I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,30 @@
"""Module for gymnasium experimental vector utility functions."""
from gymnasium.experimental.vector.utils.misc import (
CloudpickleWrapper,
clear_mpi_env_vars,
)
from gymnasium.experimental.vector.utils.shared_memory import (
create_shared_memory,
read_from_shared_memory,
write_to_shared_memory,
)
from gymnasium.experimental.vector.utils.space_utils import (
batch_space,
concatenate,
create_empty_array,
iterate,
)
__all__ = [
"batch_space",
"iterate",
"concatenate",
"create_empty_array",
"create_shared_memory",
"read_from_shared_memory",
"write_to_shared_memory",
"CloudpickleWrapper",
"clear_mpi_env_vars",
]

View File

@ -0,0 +1,61 @@
"""Miscellaneous utilities."""
from __future__ import annotations
import contextlib
import os
from collections.abc import Callable
from gymnasium.core import Env
__all__ = ["CloudpickleWrapper", "clear_mpi_env_vars"]
class CloudpickleWrapper:
"""Wrapper that uses cloudpickle to pickle and unpickle the result."""
def __init__(self, fn: Callable[[], Env]):
"""Cloudpickle wrapper for a function."""
self.fn = fn
def __getstate__(self):
"""Get the state using `cloudpickle.dumps(self.fn)`."""
import cloudpickle
return cloudpickle.dumps(self.fn)
def __setstate__(self, ob):
"""Sets the state with obs."""
import pickle
self.fn = pickle.loads(ob)
def __call__(self):
"""Calls the function `self.fn` with no arguments."""
return self.fn()
@contextlib.contextmanager
def clear_mpi_env_vars():
"""Clears the MPI of environment variables.
`from mpi4py import MPI` will call `MPI_Init` by default.
If the child process has MPI environment variables, MPI will think that the child process
is an MPI process just like the parent and do bad things such as hang.
This context manager is a hacky way to clear those environment variables
temporarily such as when we are starting multiprocessing Processes.
Yields:
Yields for the context manager
"""
removed_environment = {}
for k, v in list(os.environ.items()):
for prefix in ["OMPI_", "PMI_"]:
if k.startswith(prefix):
removed_environment[k] = v
del os.environ[k]
try:
yield
finally:
os.environ.update(removed_environment)

View File

@ -0,0 +1,255 @@
"""Utility functions for vector environments to share memory between processes."""
from __future__ import annotations
import multiprocessing as mp
from collections import OrderedDict
from ctypes import c_bool
from functools import singledispatch
from typing import Any
import numpy as np
from gymnasium.error import CustomSpaceError
from gymnasium.spaces import (
Box,
Dict,
Discrete,
Graph,
MultiBinary,
MultiDiscrete,
Sequence,
Space,
Text,
Tuple,
flatten,
)
__all__ = ["create_shared_memory", "read_from_shared_memory", "write_to_shared_memory"]
@singledispatch
def create_shared_memory(
space: Space[Any], n: int = 1, ctx=mp
) -> dict[str, Any] | tuple[Any, ...] | mp.Array:
"""Create a shared memory object, to be shared across processes.
This eventually contains the observations from the vectorized environment.
Args:
space: Observation space of a single environment in the vectorized environment.
n: Number of environments in the vectorized environment (i.e. the number of processes).
ctx: The multiprocess module
Returns:
shared_memory for the shared object across processes.
Raises:
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
"""
if isinstance(space, Space):
raise CustomSpaceError(
f"Space of type `{type(space)}` doesn't have an registered `create_shared_memory` function. Register `{type(space)}` for `create_shared_memory` to support it."
)
else:
raise TypeError(
f"The space provided to `create_shared_memory` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
@create_shared_memory.register(Box)
@create_shared_memory.register(Discrete)
@create_shared_memory.register(MultiDiscrete)
@create_shared_memory.register(MultiBinary)
def _create_base_shared_memory(
space: Box | Discrete | MultiDiscrete | MultiBinary, n: int = 1, ctx=mp
):
assert space.dtype is not None
dtype = space.dtype.char
if dtype in "?":
dtype = c_bool
return ctx.Array(dtype, n * int(np.prod(space.shape)))
@create_shared_memory.register(Tuple)
def _create_tuple_shared_memory(space: Tuple, n: int = 1, ctx=mp):
return tuple(
create_shared_memory(subspace, n=n, ctx=ctx) for subspace in space.spaces
)
@create_shared_memory.register(Dict)
def _create_dict_shared_memory(space: Dict, n: int = 1, ctx=mp):
return OrderedDict(
[
(key, create_shared_memory(subspace, n=n, ctx=ctx))
for (key, subspace) in space.spaces.items()
]
)
@create_shared_memory.register(Text)
def _create_text_shared_memory(space: Text, n: int = 1, ctx=mp):
return ctx.Array(np.dtype(np.int32).char, n * space.max_length)
@create_shared_memory.register(Graph)
@create_shared_memory.register(Sequence)
def _create_dynamic_shared_memory(space: Graph | Sequence, n: int = 1, ctx=mp):
raise TypeError(
f"As {space} has a dynamic shape then it is not possible to make a static shared memory."
)
@singledispatch
def read_from_shared_memory(
space: Space, shared_memory: dict | tuple | mp.Array, n: int = 1
) -> dict[str, Any] | tuple[Any, ...] | np.ndarray:
"""Read the batch of observations from shared memory as a numpy array.
..notes::
The numpy array objects returned by `read_from_shared_memory` shares the
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
Args:
space: Observation space of a single environment in the vectorized environment.
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
This object is created with `create_shared_memory`.
n: Number of environments in the vectorized environment (i.e. the number of processes).
Returns:
Batch of observations as a (possibly nested) numpy array.
Raises:
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
"""
if isinstance(space, Space):
raise CustomSpaceError(
f"Space of type `{type(space)}` doesn't have an registered `read_from_shared_memory` function. Register `{type(space)}` for `read_from_shared_memory` to support it."
)
else:
raise TypeError(
f"The space provided to `read_from_shared_memory` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
@read_from_shared_memory.register(Box)
@read_from_shared_memory.register(Discrete)
@read_from_shared_memory.register(MultiDiscrete)
@read_from_shared_memory.register(MultiBinary)
def _read_base_from_shared_memory(
space: Box | Discrete | MultiDiscrete | MultiBinary, shared_memory, n: int = 1
):
return np.frombuffer(shared_memory.get_obj(), dtype=space.dtype).reshape(
(n,) + space.shape
)
@read_from_shared_memory.register(Tuple)
def _read_tuple_from_shared_memory(space: Tuple, shared_memory, n: int = 1):
return tuple(
read_from_shared_memory(subspace, memory, n=n)
for (memory, subspace) in zip(shared_memory, space.spaces)
)
@read_from_shared_memory.register(Dict)
def _read_dict_from_shared_memory(space: Dict, shared_memory, n: int = 1):
return OrderedDict(
[
(key, read_from_shared_memory(subspace, shared_memory[key], n=n))
for (key, subspace) in space.spaces.items()
]
)
@read_from_shared_memory.register(Text)
def _read_text_from_shared_memory(space: Text, shared_memory, n: int = 1) -> tuple[str]:
data = np.frombuffer(shared_memory.get_obj(), dtype=np.int32).reshape(
(n, space.max_length)
)
return tuple(
"".join(
[
space.character_list[val]
for val in values
if val < len(space.character_set)
]
)
for values in data
)
@singledispatch
def write_to_shared_memory(
space: Space,
index: int,
value: np.ndarray,
shared_memory: dict[str, Any] | tuple[Any, ...] | mp.Array,
):
"""Write the observation of a single environment into shared memory.
Args:
space: Observation space of a single environment in the vectorized environment.
index: Index of the environment (must be in `[0, num_envs)`).
value: Observation of the single environment to write to shared memory.
shared_memory: Shared object across processes. This contains the observations from the vectorized environment.
This object is created with `create_shared_memory`.
Raises:
CustomSpaceError: Space is not a valid :class:`gymnasium.Space` instance
"""
if isinstance(space, Space):
raise CustomSpaceError(
f"Space of type `{type(space)}` doesn't have an registered `write_to_shared_memory` function. Register `{type(space)}` for `write_to_shared_memory` to support it."
)
else:
raise TypeError(
f"The space provided to `write_to_shared_memory` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
@write_to_shared_memory.register(Box)
@write_to_shared_memory.register(Discrete)
@write_to_shared_memory.register(MultiDiscrete)
@write_to_shared_memory.register(MultiBinary)
def _write_base_to_shared_memory(
space: Box | Discrete | MultiDiscrete | MultiBinary,
index: int,
value,
shared_memory,
):
size = int(np.prod(space.shape))
destination = np.frombuffer(shared_memory.get_obj(), dtype=space.dtype)
np.copyto(
destination[index * size : (index + 1) * size],
np.asarray(value, dtype=space.dtype).flatten(),
)
@write_to_shared_memory.register(Tuple)
def _write_tuple_to_shared_memory(
space: Tuple, index: int, values: tuple[Any, ...], shared_memory
):
for value, memory, subspace in zip(values, shared_memory, space.spaces):
write_to_shared_memory(subspace, index, value, memory)
@write_to_shared_memory.register(Dict)
def _write_dict_to_shared_memory(
space: Dict, index: int, values: dict[str, Any], shared_memory
):
for key, subspace in space.spaces.items():
write_to_shared_memory(subspace, index, values[key], shared_memory[key])
@write_to_shared_memory.register(Text)
def _write_text_to_shared_memory(space: Text, index: int, values: str, shared_memory):
size = space.max_length
destination = np.frombuffer(shared_memory.get_obj(), dtype=np.int32)
np.copyto(
destination[index * size : (index + 1) * size],
flatten(space, values),
)

View File

@ -0,0 +1,407 @@
"""Space-based utility functions for vector environments.
- ``batch_space``: Create a (batched) space, containing multiple copies of a single space.
- ``concatenate``: Concatenate multiple samples from (unbatched) space into a single object.
- ``Iterate``: Iterate over the elements of a (batched) space and items.
- ``create_empty_array``: Create an empty (possibly nested) (normally numpy-based) array, used in conjunction with ``concatenate(..., out=array)``
"""
from __future__ import annotations
from collections import OrderedDict
from copy import deepcopy
from functools import singledispatch
from typing import Any, Iterable, Iterator
import numpy as np
from gymnasium.error import CustomSpaceError
from gymnasium.spaces import (
Box,
Dict,
Discrete,
Graph,
GraphInstance,
MultiBinary,
MultiDiscrete,
Sequence,
Space,
Text,
Tuple,
)
from gymnasium.spaces.space import T_cov
__all__ = ["batch_space", "iterate", "concatenate", "create_empty_array"]
@singledispatch
def batch_space(space: Space[Any], n: int = 1) -> Space[Any]:
"""Create a (batched) space, containing multiple copies of a single space.
Args:
space: Space (e.g. the observation space) for a single environment in the vectorized environment.
n: Number of environments in the vectorized environment.
Returns:
Space (e.g. the observation space) for a batch of environments in the vectorized environment.
Raises:
ValueError: Cannot batch space does not have a registered function.
Example:
>>> from gymnasium.spaces import Box, Dict
>>> import numpy as np
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)
... })
>>> batch_space(space, n=5)
Dict('position': Box(0.0, 1.0, (5, 3), float32), 'velocity': Box(0.0, 1.0, (5, 2), float32))
"""
raise TypeError(
f"The space provided to `batch_space` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
@batch_space.register(Box)
def _batch_space_box(space: Box, n: int = 1):
repeats = tuple([n] + [1] * space.low.ndim)
low, high = np.tile(space.low, repeats), np.tile(space.high, repeats)
return Box(low=low, high=high, dtype=space.dtype, seed=deepcopy(space.np_random))
@batch_space.register(Discrete)
def _batch_space_discrete(space: Discrete, n: int = 1):
return MultiDiscrete(
np.full((n,), space.n, dtype=space.dtype),
dtype=space.dtype,
seed=deepcopy(space.np_random),
start=np.full((n,), space.start, dtype=space.dtype),
)
@batch_space.register(MultiDiscrete)
def _batch_space_multidiscrete(space: MultiDiscrete, n: int = 1):
repeats = tuple([n] + [1] * space.nvec.ndim)
low = np.tile(space.start, repeats)
high = low + np.tile(space.nvec, repeats) - 1
return Box(
low=low,
high=high,
dtype=space.dtype,
seed=deepcopy(space.np_random),
)
@batch_space.register(MultiBinary)
def _batch_space_multibinary(space: MultiBinary, n: int = 1):
return Box(
low=0,
high=1,
shape=(n,) + space.shape,
dtype=space.dtype,
seed=deepcopy(space.np_random),
)
@batch_space.register(Tuple)
def _batch_space_tuple(space: Tuple, n: int = 1):
return Tuple(
tuple(batch_space(subspace, n=n) for subspace in space.spaces),
seed=deepcopy(space.np_random),
)
@batch_space.register(Dict)
def _batch_space_dict(space: Dict, n: int = 1):
return Dict(
{key: batch_space(subspace, n=n) for key, subspace in space.items()},
seed=deepcopy(space.np_random),
)
@batch_space.register(Graph)
@batch_space.register(Text)
@batch_space.register(Sequence)
@batch_space.register(Space)
def _batch_space_custom(space: Graph | Text | Sequence, n: int = 1):
# Without deepcopy, then the space.np_random is batched_space.spaces[0].np_random
# Which is an issue if you are sampling actions of both the original space and the batched space
batched_space = Tuple(
tuple(deepcopy(space) for _ in range(n)), seed=deepcopy(space.np_random)
)
space_rng = deepcopy(space.np_random)
new_seeds = list(map(int, space_rng.integers(0, 1e8, n)))
batched_space.seed(new_seeds)
return batched_space
@singledispatch
def iterate(space: Space[T_cov], items: Iterable[T_cov]) -> Iterator:
"""Iterate over the elements of a (batched) space.
Args:
space: Observation space of a single environment in the vectorized environment.
items: Samples to be concatenated.
out: The output object. This object is a (possibly nested) numpy array.
Returns:
The output object. This object is a (possibly nested) numpy array.
Raises:
ValueError: Space is not an instance of :class:`gym.Space`
Example:
>>> from gymnasium.spaces import Box, Dict
>>> import numpy as np
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(2, 3), seed=42, dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2, 2), seed=42, dtype=np.float32)})
>>> items = space.sample()
>>> it = iterate(space, items)
>>> next(it)
OrderedDict([('position', array([0.77395606, 0.43887845, 0.85859793], dtype=float32)), ('velocity', array([0.77395606, 0.43887845], dtype=float32))])
>>> next(it)
OrderedDict([('position', array([0.697368 , 0.09417735, 0.97562236], dtype=float32)), ('velocity', array([0.85859793, 0.697368 ], dtype=float32))])
>>> next(it)
Traceback (most recent call last):
...
StopIteration
"""
if isinstance(space, Space):
raise CustomSpaceError(
f"Space of type `{type(space)}` doesn't have an registered `iterate` function. Register `{type(space)}` for `iterate` to support it."
)
else:
raise TypeError(
f"The space provided to `iterate` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
@iterate.register(Discrete)
def _iterate_discrete(space: Discrete, items: Iterable):
raise TypeError("Unable to iterate over a space of type `Discrete`.")
@iterate.register(Box)
@iterate.register(MultiDiscrete)
@iterate.register(MultiBinary)
def _iterate_base(space: Box | MultiDiscrete | MultiBinary, items: np.ndarray):
try:
return iter(items)
except TypeError as e:
raise TypeError(
f"Unable to iterate over the following elements: {items}"
) from e
@iterate.register(Tuple)
def _iterate_tuple(space: Tuple, items: tuple[Any, ...]):
# If this is a tuple of custom subspaces only, then simply iterate over items
if all(type(subspace) in iterate.registry for subspace in space):
return zip(*[iterate(subspace, items[i]) for i, subspace in enumerate(space)])
try:
return iter(items)
except Exception as e:
unregistered_spaces = [
type(subspace)
for subspace in space
if type(subspace) not in iterate.registry
]
raise CustomSpaceError(
f"Could not iterate through {space} as no custom iterate function is registered for {unregistered_spaces} and `iter(items)` raised the following error: {e}."
) from e
@iterate.register(Dict)
def _iterate_dict(space: Dict, items: dict[str, Any]):
keys, values = zip(
*[
(key, iterate(subspace, items[key]))
for key, subspace in space.spaces.items()
]
)
for item in zip(*values):
yield OrderedDict({key: value for key, value in zip(keys, item)})
@singledispatch
def concatenate(
space: Space, items: Iterable, out: tuple[Any, ...] | dict[str, Any] | np.ndarray
) -> tuple[Any, ...] | dict[str, Any] | np.ndarray:
"""Concatenate multiple samples from space into a single object.
Args:
space: Observation space of a single environment in the vectorized environment.
items: Samples to be concatenated.
out: The output object. This object is a (possibly nested) numpy array.
Returns:
The output object. This object is a (possibly nested) numpy array.
Raises:
ValueError: Space
Example:
>>> from gymnasium.spaces import Box
>>> import numpy as np
>>> space = Box(low=0, high=1, shape=(3,), seed=42, dtype=np.float32)
>>> out = np.zeros((2, 3), dtype=np.float32)
>>> items = [space.sample() for _ in range(2)]
>>> concatenate(space, items, out)
array([[0.77395606, 0.43887845, 0.85859793],
[0.697368 , 0.09417735, 0.97562236]], dtype=float32)
"""
raise TypeError(
f"The space provided to `concatenate` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
@concatenate.register(Box)
@concatenate.register(Discrete)
@concatenate.register(MultiDiscrete)
@concatenate.register(MultiBinary)
def _concatenate_base(
space: Box | Discrete | MultiDiscrete | MultiBinary,
items: Iterable,
out: np.ndarray,
) -> np.ndarray:
return np.stack(items, axis=0, out=out)
@concatenate.register(Tuple)
def _concatenate_tuple(
space: Tuple, items: Iterable, out: tuple[Any, ...]
) -> tuple[Any, ...]:
return tuple(
concatenate(subspace, [item[i] for item in items], out[i])
for (i, subspace) in enumerate(space.spaces)
)
@concatenate.register(Dict)
def _concatenate_dict(
space: Dict, items: Iterable, out: dict[str, Any]
) -> dict[str, Any]:
return OrderedDict(
{
key: concatenate(subspace, [item[key] for item in items], out[key])
for key, subspace in space.items()
}
)
@concatenate.register(Graph)
@concatenate.register(Text)
@concatenate.register(Sequence)
@concatenate.register(Space)
def _concatenate_custom(space: Space, items: Iterable, out: None) -> tuple[Any, ...]:
return tuple(items)
@singledispatch
def create_empty_array(
space: Space, n: int = 1, fn: callable = np.zeros
) -> tuple[Any, ...] | dict[str, Any] | np.ndarray:
"""Create an empty (possibly nested) (normally numpy-based) array, used in conjunction with ``concatenate(..., out=array)``.
In most cases, the array will be contained within the batched space, however, this is not guaranteed.
Args:
space: Observation space of a single environment in the vectorized environment.
n: Number of environments in the vectorized environment. If `None`, creates an empty sample from `space`.
fn: Function to apply when creating the empty numpy array. Examples of such functions are `np.empty` or `np.zeros`.
Returns:
The output object. This object is a (possibly nested) numpy array.
Raises:
ValueError: Space is not a valid :class:`gym.Space` instance
Example:
>>> from gymnasium.spaces import Box, Dict
>>> import numpy as np
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
>>> create_empty_array(space, n=2, fn=np.zeros)
OrderedDict([('position', array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)), ('velocity', array([[0., 0.],
[0., 0.]], dtype=float32))])
"""
raise TypeError(
f"The space provided to `create_empty_array` is not a gymnasium Space instance, type: {type(space)}, {space}"
)
# It is possible for the some of the Box low to be greater than 0, then array is not in space
@create_empty_array.register(Box)
# If the Discrete start > 0 or start + length < 0 then array is not in space
@create_empty_array.register(Discrete)
@create_empty_array.register(MultiDiscrete)
@create_empty_array.register(MultiBinary)
def _create_empty_array_multi(space: Box, n: int = 1, fn=np.zeros) -> np.ndarray:
return fn((n,) + space.shape, dtype=space.dtype)
@create_empty_array.register(Tuple)
def _create_empty_array_tuple(space: Tuple, n: int = 1, fn=np.zeros) -> tuple[Any, ...]:
return tuple(create_empty_array(subspace, n=n, fn=fn) for subspace in space.spaces)
@create_empty_array.register(Dict)
def _create_empty_array_dict(space: Dict, n: int = 1, fn=np.zeros) -> dict[str, Any]:
return OrderedDict(
{
key: create_empty_array(subspace, n=n, fn=fn)
for key, subspace in space.items()
}
)
@create_empty_array.register(Graph)
def _create_empty_array_graph(
space: Graph, n: int = 1, fn=np.zeros
) -> tuple[GraphInstance, ...]:
if space.edge_space is not None:
return tuple(
GraphInstance(
nodes=fn((1,) + space.node_space.shape, dtype=space.node_space.dtype),
edges=fn((1,) + space.edge_space.shape, dtype=space.edge_space.dtype),
edge_links=fn((1, 2), dtype=np.int64),
)
for _ in range(n)
)
else:
return tuple(
GraphInstance(
nodes=fn((1,) + space.node_space.shape, dtype=space.node_space.dtype),
edges=None,
edge_links=None,
)
for _ in range(n)
)
@create_empty_array.register(Text)
def _create_empty_array_text(space: Text, n: int = 1, fn=np.zeros) -> tuple[str, ...]:
return tuple(space.characters[0] * space.min_length for _ in range(n))
@create_empty_array.register(Sequence)
def _create_empty_array_sequence(
space: Sequence, n: int = 1, fn=np.zeros
) -> tuple[Any, ...]:
if space.stack:
return tuple(
create_empty_array(space.feature_space, n=1, fn=fn) for _ in range(n)
)
else:
return tuple(tuple() for _ in range(n))
@create_empty_array.register(Space)
def _create_empty_array_custom(space, n=1, fn=np.zeros):
return None