # type: ignore[var-annotated]
single_edge1 = [("a", "b", 0, edata)]
single_edge2 = [("a", "b", 0, etraits)]
single_edge3 = [("a", "b", 0, {"traits": etraits, "s": "foo"})]
cases = [ # (dod, mgi, edges)
(dodod1, True, multiple_edge),
(dodod1, False, single_edge1),
(dodod2, False, single_edge2),
(dodod3, False, single_edge3),
(dol, False, single_edge),
]
@pytest.mark.parametrize("dod, mgi, edges", cases)
def test_non_multigraph_input(self, dod, mgi, edges):
G = self.Graph(dod, multigraph_input=mgi)
assert list(G.edges(keys=True, data=True)) == edges
G = nx.to_networkx_graph(dod, create_using=self.Graph, multigraph_input=mgi)
assert list(G.edges(keys=True, data=True)) == edges
mgi_none_cases = [
(dodod1, multiple_edge),
(dodod2, single_edge2),
(dodod3, single_edge3),
]
@pytest.mark.parametrize("dod, edges", mgi_none_cases)
def test_non_multigraph_input_mgi_none(self, dod, edges):
# test constructor without to_networkx_graph for mgi=None
G = self.Graph(dod)
assert list(G.edges(keys=True, data=True)) == edges
raise_cases = [dodod2, dodod3, dol]
@pytest.mark.parametrize("dod", raise_cases)
def test_non_multigraph_input_raise(self, dod):
# cases where NetworkXError is raised
pytest.raises(nx.NetworkXError, self.Graph, dod, multigraph_input=True)
pytest.raises(
nx.NetworkXError,
nx.to_networkx_graph,
dod,
create_using=self.Graph,
multigraph_input=True,
)
def test_getitem(self):
G = self.K3
assert G[0] == {1: {0: {}}, 2: {0: {}}}
with pytest.raises(KeyError):
G.__getitem__("j")
with pytest.raises(TypeError):
G.__getitem__(["A"])
def test_remove_node(self):
G = self.K3
G.remove_node(0)
assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}}
with pytest.raises(nx.NetworkXError):
G.remove_node(-1)
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
G = self.Graph()
with pytest.raises(ValueError):
G.add_edge(None, "anything")
def test_add_edge_conflicting_key(self):
G = self.Graph()
G.add_edge(0, 1, key=1)
G.add_edge(0, 1)
assert G.number_of_edges() == 2
G = self.Graph()
G.add_edges_from([(0, 1, 1, {})])
G.add_edges_from([(0, 1)])
assert G.number_of_edges() == 2
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
assert G.adj == {
0: {1: {0: {}, 1: {"weight": 3}}},
1: {0: {0: {}, 1: {"weight": 3}}},
}
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
assert G.adj == {
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
}
G = self.Graph()
edges = [
(0, 1, {"weight": 3}),
(0, 1, (("weight", 2),)),
(0, 1, 5),
(0, 1, "s"),
]
G.add_edges_from(edges)
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
assert G._adj == {0: {1: keydict}, 1: {0: keydict}}
# too few in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0,)])
# too many in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0, 1, 2, 3, 4)])
# not a tuple
with pytest.raises(TypeError):
G.add_edges_from([0])
def test_multigraph_add_edges_from_four_tuple_misordered(self):
"""add_edges_from expects 4-tuples of the format (u, v, key, data_dict).
Ensure 4-tuples of form (u, v, data_dict, key) raise exception.
"""
G = nx.MultiGraph()
with pytest.raises(TypeError):
# key/data values flipped in 4-tuple
G.add_edges_from([(0, 1, {"color": "red"}, 0)])
def test_remove_edge(self):
G = self.K3
G.remove_edge(0, 1)
assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
with pytest.raises(nx.NetworkXError):
G.remove_edge(0, 2, key=1)
def test_remove_edges_from(self):
G = self.K3.copy()
G.remove_edges_from([(0, 1)])
kd = {0: {}}
assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
G.remove_edges_from([(0, 0)]) # silent fail
self.K3.add_edge(0, 1)
G = self.K3.copy()
G.remove_edges_from(list(G.edges(data=True, keys=True)))
assert G.adj == {0: {}, 1: {}, 2: {}}
G = self.K3.copy()
G.remove_edges_from(list(G.edges(data=False, keys=True)))
assert G.adj == {0: {}, 1: {}, 2: {}}
G = self.K3.copy()
G.remove_edges_from(list(G.edges(data=False, keys=False)))
assert G.adj == {0: {}, 1: {}, 2: {}}
G = self.K3.copy()
G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)])
assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}}
def test_remove_multiedge(self):
G = self.K3
G.add_edge(0, 1, key="parallel edge")
G.remove_edge(0, 1, key="parallel edge")
assert G.adj == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edge(0, 1)
kd = {0: {}}
assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
class TestEdgeSubgraph:
"""Unit tests for the :meth:`MultiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a doubly-linked path graph on five nodes.
G = nx.MultiGraph()
nx.add_path(G, range(5))
nx.add_path(G, range(5))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.adj[0][1][0]["name"] = "edge010"
G.adj[0][1][1]["name"] = "edge011"
G.adj[3][4][0]["name"] = "edge340"
G.adj[3][4][1]["name"] = "edge341"
G.graph["name"] = "graph"
# Get the subgraph induced by one of the first edges and one of
# the last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
def test_correct_nodes(self):
"""Tests that the subgraph has the correct nodes."""
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_correct_edges(self):
"""Tests that the subgraph has the correct edges."""
assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted(
self.H.edges(keys=True, data="name")
)
def test_add_node(self):
"""Tests that adding a node to the original graph does not
affect the nodes of the subgraph.
"""
self.G.add_node(5)
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_remove_node(self):
"""Tests that removing a node in the original graph does
affect the nodes of the subgraph.
"""
self.G.remove_node(0)
assert [1, 3, 4] == sorted(self.H.nodes())
def test_node_attr_dict(self):
"""Tests that the node attribute dictionary of the two graphs is
the same object.
"""
for v in self.H:
assert self.G.nodes[v] == self.H.nodes[v]
# Making a change to G should make a change in H and vice versa.
self.G.nodes[0]["name"] = "foo"
assert self.G.nodes[0] == self.H.nodes[0]
self.H.nodes[1]["name"] = "bar"
assert self.G.nodes[1] == self.H.nodes[1]
def test_edge_attr_dict(self):
"""Tests that the edge attribute dictionary of the two graphs is
the same object.
"""
for u, v, k in self.H.edges(keys=True):
assert self.G._adj[u][v][k] == self.H._adj[u][v][k]
# Making a change to G should make a change in H and vice versa.
self.G._adj[0][1][0]["name"] = "foo"
assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"]
self.H._adj[3][4][1]["name"] = "bar"
assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"]
def test_graph_attr_dict(self):
"""Tests that the graph attribute dictionary of the two graphs
is the same object.
"""
assert self.G.graph is self.H.graph
class CustomDictClass(UserDict):
pass
class MultiGraphSubClass(nx.MultiGraph):
node_dict_factory = CustomDictClass # type: ignore[assignment]
node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
class TestMultiGraphSubclass(TestMultiGraph):
def setup_method(self):
self.Graph = MultiGraphSubClass
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.K3.adjlist_outer_dict_factory(
{
0: self.K3.adjlist_inner_dict_factory(),
1: self.K3.adjlist_inner_dict_factory(),
2: self.K3.adjlist_inner_dict_factory(),
}
)
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u != v:
d = {0: {}}
self.K3._adj[u][v] = d
self.K3._adj[v][u] = d
self.K3._node = self.K3.node_dict_factory()
self.K3._node[0] = self.K3.node_attr_dict_factory()
self.K3._node[1] = self.K3.node_attr_dict_factory()
self.K3._node[2] = self.K3.node_attr_dict_factory()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,131 @@
import networkx as nx
from .test_digraph import BaseDiGraphTester
from .test_digraph import TestDiGraph as _TestDiGraph
from .test_graph import BaseGraphTester
from .test_graph import TestGraph as _TestGraph
from .test_multidigraph import TestMultiDiGraph as _TestMultiDiGraph
from .test_multigraph import TestMultiGraph as _TestMultiGraph
def test_factories():
class mydict1(dict):
pass
class mydict2(dict):
pass
class mydict3(dict):
pass
class mydict4(dict):
pass
class mydict5(dict):
pass
for Graph in (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph):
# print("testing class: ", Graph.__name__)
class MyGraph(Graph):
node_dict_factory = mydict1
adjlist_outer_dict_factory = mydict2
adjlist_inner_dict_factory = mydict3
edge_key_dict_factory = mydict4
edge_attr_dict_factory = mydict5
G = MyGraph()
assert isinstance(G._node, mydict1)
assert isinstance(G._adj, mydict2)
G.add_node(1)
assert isinstance(G._adj[1], mydict3)
if G.is_directed():
assert isinstance(G._pred, mydict2)
assert isinstance(G._succ, mydict2)
assert isinstance(G._pred[1], mydict3)
G.add_edge(1, 2)
if G.is_multigraph():
assert isinstance(G._adj[1][2], mydict4)
assert isinstance(G._adj[1][2][0], mydict5)
else:
assert isinstance(G._adj[1][2], mydict5)
class TestSpecialGraph(_TestGraph):
def setup_method(self):
_TestGraph.setup_method(self)
self.Graph = nx.Graph
class TestThinGraph(BaseGraphTester):
def setup_method(self):
all_edge_dict = {"weight": 1}
class MyGraph(nx.Graph):
def edge_attr_dict_factory(self):
return all_edge_dict
self.Graph = MyGraph
# build dict-of-dict-of-dict K3
ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict)
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.k3adj
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
class TestSpecialDiGraph(_TestDiGraph):
def setup_method(self):
_TestDiGraph.setup_method(self)
self.Graph = nx.DiGraph
class TestThinDiGraph(BaseDiGraphTester):
def setup_method(self):
all_edge_dict = {"weight": 1}
class MyGraph(nx.DiGraph):
def edge_attr_dict_factory(self):
return all_edge_dict
self.Graph = MyGraph
# build dict-of-dict-of-dict K3
ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict)
ed4, ed5, ed6 = (all_edge_dict, all_edge_dict, all_edge_dict)
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._succ = self.k3adj
# K3._adj is synced with K3._succ
self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
ed1, ed2 = (all_edge_dict, all_edge_dict)
self.P3 = self.Graph()
self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
# P3._adj is synced with P3._succ
self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
self.P3._node = {}
self.P3._node[0] = {}
self.P3._node[1] = {}
self.P3._node[2] = {}
class TestSpecialMultiGraph(_TestMultiGraph):
def setup_method(self):
_TestMultiGraph.setup_method(self)
self.Graph = nx.MultiGraph
class TestSpecialMultiDiGraph(_TestMultiDiGraph):
def setup_method(self):
_TestMultiDiGraph.setup_method(self)
self.Graph = nx.MultiDiGraph

View File

@ -0,0 +1,362 @@
import pytest
import networkx as nx
from networkx.utils import edges_equal
class TestSubGraphView:
gview = staticmethod(nx.subgraph_view)
graph = nx.Graph
hide_edges_filter = staticmethod(nx.filters.hide_edges)
show_edges_filter = staticmethod(nx.filters.show_edges)
@classmethod
def setup_class(cls):
cls.G = nx.path_graph(9, create_using=cls.graph())
cls.hide_edges_w_hide_nodes = {(3, 4), (4, 5), (5, 6)}
def test_hidden_nodes(self):
hide_nodes = [4, 5, 111]
nodes_gone = nx.filters.hide_nodes(hide_nodes)
gview = self.gview
G = gview(self.G, filter_node=nodes_gone)
assert self.G.nodes - G.nodes == {4, 5}
assert self.G.edges - G.edges == self.hide_edges_w_hide_nodes
if G.is_directed():
assert list(G[3]) == []
assert list(G[2]) == [3]
else:
assert list(G[3]) == [2]
assert set(G[2]) == {1, 3}
pytest.raises(KeyError, G.__getitem__, 4)
pytest.raises(KeyError, G.__getitem__, 112)
pytest.raises(KeyError, G.__getitem__, 111)
assert G.degree(3) == (3 if G.is_multigraph() else 1)
assert G.size() == (7 if G.is_multigraph() else 5)
def test_hidden_edges(self):
hide_edges = [(2, 3), (8, 7), (222, 223)]
edges_gone = self.hide_edges_filter(hide_edges)
gview = self.gview
G = gview(self.G, filter_edge=edges_gone)
assert self.G.nodes == G.nodes
if G.is_directed():
assert self.G.edges - G.edges == {(2, 3)}
assert list(G[2]) == []
assert list(G.pred[3]) == []
assert list(G.pred[2]) == [1]
assert G.size() == 7
else:
assert self.G.edges - G.edges == {(2, 3), (7, 8)}
assert list(G[2]) == [1]
assert G.size() == 6
assert list(G[3]) == [4]
pytest.raises(KeyError, G.__getitem__, 221)
pytest.raises(KeyError, G.__getitem__, 222)
assert G.degree(3) == 1
def test_shown_node(self):
induced_subgraph = nx.filters.show_nodes([2, 3, 111])
gview = self.gview
G = gview(self.G, filter_node=induced_subgraph)
assert set(G.nodes) == {2, 3}
if G.is_directed():
assert list(G[3]) == []
else:
assert list(G[3]) == [2]
assert list(G[2]) == [3]
pytest.raises(KeyError, G.__getitem__, 4)
pytest.raises(KeyError, G.__getitem__, 112)
pytest.raises(KeyError, G.__getitem__, 111)
assert G.degree(3) == (3 if G.is_multigraph() else 1)
assert G.size() == (3 if G.is_multigraph() else 1)
def test_shown_edges(self):
show_edges = [(2, 3), (8, 7), (222, 223)]
edge_subgraph = self.show_edges_filter(show_edges)
G = self.gview(self.G, filter_edge=edge_subgraph)
assert self.G.nodes == G.nodes
if G.is_directed():
assert G.edges == {(2, 3)}
assert list(G[3]) == []
assert list(G[2]) == [3]
assert list(G.pred[3]) == [2]
assert list(G.pred[2]) == []
assert G.size() == 1
else:
assert G.edges == {(2, 3), (7, 8)}
assert list(G[3]) == [2]
assert list(G[2]) == [3]
assert G.size() == 2
pytest.raises(KeyError, G.__getitem__, 221)
pytest.raises(KeyError, G.__getitem__, 222)
assert G.degree(3) == 1
class TestSubDiGraphView(TestSubGraphView):
gview = staticmethod(nx.subgraph_view)
graph = nx.DiGraph
hide_edges_filter = staticmethod(nx.filters.hide_diedges)
show_edges_filter = staticmethod(nx.filters.show_diedges)
hide_edges = [(2, 3), (8, 7), (222, 223)]
excluded = {(2, 3), (3, 4), (4, 5), (5, 6)}
def test_inoutedges(self):
edges_gone = self.hide_edges_filter(self.hide_edges)
hide_nodes = [4, 5, 111]
nodes_gone = nx.filters.hide_nodes(hide_nodes)
G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
assert self.G.in_edges - G.in_edges == self.excluded
assert self.G.out_edges - G.out_edges == self.excluded
def test_pred(self):
edges_gone = self.hide_edges_filter(self.hide_edges)
hide_nodes = [4, 5, 111]
nodes_gone = nx.filters.hide_nodes(hide_nodes)
G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
assert list(G.pred[2]) == [1]
assert list(G.pred[6]) == []
def test_inout_degree(self):
edges_gone = self.hide_edges_filter(self.hide_edges)
hide_nodes = [4, 5, 111]
nodes_gone = nx.filters.hide_nodes(hide_nodes)
G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
assert G.degree(2) == 1
assert G.out_degree(2) == 0
assert G.in_degree(2) == 1
assert G.size() == 4
# multigraph
class TestMultiGraphView(TestSubGraphView):
gview = staticmethod(nx.subgraph_view)
graph = nx.MultiGraph
hide_edges_filter = staticmethod(nx.filters.hide_multiedges)
show_edges_filter = staticmethod(nx.filters.show_multiedges)
@classmethod
def setup_class(cls):
cls.G = nx.path_graph(9, create_using=cls.graph())
multiedges = {(2, 3, 4), (2, 3, 5)}
cls.G.add_edges_from(multiedges)
cls.hide_edges_w_hide_nodes = {(3, 4, 0), (4, 5, 0), (5, 6, 0)}
def test_hidden_edges(self):
hide_edges = [(2, 3, 4), (2, 3, 3), (8, 7, 0), (222, 223, 0)]
edges_gone = self.hide_edges_filter(hide_edges)
G = self.gview(self.G, filter_edge=edges_gone)
assert self.G.nodes == G.nodes
if G.is_directed():
assert self.G.edges - G.edges == {(2, 3, 4)}
assert list(G[3]) == [4]
assert list(G[2]) == [3]
assert list(G.pred[3]) == [2] # only one 2 but two edges
assert list(G.pred[2]) == [1]
assert G.size() == 9
else:
assert self.G.edges - G.edges == {(2, 3, 4), (7, 8, 0)}
assert list(G[3]) == [2, 4]
assert list(G[2]) == [1, 3]
assert G.size() == 8
assert G.degree(3) == 3
pytest.raises(KeyError, G.__getitem__, 221)
pytest.raises(KeyError, G.__getitem__, 222)
def test_shown_edges(self):
show_edges = [(2, 3, 4), (2, 3, 3), (8, 7, 0), (222, 223, 0)]
edge_subgraph = self.show_edges_filter(show_edges)
G = self.gview(self.G, filter_edge=edge_subgraph)
assert self.G.nodes == G.nodes
if G.is_directed():
assert G.edges == {(2, 3, 4)}
assert list(G[3]) == []
assert list(G.pred[3]) == [2]
assert list(G.pred[2]) == []
assert G.size() == 1
else:
assert G.edges == {(2, 3, 4), (7, 8, 0)}
assert G.size() == 2
assert list(G[3]) == [2]
assert G.degree(3) == 1
assert list(G[2]) == [3]
pytest.raises(KeyError, G.__getitem__, 221)
pytest.raises(KeyError, G.__getitem__, 222)
# multidigraph
class TestMultiDiGraphView(TestMultiGraphView, TestSubDiGraphView):
gview = staticmethod(nx.subgraph_view)
graph = nx.MultiDiGraph
hide_edges_filter = staticmethod(nx.filters.hide_multidiedges)
show_edges_filter = staticmethod(nx.filters.show_multidiedges)
hide_edges = [(2, 3, 0), (8, 7, 0), (222, 223, 0)]
excluded = {(2, 3, 0), (3, 4, 0), (4, 5, 0), (5, 6, 0)}
def test_inout_degree(self):
edges_gone = self.hide_edges_filter(self.hide_edges)
hide_nodes = [4, 5, 111]
nodes_gone = nx.filters.hide_nodes(hide_nodes)
G = self.gview(self.G, filter_node=nodes_gone, filter_edge=edges_gone)
assert G.degree(2) == 3
assert G.out_degree(2) == 2
assert G.in_degree(2) == 1
assert G.size() == 6
# induced_subgraph
class TestInducedSubGraph:
@classmethod
def setup_class(cls):
cls.K3 = G = nx.complete_graph(3)
G.graph["foo"] = []
G.nodes[0]["foo"] = []
G.remove_edge(1, 2)
ll = []
G.add_edge(1, 2, foo=ll)
G.add_edge(2, 1, foo=ll)
def test_full_graph(self):
G = self.K3
H = nx.induced_subgraph(G, [0, 1, 2, 5])
assert H.name == G.name
self.graphs_equal(H, G)
self.same_attrdict(H, G)
def test_partial_subgraph(self):
G = self.K3
H = nx.induced_subgraph(G, 0)
assert dict(H.adj) == {0: {}}
assert dict(G.adj) != {0: {}}
H = nx.induced_subgraph(G, [0, 1])
assert dict(H.adj) == {0: {1: {}}, 1: {0: {}}}
def same_attrdict(self, H, G):
old_foo = H[1][2]["foo"]
H.edges[1, 2]["foo"] = "baz"
assert G.edges == H.edges
H.edges[1, 2]["foo"] = old_foo
assert G.edges == H.edges
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G.nodes == H.nodes
H.nodes[0]["foo"] = old_foo
assert G.nodes == H.nodes
def graphs_equal(self, H, G):
assert G._adj == H._adj
assert G._node == H._node
assert G.graph == H.graph
assert G.name == H.name
if not G.is_directed() and not H.is_directed():
assert H._adj[1][2] is H._adj[2][1]
assert G._adj[1][2] is G._adj[2][1]
else: # at least one is directed
if not G.is_directed():
G._pred = G._adj
G._succ = G._adj
if not H.is_directed():
H._pred = H._adj
H._succ = H._adj
assert G._pred == H._pred
assert G._succ == H._succ
assert H._succ[1][2] is H._pred[2][1]
assert G._succ[1][2] is G._pred[2][1]
# edge_subgraph
class TestEdgeSubGraph:
@classmethod
def setup_class(cls):
# Create a path graph on five nodes.
cls.G = G = nx.path_graph(5)
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.edges[0, 1]["name"] = "edge01"
G.edges[3, 4]["name"] = "edge34"
G.graph["name"] = "graph"
# Get the subgraph induced by the first and last edges.
cls.H = nx.edge_subgraph(G, [(0, 1), (3, 4)])
def test_correct_nodes(self):
"""Tests that the subgraph has the correct nodes."""
assert [(0, "node0"), (1, "node1"), (3, "node3"), (4, "node4")] == sorted(
self.H.nodes.data("name")
)
def test_correct_edges(self):
"""Tests that the subgraph has the correct edges."""
assert edges_equal(
[(0, 1, "edge01"), (3, 4, "edge34")], self.H.edges.data("name")
)
def test_add_node(self):
"""Tests that adding a node to the original graph does not
affect the nodes of the subgraph.
"""
self.G.add_node(5)
assert [0, 1, 3, 4] == sorted(self.H.nodes)
self.G.remove_node(5)
def test_remove_node(self):
"""Tests that removing a node in the original graph
removes the nodes of the subgraph.
"""
self.G.remove_node(0)
assert [1, 3, 4] == sorted(self.H.nodes)
self.G.add_node(0, name="node0")
self.G.add_edge(0, 1, name="edge01")
def test_node_attr_dict(self):
"""Tests that the node attribute dictionary of the two graphs is
the same object.
"""
for v in self.H:
assert self.G.nodes[v] == self.H.nodes[v]
# Making a change to G should make a change in H and vice versa.
self.G.nodes[0]["name"] = "foo"
assert self.G.nodes[0] == self.H.nodes[0]
self.H.nodes[1]["name"] = "bar"
assert self.G.nodes[1] == self.H.nodes[1]
# Revert the change, so tests pass with pytest-randomly
self.G.nodes[0]["name"] = "node0"
self.H.nodes[1]["name"] = "node1"
def test_edge_attr_dict(self):
"""Tests that the edge attribute dictionary of the two graphs is
the same object.
"""
for u, v in self.H.edges():
assert self.G.edges[u, v] == self.H.edges[u, v]
# Making a change to G should make a change in H and vice versa.
self.G.edges[0, 1]["name"] = "foo"
assert self.G.edges[0, 1]["name"] == self.H.edges[0, 1]["name"]
self.H.edges[3, 4]["name"] = "bar"
assert self.G.edges[3, 4]["name"] == self.H.edges[3, 4]["name"]
# Revert the change, so tests pass with pytest-randomly
self.G.edges[0, 1]["name"] = "edge01"
self.H.edges[3, 4]["name"] = "edge34"
def test_graph_attr_dict(self):
"""Tests that the graph attribute dictionary of the two graphs
is the same object.
"""
assert self.G.graph is self.H.graph
def test_readonly(self):
"""Tests that the subgraph cannot change the graph structure"""
pytest.raises(nx.NetworkXError, self.H.add_node, 5)
pytest.raises(nx.NetworkXError, self.H.remove_node, 0)
pytest.raises(nx.NetworkXError, self.H.add_edge, 5, 6)
pytest.raises(nx.NetworkXError, self.H.remove_edge, 0, 1)