I am done

This commit is contained in:
2024-10-30 22:14:35 +01:00
parent 720dc28c09
commit 40e2a747cf
36901 changed files with 5011519 additions and 0 deletions

View File

@ -0,0 +1,285 @@
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from contourpy._contourpy import (
ContourGenerator,
FillType,
LineType,
Mpl2005ContourGenerator,
Mpl2014ContourGenerator,
SerialContourGenerator,
ThreadedContourGenerator,
ZInterp,
max_threads,
)
from contourpy._version import __version__
from contourpy.chunk import calc_chunk_sizes
from contourpy.convert import (
convert_filled,
convert_lines,
convert_multi_filled,
convert_multi_lines,
)
from contourpy.dechunk import (
dechunk_filled,
dechunk_lines,
dechunk_multi_filled,
dechunk_multi_lines,
)
from contourpy.enum_util import as_fill_type, as_line_type, as_z_interp
if TYPE_CHECKING:
from typing import Any
from numpy.typing import ArrayLike
from ._contourpy import CoordinateArray, MaskArray
__all__ = [
"__version__",
"contour_generator",
"convert_filled",
"convert_lines",
"convert_multi_filled",
"convert_multi_lines",
"dechunk_filled",
"dechunk_lines",
"dechunk_multi_filled",
"dechunk_multi_lines",
"max_threads",
"FillType",
"LineType",
"ContourGenerator",
"Mpl2005ContourGenerator",
"Mpl2014ContourGenerator",
"SerialContourGenerator",
"ThreadedContourGenerator",
"ZInterp",
]
# Simple mapping of algorithm name to class name.
_class_lookup: dict[str, type[ContourGenerator]] = {
"mpl2005": Mpl2005ContourGenerator,
"mpl2014": Mpl2014ContourGenerator,
"serial": SerialContourGenerator,
"threaded": ThreadedContourGenerator,
}
def _remove_z_mask(
z: ArrayLike | np.ma.MaskedArray[Any, Any] | None,
) -> tuple[CoordinateArray, MaskArray | None]:
# Preserve mask if present.
z_array = np.ma.asarray(z, dtype=np.float64) # type: ignore[no-untyped-call]
z_masked = np.ma.masked_invalid(z_array, copy=False) # type: ignore[no-untyped-call]
if np.ma.is_masked(z_masked): # type: ignore[no-untyped-call]
mask = np.ma.getmask(z_masked) # type: ignore[no-untyped-call]
else:
mask = None
return np.ma.getdata(z_masked), mask # type: ignore[no-untyped-call]
def contour_generator(
x: ArrayLike | None = None,
y: ArrayLike | None = None,
z: ArrayLike | np.ma.MaskedArray[Any, Any] | None = None,
*,
name: str = "serial",
corner_mask: bool | None = None,
line_type: LineType | str | None = None,
fill_type: FillType | str | None = None,
chunk_size: int | tuple[int, int] | None = None,
chunk_count: int | tuple[int, int] | None = None,
total_chunk_count: int | None = None,
quad_as_tri: bool = False,
z_interp: ZInterp | str | None = ZInterp.Linear,
thread_count: int = 0,
) -> ContourGenerator:
"""Create and return a :class:`~.ContourGenerator` object.
The class and properties of the returned :class:`~.ContourGenerator` are determined by the
function arguments, with sensible defaults.
Args:
x (array-like of shape (ny, nx) or (nx,), optional): The x-coordinates of the ``z`` values.
May be 2D with the same shape as ``z.shape``, or 1D with length ``nx = z.shape[1]``.
If not specified are assumed to be ``np.arange(nx)``. Must be ordered monotonically.
y (array-like of shape (ny, nx) or (ny,), optional): The y-coordinates of the ``z`` values.
May be 2D with the same shape as ``z.shape``, or 1D with length ``ny = z.shape[0]``.
If not specified are assumed to be ``np.arange(ny)``. Must be ordered monotonically.
z (array-like of shape (ny, nx), may be a masked array): The 2D gridded values to calculate
the contours of. May be a masked array, and any invalid values (``np.inf`` or
``np.nan``) will also be masked out.
name (str): Algorithm name, one of ``"serial"``, ``"threaded"``, ``"mpl2005"`` or
``"mpl2014"``, default ``"serial"``.
corner_mask (bool, optional): Enable/disable corner masking, which only has an effect if
``z`` is a masked array. If ``False``, any quad touching a masked point is masked out.
If ``True``, only the triangular corners of quads nearest these points are always masked
out, other triangular corners comprising three unmasked points are contoured as usual.
If not specified, uses the default provided by the algorithm ``name``.
line_type (LineType or str, optional): The format of contour line data returned from calls
to :meth:`~.ContourGenerator.lines`, specified either as a :class:`~.LineType` or its
string equivalent such as ``"SeparateCode"``.
If not specified, uses the default provided by the algorithm ``name``.
The relationship between the :class:`~.LineType` enum and the data format returned from
:meth:`~.ContourGenerator.lines` is explained at :ref:`line_type`.
fill_type (FillType or str, optional): The format of filled contour data returned from calls
to :meth:`~.ContourGenerator.filled`, specified either as a :class:`~.FillType` or its
string equivalent such as ``"OuterOffset"``.
If not specified, uses the default provided by the algorithm ``name``.
The relationship between the :class:`~.FillType` enum and the data format returned from
:meth:`~.ContourGenerator.filled` is explained at :ref:`fill_type`.
chunk_size (int or tuple(int, int), optional): Chunk size in (y, x) directions, or the same
size in both directions if only one value is specified.
chunk_count (int or tuple(int, int), optional): Chunk count in (y, x) directions, or the
same count in both directions if only one value is specified.
total_chunk_count (int, optional): Total number of chunks.
quad_as_tri (bool): Enable/disable treating quads as 4 triangles, default ``False``.
If ``False``, a contour line within a quad is a straight line between points on two of
its edges. If ``True``, each full quad is divided into 4 triangles using a virtual point
at the centre (mean x, y of the corner points) and a contour line is piecewise linear
within those triangles. Corner-masked triangles are not affected by this setting, only
full unmasked quads.
z_interp (ZInterp or str, optional): How to interpolate ``z`` values when determining where
contour lines intersect the edges of quads and the ``z`` values of the central points of
quads, specified either as a :class:`~contourpy.ZInterp` or its string equivalent such
as ``"Log"``. Default is ``ZInterp.Linear``.
thread_count (int): Number of threads to use for contour calculation, default 0. Threads can
only be used with an algorithm ``name`` that supports threads (currently only
``name="threaded"``) and there must be at least the same number of chunks as threads.
If ``thread_count=0`` and ``name="threaded"`` then it uses the maximum number of threads
as determined by the C++11 call ``std::thread::hardware_concurrency()``. If ``name`` is
something other than ``"threaded"`` then the ``thread_count`` will be set to ``1``.
Return:
:class:`~.ContourGenerator`.
Note:
A maximum of one of ``chunk_size``, ``chunk_count`` and ``total_chunk_count`` may be
specified.
Warning:
The ``name="mpl2005"`` algorithm does not implement chunking for contour lines.
"""
x = np.asarray(x, dtype=np.float64)
y = np.asarray(y, dtype=np.float64)
z, mask = _remove_z_mask(z)
# Check arguments: z.
if z.ndim != 2:
raise TypeError(f"Input z must be 2D, not {z.ndim}D")
if z.shape[0] < 2 or z.shape[1] < 2:
raise TypeError(f"Input z must be at least a (2, 2) shaped array, but has shape {z.shape}")
ny, nx = z.shape
# Check arguments: x and y.
if x.ndim != y.ndim:
raise TypeError(f"Number of dimensions of x ({x.ndim}) and y ({y.ndim}) do not match")
if x.ndim == 0:
x = np.arange(nx, dtype=np.float64)
y = np.arange(ny, dtype=np.float64)
x, y = np.meshgrid(x, y)
elif x.ndim == 1:
if len(x) != nx:
raise TypeError(f"Length of x ({len(x)}) must match number of columns in z ({nx})")
if len(y) != ny:
raise TypeError(f"Length of y ({len(y)}) must match number of rows in z ({ny})")
x, y = np.meshgrid(x, y)
elif x.ndim == 2:
if x.shape != z.shape:
raise TypeError(f"Shapes of x {x.shape} and z {z.shape} do not match")
if y.shape != z.shape:
raise TypeError(f"Shapes of y {y.shape} and z {z.shape} do not match")
else:
raise TypeError(f"Inputs x and y must be None, 1D or 2D, not {x.ndim}D")
# Check mask shape just in case.
if mask is not None and mask.shape != z.shape:
raise ValueError("If mask is set it must be a 2D array with the same shape as z")
# Check arguments: name.
if name not in _class_lookup:
raise ValueError(f"Unrecognised contour generator name: {name}")
# Check arguments: chunk_size, chunk_count and total_chunk_count.
y_chunk_size, x_chunk_size = calc_chunk_sizes(
chunk_size, chunk_count, total_chunk_count, ny, nx)
cls = _class_lookup[name]
# Check arguments: corner_mask.
if corner_mask is None:
# Set it to default, which is True if the algorithm supports it.
corner_mask = cls.supports_corner_mask()
elif corner_mask and not cls.supports_corner_mask():
raise ValueError(f"{name} contour generator does not support corner_mask=True")
# Check arguments: line_type.
if line_type is None:
line_type = cls.default_line_type
else:
line_type = as_line_type(line_type)
if not cls.supports_line_type(line_type):
raise ValueError(f"{name} contour generator does not support line_type {line_type}")
# Check arguments: fill_type.
if fill_type is None:
fill_type = cls.default_fill_type
else:
fill_type = as_fill_type(fill_type)
if not cls.supports_fill_type(fill_type):
raise ValueError(f"{name} contour generator does not support fill_type {fill_type}")
# Check arguments: quad_as_tri.
if quad_as_tri and not cls.supports_quad_as_tri():
raise ValueError(f"{name} contour generator does not support quad_as_tri=True")
# Check arguments: z_interp.
if z_interp is None:
z_interp = ZInterp.Linear
else:
z_interp = as_z_interp(z_interp)
if z_interp != ZInterp.Linear and not cls.supports_z_interp():
raise ValueError(f"{name} contour generator does not support z_interp {z_interp}")
# Check arguments: thread_count.
if thread_count not in (0, 1) and not cls.supports_threads():
raise ValueError(f"{name} contour generator does not support thread_count {thread_count}")
# Prepare args and kwargs for contour generator constructor.
args = [x, y, z, mask]
kwargs: dict[str, int | bool | LineType | FillType | ZInterp] = {
"x_chunk_size": x_chunk_size,
"y_chunk_size": y_chunk_size,
}
if name not in ("mpl2005", "mpl2014"):
kwargs["line_type"] = line_type
kwargs["fill_type"] = fill_type
if cls.supports_corner_mask():
kwargs["corner_mask"] = corner_mask
if cls.supports_quad_as_tri():
kwargs["quad_as_tri"] = quad_as_tri
if cls.supports_z_interp():
kwargs["z_interp"] = z_interp
if cls.supports_threads():
kwargs["thread_count"] = thread_count
# Create contour generator.
return cls(*args, **kwargs)

View File

@ -0,0 +1,200 @@
from typing import ClassVar, NoReturn
import numpy as np
import numpy.typing as npt
from typing_extensions import TypeAlias
import contourpy._contourpy as cpy
# Input numpy array types, the same as in common.h
CoordinateArray: TypeAlias = npt.NDArray[np.float64]
MaskArray: TypeAlias = npt.NDArray[np.bool_]
LevelArray: TypeAlias = npt.ArrayLike
# Output numpy array types, the same as in common.h
PointArray: TypeAlias = npt.NDArray[np.float64]
CodeArray: TypeAlias = npt.NDArray[np.uint8]
OffsetArray: TypeAlias = npt.NDArray[np.uint32]
# Types returned from filled()
FillReturn_OuterCode: TypeAlias = tuple[list[PointArray], list[CodeArray]]
FillReturn_OuterOffset: TypeAlias = tuple[list[PointArray], list[OffsetArray]]
FillReturn_ChunkCombinedCode: TypeAlias = tuple[list[PointArray | None], list[CodeArray | None]]
FillReturn_ChunkCombinedOffset: TypeAlias = tuple[list[PointArray | None], list[OffsetArray | None]]
FillReturn_ChunkCombinedCodeOffset: TypeAlias = tuple[list[PointArray | None], list[CodeArray | None], list[OffsetArray | None]]
FillReturn_ChunkCombinedOffsetOffset: TypeAlias = tuple[list[PointArray | None], list[OffsetArray | None], list[OffsetArray | None]]
FillReturn_Chunk: TypeAlias = FillReturn_ChunkCombinedCode | FillReturn_ChunkCombinedOffset | FillReturn_ChunkCombinedCodeOffset | FillReturn_ChunkCombinedOffsetOffset
FillReturn: TypeAlias = FillReturn_OuterCode | FillReturn_OuterOffset | FillReturn_Chunk
# Types returned from lines()
LineReturn_Separate: TypeAlias = list[PointArray]
LineReturn_SeparateCode: TypeAlias = tuple[list[PointArray], list[CodeArray]]
LineReturn_ChunkCombinedCode: TypeAlias = tuple[list[PointArray | None], list[CodeArray | None]]
LineReturn_ChunkCombinedOffset: TypeAlias = tuple[list[PointArray | None], list[OffsetArray | None]]
LineReturn_ChunkCombinedNan: TypeAlias = tuple[list[PointArray | None]]
LineReturn_Chunk: TypeAlias = LineReturn_ChunkCombinedCode | LineReturn_ChunkCombinedOffset | LineReturn_ChunkCombinedNan
LineReturn: TypeAlias = LineReturn_Separate | LineReturn_SeparateCode | LineReturn_Chunk
NDEBUG: int
__version__: str
class FillType:
ChunkCombinedCode: ClassVar[cpy.FillType]
ChunkCombinedCodeOffset: ClassVar[cpy.FillType]
ChunkCombinedOffset: ClassVar[cpy.FillType]
ChunkCombinedOffsetOffset: ClassVar[cpy.FillType]
OuterCode: ClassVar[cpy.FillType]
OuterOffset: ClassVar[cpy.FillType]
__members__: ClassVar[dict[str, cpy.FillType]]
def __eq__(self, other: object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self, value: int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self, other: object) -> bool: ...
def __setstate__(self, state: int) -> NoReturn: ...
@property
def name(self) -> str: ...
@property
def value(self) -> int: ...
class LineType:
ChunkCombinedCode: ClassVar[cpy.LineType]
ChunkCombinedNan: ClassVar[cpy.LineType]
ChunkCombinedOffset: ClassVar[cpy.LineType]
Separate: ClassVar[cpy.LineType]
SeparateCode: ClassVar[cpy.LineType]
__members__: ClassVar[dict[str, cpy.LineType]]
def __eq__(self, other: object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self, value: int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self, other: object) -> bool: ...
def __setstate__(self, state: int) -> NoReturn: ...
@property
def name(self) -> str: ...
@property
def value(self) -> int: ...
class ZInterp:
Linear: ClassVar[cpy.ZInterp]
Log: ClassVar[cpy.ZInterp]
__members__: ClassVar[dict[str, cpy.ZInterp]]
def __eq__(self, other: object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self, value: int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self, other: object) -> bool: ...
def __setstate__(self, state: int) -> NoReturn: ...
@property
def name(self) -> str: ...
@property
def value(self) -> int: ...
def max_threads() -> int: ...
class ContourGenerator:
def create_contour(self, level: float) -> LineReturn: ...
def create_filled_contour(self, lower_level: float, upper_level: float) -> FillReturn: ...
def filled(self, lower_level: float, upper_level: float) -> FillReturn: ...
def lines(self, level: float) -> LineReturn: ...
def multi_filled(self, levels: LevelArray) -> list[FillReturn]: ...
def multi_lines(self, levels: LevelArray) -> list[LineReturn]: ...
@staticmethod
def supports_corner_mask() -> bool: ...
@staticmethod
def supports_fill_type(fill_type: FillType) -> bool: ...
@staticmethod
def supports_line_type(line_type: LineType) -> bool: ...
@staticmethod
def supports_quad_as_tri() -> bool: ...
@staticmethod
def supports_threads() -> bool: ...
@staticmethod
def supports_z_interp() -> bool: ...
@property
def chunk_count(self) -> tuple[int, int]: ...
@property
def chunk_size(self) -> tuple[int, int]: ...
@property
def corner_mask(self) -> bool: ...
@property
def fill_type(self) -> FillType: ...
@property
def line_type(self) -> LineType: ...
@property
def quad_as_tri(self) -> bool: ...
@property
def thread_count(self) -> int: ...
@property
def z_interp(self) -> ZInterp: ...
default_fill_type: cpy.FillType
default_line_type: cpy.LineType
class Mpl2005ContourGenerator(ContourGenerator):
def __init__(
self,
x: CoordinateArray,
y: CoordinateArray,
z: CoordinateArray,
mask: MaskArray,
*,
x_chunk_size: int = 0,
y_chunk_size: int = 0,
) -> None: ...
class Mpl2014ContourGenerator(ContourGenerator):
def __init__(
self,
x: CoordinateArray,
y: CoordinateArray,
z: CoordinateArray,
mask: MaskArray,
*,
corner_mask: bool,
x_chunk_size: int = 0,
y_chunk_size: int = 0,
) -> None: ...
class SerialContourGenerator(ContourGenerator):
def __init__(
self,
x: CoordinateArray,
y: CoordinateArray,
z: CoordinateArray,
mask: MaskArray,
*,
corner_mask: bool,
line_type: LineType,
fill_type: FillType,
quad_as_tri: bool,
z_interp: ZInterp,
x_chunk_size: int = 0,
y_chunk_size: int = 0,
) -> None: ...
def _write_cache(self) -> NoReturn: ...
class ThreadedContourGenerator(ContourGenerator):
def __init__(
self,
x: CoordinateArray,
y: CoordinateArray,
z: CoordinateArray,
mask: MaskArray,
*,
corner_mask: bool,
line_type: LineType,
fill_type: FillType,
quad_as_tri: bool,
z_interp: ZInterp,
x_chunk_size: int = 0,
y_chunk_size: int = 0,
thread_count: int = 0,
) -> None: ...
def _write_cache(self) -> None: ...

View File

@ -0,0 +1 @@
__version__ = "1.3.0"

View File

@ -0,0 +1,261 @@
from __future__ import annotations
from itertools import chain
from typing import TYPE_CHECKING
import numpy as np
from contourpy.typecheck import check_code_array, check_offset_array, check_point_array
from contourpy.types import CLOSEPOLY, LINETO, MOVETO, code_dtype, offset_dtype, point_dtype
if TYPE_CHECKING:
import contourpy._contourpy as cpy
def codes_from_offsets(offsets: cpy.OffsetArray) -> cpy.CodeArray:
"""Determine codes from offsets, assuming they all correspond to closed polygons.
"""
check_offset_array(offsets)
n = offsets[-1]
codes = np.full(n, LINETO, dtype=code_dtype)
codes[offsets[:-1]] = MOVETO
codes[offsets[1:] - 1] = CLOSEPOLY
return codes
def codes_from_offsets_and_points(
offsets: cpy.OffsetArray,
points: cpy.PointArray,
) -> cpy.CodeArray:
"""Determine codes from offsets and points, using the equality of the start and end points of
each line to determine if lines are closed or not.
"""
check_offset_array(offsets)
check_point_array(points)
codes = np.full(len(points), LINETO, dtype=code_dtype)
codes[offsets[:-1]] = MOVETO
end_offsets = offsets[1:] - 1
closed = np.all(points[offsets[:-1]] == points[end_offsets], axis=1)
codes[end_offsets[closed]] = CLOSEPOLY
return codes
def codes_from_points(points: cpy.PointArray) -> cpy.CodeArray:
"""Determine codes for a single line, using the equality of the start and end points to
determine if the line is closed or not.
"""
check_point_array(points)
n = len(points)
codes = np.full(n, LINETO, dtype=code_dtype)
codes[0] = MOVETO
if np.all(points[0] == points[-1]):
codes[-1] = CLOSEPOLY
return codes
def concat_codes(list_of_codes: list[cpy.CodeArray]) -> cpy.CodeArray:
"""Concatenate a list of codes arrays into a single code array.
"""
if not list_of_codes:
raise ValueError("Empty list passed to concat_codes")
return np.concatenate(list_of_codes, dtype=code_dtype)
def concat_codes_or_none(list_of_codes_or_none: list[cpy.CodeArray | None]) -> cpy.CodeArray | None:
"""Concatenate a list of codes arrays or None into a single code array or None.
"""
list_of_codes = [codes for codes in list_of_codes_or_none if codes is not None]
if list_of_codes:
return concat_codes(list_of_codes)
else:
return None
def concat_offsets(list_of_offsets: list[cpy.OffsetArray]) -> cpy.OffsetArray:
"""Concatenate a list of offsets arrays into a single offset array.
"""
if not list_of_offsets:
raise ValueError("Empty list passed to concat_offsets")
n = len(list_of_offsets)
cumulative = np.cumsum([offsets[-1] for offsets in list_of_offsets], dtype=offset_dtype)
ret: cpy.OffsetArray = np.concatenate(
(list_of_offsets[0], *(list_of_offsets[i+1][1:] + cumulative[i] for i in range(n-1))),
dtype=offset_dtype,
)
return ret
def concat_offsets_or_none(
list_of_offsets_or_none: list[cpy.OffsetArray | None],
) -> cpy.OffsetArray | None:
"""Concatenate a list of offsets arrays or None into a single offset array or None.
"""
list_of_offsets = [offsets for offsets in list_of_offsets_or_none if offsets is not None]
if list_of_offsets:
return concat_offsets(list_of_offsets)
else:
return None
def concat_points(list_of_points: list[cpy.PointArray]) -> cpy.PointArray:
"""Concatenate a list of point arrays into a single point array.
"""
if not list_of_points:
raise ValueError("Empty list passed to concat_points")
return np.concatenate(list_of_points, dtype=point_dtype)
def concat_points_or_none(
list_of_points_or_none: list[cpy.PointArray | None],
) -> cpy.PointArray | None:
"""Concatenate a list of point arrays or None into a single point array or None.
"""
list_of_points = [points for points in list_of_points_or_none if points is not None]
if list_of_points:
return concat_points(list_of_points)
else:
return None
def concat_points_or_none_with_nan(
list_of_points_or_none: list[cpy.PointArray | None],
) -> cpy.PointArray | None:
"""Concatenate a list of points or None into a single point array or None, with NaNs used to
separate each line.
"""
list_of_points = [points for points in list_of_points_or_none if points is not None]
if list_of_points:
return concat_points_with_nan(list_of_points)
else:
return None
def concat_points_with_nan(list_of_points: list[cpy.PointArray]) -> cpy.PointArray:
"""Concatenate a list of points into a single point array with NaNs used to separate each line.
"""
if not list_of_points:
raise ValueError("Empty list passed to concat_points_with_nan")
if len(list_of_points) == 1:
return list_of_points[0]
else:
nan_spacer = np.full((1, 2), np.nan, dtype=point_dtype)
list_of_points = [list_of_points[0],
*list(chain(*((nan_spacer, x) for x in list_of_points[1:])))]
return concat_points(list_of_points)
def insert_nan_at_offsets(points: cpy.PointArray, offsets: cpy.OffsetArray) -> cpy.PointArray:
"""Insert NaNs into a point array at locations specified by an offset array.
"""
check_point_array(points)
check_offset_array(offsets)
if len(offsets) <= 2:
return points
else:
nan_spacer = np.array([np.nan, np.nan], dtype=point_dtype)
# Convert offsets to int64 to avoid numpy error when mixing signed and unsigned ints.
return np.insert(points, offsets[1:-1].astype(np.int64), nan_spacer, axis=0)
def offsets_from_codes(codes: cpy.CodeArray) -> cpy.OffsetArray:
"""Determine offsets from codes using locations of MOVETO codes.
"""
check_code_array(codes)
return np.append(np.nonzero(codes == MOVETO)[0], len(codes)).astype(offset_dtype)
def offsets_from_lengths(list_of_points: list[cpy.PointArray]) -> cpy.OffsetArray:
"""Determine offsets from lengths of point arrays.
"""
if not list_of_points:
raise ValueError("Empty list passed to offsets_from_lengths")
return np.cumsum([0] + [len(line) for line in list_of_points], dtype=offset_dtype)
def outer_offsets_from_list_of_codes(list_of_codes: list[cpy.CodeArray]) -> cpy.OffsetArray:
"""Determine outer offsets from codes using locations of MOVETO codes.
"""
if not list_of_codes:
raise ValueError("Empty list passed to outer_offsets_from_list_of_codes")
return np.cumsum([0] + [np.count_nonzero(codes == MOVETO) for codes in list_of_codes],
dtype=offset_dtype)
def outer_offsets_from_list_of_offsets(list_of_offsets: list[cpy.OffsetArray]) -> cpy.OffsetArray:
"""Determine outer offsets from a list of offsets.
"""
if not list_of_offsets:
raise ValueError("Empty list passed to outer_offsets_from_list_of_offsets")
return np.cumsum([0] + [len(offsets)-1 for offsets in list_of_offsets], dtype=offset_dtype)
def remove_nan(points: cpy.PointArray) -> tuple[cpy.PointArray, cpy.OffsetArray]:
"""Remove NaN from a points array, also return the offsets corresponding to the NaN removed.
"""
check_point_array(points)
nan_offsets = np.nonzero(np.isnan(points[:, 0]))[0]
if len(nan_offsets) == 0:
return points, np.array([0, len(points)], dtype=offset_dtype)
else:
points = np.delete(points, nan_offsets, axis=0)
nan_offsets -= np.arange(len(nan_offsets))
offsets: cpy.OffsetArray = np.empty(len(nan_offsets)+2, dtype=offset_dtype)
offsets[0] = 0
offsets[1:-1] = nan_offsets
offsets[-1] = len(points)
return points, offsets
def split_codes_by_offsets(codes: cpy.CodeArray, offsets: cpy.OffsetArray) -> list[cpy.CodeArray]:
"""Split a code array at locations specified by an offset array into a list of code arrays.
"""
check_code_array(codes)
check_offset_array(offsets)
if len(offsets) > 2:
return np.split(codes, offsets[1:-1])
else:
return [codes]
def split_points_by_offsets(
points: cpy.PointArray,
offsets: cpy.OffsetArray,
) -> list[cpy.PointArray]:
"""Split a point array at locations specified by an offset array into a list of point arrays.
"""
check_point_array(points)
check_offset_array(offsets)
if len(offsets) > 2:
return np.split(points, offsets[1:-1])
else:
return [points]
def split_points_at_nan(points: cpy.PointArray) -> list[cpy.PointArray]:
"""Split a points array at NaNs into a list of point arrays.
"""
check_point_array(points)
nan_offsets = np.nonzero(np.isnan(points[:, 0]))[0]
if len(nan_offsets) == 0:
return [points]
else:
nan_offsets = np.concatenate(([-1], nan_offsets, [len(points)]))
return [points[s+1:e] for s, e in zip(nan_offsets[:-1], nan_offsets[1:])]

View File

@ -0,0 +1,95 @@
from __future__ import annotations
import math
def calc_chunk_sizes(
chunk_size: int | tuple[int, int] | None,
chunk_count: int | tuple[int, int] | None,
total_chunk_count: int | None,
ny: int,
nx: int,
) -> tuple[int, int]:
"""Calculate chunk sizes.
Args:
chunk_size (int or tuple(int, int), optional): Chunk size in (y, x) directions, or the same
size in both directions if only one is specified. Cannot be negative.
chunk_count (int or tuple(int, int), optional): Chunk count in (y, x) directions, or the
same count in both directions if only one is specified. If less than 1, set to 1.
total_chunk_count (int, optional): Total number of chunks. If less than 1, set to 1.
ny (int): Number of grid points in y-direction.
nx (int): Number of grid points in x-direction.
Return:
tuple(int, int): Chunk sizes (y_chunk_size, x_chunk_size).
Note:
Zero or one of ``chunk_size``, ``chunk_count`` and ``total_chunk_count`` should be
specified.
"""
if sum([chunk_size is not None, chunk_count is not None, total_chunk_count is not None]) > 1:
raise ValueError("Only one of chunk_size, chunk_count and total_chunk_count should be set")
if nx < 2 or ny < 2:
raise ValueError(f"(ny, nx) must be at least (2, 2), not ({ny}, {nx})")
if total_chunk_count is not None:
max_chunk_count = (nx-1)*(ny-1)
total_chunk_count = min(max(total_chunk_count, 1), max_chunk_count)
if total_chunk_count == 1:
chunk_size = 0
elif total_chunk_count == max_chunk_count:
chunk_size = (1, 1)
else:
factors = two_factors(total_chunk_count)
if ny > nx:
chunk_count = factors
else:
chunk_count = (factors[1], factors[0])
if chunk_count is not None:
if isinstance(chunk_count, tuple):
y_chunk_count, x_chunk_count = chunk_count
else:
y_chunk_count = x_chunk_count = chunk_count
x_chunk_count = min(max(x_chunk_count, 1), nx-1)
y_chunk_count = min(max(y_chunk_count, 1), ny-1)
chunk_size = (math.ceil((ny-1) / y_chunk_count), math.ceil((nx-1) / x_chunk_count))
if chunk_size is None:
y_chunk_size = x_chunk_size = 0
elif isinstance(chunk_size, tuple):
y_chunk_size, x_chunk_size = chunk_size
else:
y_chunk_size = x_chunk_size = chunk_size
if x_chunk_size < 0 or y_chunk_size < 0:
raise ValueError("chunk_size cannot be negative")
return y_chunk_size, x_chunk_size
def two_factors(n: int) -> tuple[int, int]:
"""Split an integer into two integer factors.
The two factors will be as close as possible to the sqrt of n, and are returned in decreasing
order. Worst case returns (n, 1).
Args:
n (int): The integer to factorize, must be positive.
Return:
tuple(int, int): The two factors of n, in decreasing order.
"""
if n < 0:
raise ValueError(f"two_factors expects positive integer not {n}")
i = math.ceil(math.sqrt(n))
while n % i != 0:
i -= 1
j = n // i
if i > j:
return i, j
else:
return j, i

View File

@ -0,0 +1,620 @@
from __future__ import annotations
from typing import TYPE_CHECKING, cast
import numpy as np
from contourpy._contourpy import FillType, LineType
import contourpy.array as arr
from contourpy.enum_util import as_fill_type, as_line_type
from contourpy.typecheck import check_filled, check_lines
from contourpy.types import MOVETO, offset_dtype
if TYPE_CHECKING:
import contourpy._contourpy as cpy
def _convert_filled_from_OuterCode(
filled: cpy.FillReturn_OuterCode,
fill_type_to: FillType,
) -> cpy.FillReturn:
if fill_type_to == FillType.OuterCode:
return filled
elif fill_type_to == FillType.OuterOffset:
return (filled[0], [arr.offsets_from_codes(codes) for codes in filled[1]])
if len(filled[0]) > 0:
points = arr.concat_points(filled[0])
codes = arr.concat_codes(filled[1])
else:
points = None
codes = None
if fill_type_to == FillType.ChunkCombinedCode:
return ([points], [codes])
elif fill_type_to == FillType.ChunkCombinedOffset:
return ([points], [None if codes is None else arr.offsets_from_codes(codes)])
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
outer_offsets = None if points is None else arr.offsets_from_lengths(filled[0])
ret1: cpy.FillReturn_ChunkCombinedCodeOffset = ([points], [codes], [outer_offsets])
return ret1
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
if codes is None:
ret2: cpy.FillReturn_ChunkCombinedOffsetOffset = ([None], [None], [None])
else:
offsets = arr.offsets_from_codes(codes)
outer_offsets = arr.outer_offsets_from_list_of_codes(filled[1])
ret2 = ([points], [offsets], [outer_offsets])
return ret2
else:
raise ValueError(f"Invalid FillType {fill_type_to}")
def _convert_filled_from_OuterOffset(
filled: cpy.FillReturn_OuterOffset,
fill_type_to: FillType,
) -> cpy.FillReturn:
if fill_type_to == FillType.OuterCode:
separate_codes = [arr.codes_from_offsets(offsets) for offsets in filled[1]]
return (filled[0], separate_codes)
elif fill_type_to == FillType.OuterOffset:
return filled
if len(filled[0]) > 0:
points = arr.concat_points(filled[0])
offsets = arr.concat_offsets(filled[1])
else:
points = None
offsets = None
if fill_type_to == FillType.ChunkCombinedCode:
return ([points], [None if offsets is None else arr.codes_from_offsets(offsets)])
elif fill_type_to == FillType.ChunkCombinedOffset:
return ([points], [offsets])
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
if offsets is None:
ret1: cpy.FillReturn_ChunkCombinedCodeOffset = ([None], [None], [None])
else:
codes = arr.codes_from_offsets(offsets)
outer_offsets = arr.offsets_from_lengths(filled[0])
ret1 = ([points], [codes], [outer_offsets])
return ret1
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
if points is None:
ret2: cpy.FillReturn_ChunkCombinedOffsetOffset = ([None], [None], [None])
else:
outer_offsets = arr.outer_offsets_from_list_of_offsets(filled[1])
ret2 = ([points], [offsets], [outer_offsets])
return ret2
else:
raise ValueError(f"Invalid FillType {fill_type_to}")
def _convert_filled_from_ChunkCombinedCode(
filled: cpy.FillReturn_ChunkCombinedCode,
fill_type_to: FillType,
) -> cpy.FillReturn:
if fill_type_to == FillType.ChunkCombinedCode:
return filled
elif fill_type_to == FillType.ChunkCombinedOffset:
codes = [None if codes is None else arr.offsets_from_codes(codes) for codes in filled[1]]
return (filled[0], codes)
else:
raise ValueError(
f"Conversion from {FillType.ChunkCombinedCode} to {fill_type_to} not supported")
def _convert_filled_from_ChunkCombinedOffset(
filled: cpy.FillReturn_ChunkCombinedOffset,
fill_type_to: FillType,
) -> cpy.FillReturn:
if fill_type_to == FillType.ChunkCombinedCode:
chunk_codes: list[cpy.CodeArray | None] = []
for points, offsets in zip(*filled):
if points is None:
chunk_codes.append(None)
else:
if TYPE_CHECKING:
assert offsets is not None
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
return (filled[0], chunk_codes)
elif fill_type_to == FillType.ChunkCombinedOffset:
return filled
else:
raise ValueError(
f"Conversion from {FillType.ChunkCombinedOffset} to {fill_type_to} not supported")
def _convert_filled_from_ChunkCombinedCodeOffset(
filled: cpy.FillReturn_ChunkCombinedCodeOffset,
fill_type_to: FillType,
) -> cpy.FillReturn:
if fill_type_to == FillType.OuterCode:
separate_points = []
separate_codes = []
for points, codes, outer_offsets in zip(*filled):
if points is not None:
if TYPE_CHECKING:
assert codes is not None
assert outer_offsets is not None
separate_points += arr.split_points_by_offsets(points, outer_offsets)
separate_codes += arr.split_codes_by_offsets(codes, outer_offsets)
return (separate_points, separate_codes)
elif fill_type_to == FillType.OuterOffset:
separate_points = []
separate_offsets = []
for points, codes, outer_offsets in zip(*filled):
if points is not None:
if TYPE_CHECKING:
assert codes is not None
assert outer_offsets is not None
separate_points += arr.split_points_by_offsets(points, outer_offsets)
separate_codes = arr.split_codes_by_offsets(codes, outer_offsets)
separate_offsets += [arr.offsets_from_codes(codes) for codes in separate_codes]
return (separate_points, separate_offsets)
elif fill_type_to == FillType.ChunkCombinedCode:
ret1: cpy.FillReturn_ChunkCombinedCode = (filled[0], filled[1])
return ret1
elif fill_type_to == FillType.ChunkCombinedOffset:
all_offsets = [None if codes is None else arr.offsets_from_codes(codes)
for codes in filled[1]]
ret2: cpy.FillReturn_ChunkCombinedOffset = (filled[0], all_offsets)
return ret2
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
return filled
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
chunk_offsets: list[cpy.OffsetArray | None] = []
chunk_outer_offsets: list[cpy.OffsetArray | None] = []
for codes, outer_offsets in zip(*filled[1:]):
if codes is None:
chunk_offsets.append(None)
chunk_outer_offsets.append(None)
else:
if TYPE_CHECKING:
assert outer_offsets is not None
offsets = arr.offsets_from_codes(codes)
outer_offsets = np.array([np.nonzero(offsets == oo)[0][0] for oo in outer_offsets],
dtype=offset_dtype)
chunk_offsets.append(offsets)
chunk_outer_offsets.append(outer_offsets)
ret3: cpy.FillReturn_ChunkCombinedOffsetOffset = (
filled[0], chunk_offsets, chunk_outer_offsets,
)
return ret3
else:
raise ValueError(f"Invalid FillType {fill_type_to}")
def _convert_filled_from_ChunkCombinedOffsetOffset(
filled: cpy.FillReturn_ChunkCombinedOffsetOffset,
fill_type_to: FillType,
) -> cpy.FillReturn:
if fill_type_to == FillType.OuterCode:
separate_points = []
separate_codes = []
for points, offsets, outer_offsets in zip(*filled):
if points is not None:
if TYPE_CHECKING:
assert offsets is not None
assert outer_offsets is not None
codes = arr.codes_from_offsets_and_points(offsets, points)
outer_offsets = offsets[outer_offsets]
separate_points += arr.split_points_by_offsets(points, outer_offsets)
separate_codes += arr.split_codes_by_offsets(codes, outer_offsets)
return (separate_points, separate_codes)
elif fill_type_to == FillType.OuterOffset:
separate_points = []
separate_offsets = []
for points, offsets, outer_offsets in zip(*filled):
if points is not None:
if TYPE_CHECKING:
assert offsets is not None
assert outer_offsets is not None
if len(outer_offsets) > 2:
separate_offsets += [offsets[s:e+1] - offsets[s] for s, e in
zip(outer_offsets[:-1], outer_offsets[1:])]
else:
separate_offsets.append(offsets)
separate_points += arr.split_points_by_offsets(points, offsets[outer_offsets])
return (separate_points, separate_offsets)
elif fill_type_to == FillType.ChunkCombinedCode:
chunk_codes: list[cpy.CodeArray | None] = []
for points, offsets, outer_offsets in zip(*filled):
if points is None:
chunk_codes.append(None)
else:
if TYPE_CHECKING:
assert offsets is not None
assert outer_offsets is not None
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
ret1: cpy.FillReturn_ChunkCombinedCode = (filled[0], chunk_codes)
return ret1
elif fill_type_to == FillType.ChunkCombinedOffset:
return (filled[0], filled[1])
elif fill_type_to == FillType.ChunkCombinedCodeOffset:
chunk_codes = []
chunk_outer_offsets: list[cpy.OffsetArray | None] = []
for points, offsets, outer_offsets in zip(*filled):
if points is None:
chunk_codes.append(None)
chunk_outer_offsets.append(None)
else:
if TYPE_CHECKING:
assert offsets is not None
assert outer_offsets is not None
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
chunk_outer_offsets.append(offsets[outer_offsets])
ret2: cpy.FillReturn_ChunkCombinedCodeOffset = (filled[0], chunk_codes, chunk_outer_offsets)
return ret2
elif fill_type_to == FillType.ChunkCombinedOffsetOffset:
return filled
else:
raise ValueError(f"Invalid FillType {fill_type_to}")
def convert_filled(
filled: cpy.FillReturn,
fill_type_from: FillType | str,
fill_type_to: FillType | str,
) -> cpy.FillReturn:
"""Convert filled contours from one :class:`~.FillType` to another.
Args:
filled (sequence of arrays): Filled contour polygons to convert, such as those returned by
:meth:`.ContourGenerator.filled`.
fill_type_from (FillType or str): :class:`~.FillType` to convert from as enum or
string equivalent.
fill_type_to (FillType or str): :class:`~.FillType` to convert to as enum or string
equivalent.
Return:
Converted filled contour polygons.
When converting non-chunked fill types (``FillType.OuterCode`` or ``FillType.OuterOffset``) to
chunked ones, all polygons are placed in the first chunk. When converting in the other
direction, all chunk information is discarded. Converting a fill type that is not aware of the
relationship between outer boundaries and contained holes (``FillType.ChunkCombinedCode`` or
``FillType.ChunkCombinedOffset``) to one that is will raise a ``ValueError``.
.. versionadded:: 1.2.0
"""
fill_type_from = as_fill_type(fill_type_from)
fill_type_to = as_fill_type(fill_type_to)
check_filled(filled, fill_type_from)
if fill_type_from == FillType.OuterCode:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_OuterCode, filled)
return _convert_filled_from_OuterCode(filled, fill_type_to)
elif fill_type_from == FillType.OuterOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_OuterOffset, filled)
return _convert_filled_from_OuterOffset(filled, fill_type_to)
elif fill_type_from == FillType.ChunkCombinedCode:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
return _convert_filled_from_ChunkCombinedCode(filled, fill_type_to)
elif fill_type_from == FillType.ChunkCombinedOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
return _convert_filled_from_ChunkCombinedOffset(filled, fill_type_to)
elif fill_type_from == FillType.ChunkCombinedCodeOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
return _convert_filled_from_ChunkCombinedCodeOffset(filled, fill_type_to)
elif fill_type_from == FillType.ChunkCombinedOffsetOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
return _convert_filled_from_ChunkCombinedOffsetOffset(filled, fill_type_to)
else:
raise ValueError(f"Invalid FillType {fill_type_from}")
def _convert_lines_from_Separate(
lines: cpy.LineReturn_Separate,
line_type_to: LineType,
) -> cpy.LineReturn:
if line_type_to == LineType.Separate:
return lines
elif line_type_to == LineType.SeparateCode:
separate_codes = [arr.codes_from_points(line) for line in lines]
return (lines, separate_codes)
elif line_type_to == LineType.ChunkCombinedCode:
if not lines:
ret1: cpy.LineReturn_ChunkCombinedCode = ([None], [None])
else:
points = arr.concat_points(lines)
offsets = arr.offsets_from_lengths(lines)
codes = arr.codes_from_offsets_and_points(offsets, points)
ret1 = ([points], [codes])
return ret1
elif line_type_to == LineType.ChunkCombinedOffset:
if not lines:
ret2: cpy.LineReturn_ChunkCombinedOffset = ([None], [None])
else:
ret2 = ([arr.concat_points(lines)], [arr.offsets_from_lengths(lines)])
return ret2
elif line_type_to == LineType.ChunkCombinedNan:
if not lines:
ret3: cpy.LineReturn_ChunkCombinedNan = ([None],)
else:
ret3 = ([arr.concat_points_with_nan(lines)],)
return ret3
else:
raise ValueError(f"Invalid LineType {line_type_to}")
def _convert_lines_from_SeparateCode(
lines: cpy.LineReturn_SeparateCode,
line_type_to: LineType,
) -> cpy.LineReturn:
if line_type_to == LineType.Separate:
# Drop codes.
return lines[0]
elif line_type_to == LineType.SeparateCode:
return lines
elif line_type_to == LineType.ChunkCombinedCode:
if not lines[0]:
ret1: cpy.LineReturn_ChunkCombinedCode = ([None], [None])
else:
ret1 = ([arr.concat_points(lines[0])], [arr.concat_codes(lines[1])])
return ret1
elif line_type_to == LineType.ChunkCombinedOffset:
if not lines[0]:
ret2: cpy.LineReturn_ChunkCombinedOffset = ([None], [None])
else:
ret2 = ([arr.concat_points(lines[0])], [arr.offsets_from_lengths(lines[0])])
return ret2
elif line_type_to == LineType.ChunkCombinedNan:
if not lines[0]:
ret3: cpy.LineReturn_ChunkCombinedNan = ([None],)
else:
ret3 = ([arr.concat_points_with_nan(lines[0])],)
return ret3
else:
raise ValueError(f"Invalid LineType {line_type_to}")
def _convert_lines_from_ChunkCombinedCode(
lines: cpy.LineReturn_ChunkCombinedCode,
line_type_to: LineType,
) -> cpy.LineReturn:
if line_type_to in (LineType.Separate, LineType.SeparateCode):
separate_lines = []
for points, codes in zip(*lines):
if points is not None:
if TYPE_CHECKING:
assert codes is not None
split_at = np.nonzero(codes == MOVETO)[0]
if len(split_at) > 1:
separate_lines += np.split(points, split_at[1:])
else:
separate_lines.append(points)
if line_type_to == LineType.Separate:
return separate_lines
else:
separate_codes = [arr.codes_from_points(line) for line in separate_lines]
return (separate_lines, separate_codes)
elif line_type_to == LineType.ChunkCombinedCode:
return lines
elif line_type_to == LineType.ChunkCombinedOffset:
chunk_offsets = [None if codes is None else arr.offsets_from_codes(codes)
for codes in lines[1]]
return (lines[0], chunk_offsets)
elif line_type_to == LineType.ChunkCombinedNan:
points_nan: list[cpy.PointArray | None] = []
for points, codes in zip(*lines):
if points is None:
points_nan.append(None)
else:
if TYPE_CHECKING:
assert codes is not None
offsets = arr.offsets_from_codes(codes)
points_nan.append(arr.insert_nan_at_offsets(points, offsets))
return (points_nan,)
else:
raise ValueError(f"Invalid LineType {line_type_to}")
def _convert_lines_from_ChunkCombinedOffset(
lines: cpy.LineReturn_ChunkCombinedOffset,
line_type_to: LineType,
) -> cpy.LineReturn:
if line_type_to in (LineType.Separate, LineType.SeparateCode):
separate_lines = []
for points, offsets in zip(*lines):
if points is not None:
if TYPE_CHECKING:
assert offsets is not None
separate_lines += arr.split_points_by_offsets(points, offsets)
if line_type_to == LineType.Separate:
return separate_lines
else:
separate_codes = [arr.codes_from_points(line) for line in separate_lines]
return (separate_lines, separate_codes)
elif line_type_to == LineType.ChunkCombinedCode:
chunk_codes: list[cpy.CodeArray | None] = []
for points, offsets in zip(*lines):
if points is None:
chunk_codes.append(None)
else:
if TYPE_CHECKING:
assert offsets is not None
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
return (lines[0], chunk_codes)
elif line_type_to == LineType.ChunkCombinedOffset:
return lines
elif line_type_to == LineType.ChunkCombinedNan:
points_nan: list[cpy.PointArray | None] = []
for points, offsets in zip(*lines):
if points is None:
points_nan.append(None)
else:
if TYPE_CHECKING:
assert offsets is not None
points_nan.append(arr.insert_nan_at_offsets(points, offsets))
return (points_nan,)
else:
raise ValueError(f"Invalid LineType {line_type_to}")
def _convert_lines_from_ChunkCombinedNan(
lines: cpy.LineReturn_ChunkCombinedNan,
line_type_to: LineType,
) -> cpy.LineReturn:
if line_type_to in (LineType.Separate, LineType.SeparateCode):
separate_lines = []
for points in lines[0]:
if points is not None:
separate_lines += arr.split_points_at_nan(points)
if line_type_to == LineType.Separate:
return separate_lines
else:
separate_codes = [arr.codes_from_points(points) for points in separate_lines]
return (separate_lines, separate_codes)
elif line_type_to == LineType.ChunkCombinedCode:
chunk_points: list[cpy.PointArray | None] = []
chunk_codes: list[cpy.CodeArray | None] = []
for points in lines[0]:
if points is None:
chunk_points.append(None)
chunk_codes.append(None)
else:
points, offsets = arr.remove_nan(points)
chunk_points.append(points)
chunk_codes.append(arr.codes_from_offsets_and_points(offsets, points))
return (chunk_points, chunk_codes)
elif line_type_to == LineType.ChunkCombinedOffset:
chunk_points = []
chunk_offsets: list[cpy.OffsetArray | None] = []
for points in lines[0]:
if points is None:
chunk_points.append(None)
chunk_offsets.append(None)
else:
points, offsets = arr.remove_nan(points)
chunk_points.append(points)
chunk_offsets.append(offsets)
return (chunk_points, chunk_offsets)
elif line_type_to == LineType.ChunkCombinedNan:
return lines
else:
raise ValueError(f"Invalid LineType {line_type_to}")
def convert_lines(
lines: cpy.LineReturn,
line_type_from: LineType | str,
line_type_to: LineType | str,
) -> cpy.LineReturn:
"""Convert contour lines from one :class:`~.LineType` to another.
Args:
lines (sequence of arrays): Contour lines to convert, such as those returned by
:meth:`.ContourGenerator.lines`.
line_type_from (LineType or str): :class:`~.LineType` to convert from as enum or
string equivalent.
line_type_to (LineType or str): :class:`~.LineType` to convert to as enum or string
equivalent.
Return:
Converted contour lines.
When converting non-chunked line types (``LineType.Separate`` or ``LineType.SeparateCode``) to
chunked ones (``LineType.ChunkCombinedCode``, ``LineType.ChunkCombinedOffset`` or
``LineType.ChunkCombinedNan``), all lines are placed in the first chunk. When converting in the
other direction, all chunk information is discarded.
.. versionadded:: 1.2.0
"""
line_type_from = as_line_type(line_type_from)
line_type_to = as_line_type(line_type_to)
check_lines(lines, line_type_from)
if line_type_from == LineType.Separate:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_Separate, lines)
return _convert_lines_from_Separate(lines, line_type_to)
elif line_type_from == LineType.SeparateCode:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_SeparateCode, lines)
return _convert_lines_from_SeparateCode(lines, line_type_to)
elif line_type_from == LineType.ChunkCombinedCode:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
return _convert_lines_from_ChunkCombinedCode(lines, line_type_to)
elif line_type_from == LineType.ChunkCombinedOffset:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
return _convert_lines_from_ChunkCombinedOffset(lines, line_type_to)
elif line_type_from == LineType.ChunkCombinedNan:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedNan, lines)
return _convert_lines_from_ChunkCombinedNan(lines, line_type_to)
else:
raise ValueError(f"Invalid LineType {line_type_from}")
def convert_multi_filled(
multi_filled: list[cpy.FillReturn],
fill_type_from: FillType | str,
fill_type_to: FillType | str,
) -> list[cpy.FillReturn]:
"""Convert multiple sets of filled contours from one :class:`~.FillType` to another.
Args:
multi_filled (nested sequence of arrays): Filled contour polygons to convert, such as those
returned by :meth:`.ContourGenerator.multi_filled`.
fill_type_from (FillType or str): :class:`~.FillType` to convert from as enum or
string equivalent.
fill_type_to (FillType or str): :class:`~.FillType` to convert to as enum or string
equivalent.
Return:
Converted sets filled contour polygons.
When converting non-chunked fill types (``FillType.OuterCode`` or ``FillType.OuterOffset``) to
chunked ones, all polygons are placed in the first chunk. When converting in the other
direction, all chunk information is discarded. Converting a fill type that is not aware of the
relationship between outer boundaries and contained holes (``FillType.ChunkCombinedCode`` or
``FillType.ChunkCombinedOffset``) to one that is will raise a ``ValueError``.
.. versionadded:: 1.3.0
"""
fill_type_from = as_fill_type(fill_type_from)
fill_type_to = as_fill_type(fill_type_to)
return [convert_filled(filled, fill_type_from, fill_type_to) for filled in multi_filled]
def convert_multi_lines(
multi_lines: list[cpy.LineReturn],
line_type_from: LineType | str,
line_type_to: LineType | str,
) -> list[cpy.LineReturn]:
"""Convert multiple sets of contour lines from one :class:`~.LineType` to another.
Args:
multi_lines (nested sequence of arrays): Contour lines to convert, such as those returned by
:meth:`.ContourGenerator.multi_lines`.
line_type_from (LineType or str): :class:`~.LineType` to convert from as enum or
string equivalent.
line_type_to (LineType or str): :class:`~.LineType` to convert to as enum or string
equivalent.
Return:
Converted set of contour lines.
When converting non-chunked line types (``LineType.Separate`` or ``LineType.SeparateCode``) to
chunked ones (``LineType.ChunkCombinedCode``, ``LineType.ChunkCombinedOffset`` or
``LineType.ChunkCombinedNan``), all lines are placed in the first chunk. When converting in the
other direction, all chunk information is discarded.
.. versionadded:: 1.3.0
"""
line_type_from = as_line_type(line_type_from)
line_type_to = as_line_type(line_type_to)
return [convert_lines(lines, line_type_from, line_type_to) for lines in multi_lines]

View File

@ -0,0 +1,207 @@
from __future__ import annotations
from typing import TYPE_CHECKING, cast
from contourpy._contourpy import FillType, LineType
from contourpy.array import (
concat_codes_or_none,
concat_offsets_or_none,
concat_points_or_none,
concat_points_or_none_with_nan,
)
from contourpy.enum_util import as_fill_type, as_line_type
from contourpy.typecheck import check_filled, check_lines
if TYPE_CHECKING:
import contourpy._contourpy as cpy
def dechunk_filled(filled: cpy.FillReturn, fill_type: FillType | str) -> cpy.FillReturn:
"""Return the specified filled contours with chunked data moved into the first chunk.
Filled contours that are not chunked (``FillType.OuterCode`` and ``FillType.OuterOffset``) and
those that are but only contain a single chunk are returned unmodified. Individual polygons are
unchanged, they are not geometrically combined.
Args:
filled (sequence of arrays): Filled contour data, such as returned by
:meth:`.ContourGenerator.filled`.
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` as enum or string
equivalent.
Return:
Filled contours in a single chunk.
.. versionadded:: 1.2.0
"""
fill_type = as_fill_type(fill_type)
if fill_type in (FillType.OuterCode, FillType.OuterOffset):
# No-op if fill_type is not chunked.
return filled
check_filled(filled, fill_type)
if len(filled[0]) < 2:
# No-op if just one chunk.
return filled
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_Chunk, filled)
points = concat_points_or_none(filled[0])
if fill_type == FillType.ChunkCombinedCode:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
if points is None:
ret1: cpy.FillReturn_ChunkCombinedCode = ([None], [None])
else:
ret1 = ([points], [concat_codes_or_none(filled[1])])
return ret1
elif fill_type == FillType.ChunkCombinedOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
if points is None:
ret2: cpy.FillReturn_ChunkCombinedOffset = ([None], [None])
else:
ret2 = ([points], [concat_offsets_or_none(filled[1])])
return ret2
elif fill_type == FillType.ChunkCombinedCodeOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
if points is None:
ret3: cpy.FillReturn_ChunkCombinedCodeOffset = ([None], [None], [None])
else:
outer_offsets = concat_offsets_or_none(filled[2])
ret3 = ([points], [concat_codes_or_none(filled[1])], [outer_offsets])
return ret3
elif fill_type == FillType.ChunkCombinedOffsetOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
if points is None:
ret4: cpy.FillReturn_ChunkCombinedOffsetOffset = ([None], [None], [None])
else:
outer_offsets = concat_offsets_or_none(filled[2])
ret4 = ([points], [concat_offsets_or_none(filled[1])], [outer_offsets])
return ret4
else:
raise ValueError(f"Invalid FillType {fill_type}")
def dechunk_lines(lines: cpy.LineReturn, line_type: LineType | str) -> cpy.LineReturn:
"""Return the specified contour lines with chunked data moved into the first chunk.
Contour lines that are not chunked (``LineType.Separate`` and ``LineType.SeparateCode``) and
those that are but only contain a single chunk are returned unmodified. Individual lines are
unchanged, they are not geometrically combined.
Args:
lines (sequence of arrays): Contour line data, such as returned by
:meth:`.ContourGenerator.lines`.
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` as enum or string
equivalent.
Return:
Contour lines in a single chunk.
.. versionadded:: 1.2.0
"""
line_type = as_line_type(line_type)
if line_type in (LineType.Separate, LineType.SeparateCode):
# No-op if line_type is not chunked.
return lines
check_lines(lines, line_type)
if len(lines[0]) < 2:
# No-op if just one chunk.
return lines
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_Chunk, lines)
if line_type == LineType.ChunkCombinedCode:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
points = concat_points_or_none(lines[0])
if points is None:
ret1: cpy.LineReturn_ChunkCombinedCode = ([None], [None])
else:
ret1 = ([points], [concat_codes_or_none(lines[1])])
return ret1
elif line_type == LineType.ChunkCombinedOffset:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
points = concat_points_or_none(lines[0])
if points is None:
ret2: cpy.LineReturn_ChunkCombinedOffset = ([None], [None])
else:
ret2 = ([points], [concat_offsets_or_none(lines[1])])
return ret2
elif line_type == LineType.ChunkCombinedNan:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedNan, lines)
points = concat_points_or_none_with_nan(lines[0])
ret3: cpy.LineReturn_ChunkCombinedNan = ([points],)
return ret3
else:
raise ValueError(f"Invalid LineType {line_type}")
def dechunk_multi_filled(
multi_filled: list[cpy.FillReturn],
fill_type: FillType | str,
) -> list[cpy.FillReturn]:
"""Return multiple sets of filled contours with chunked data moved into the first chunks.
Filled contours that are not chunked (``FillType.OuterCode`` and ``FillType.OuterOffset``) and
those that are but only contain a single chunk are returned unmodified. Individual polygons are
unchanged, they are not geometrically combined.
Args:
multi_filled (nested sequence of arrays): Filled contour data, such as returned by
:meth:`.ContourGenerator.multi_filled`.
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` as enum or string
equivalent.
Return:
Multiple sets of filled contours in a single chunk.
.. versionadded:: 1.3.0
"""
fill_type = as_fill_type(fill_type)
if fill_type in (FillType.OuterCode, FillType.OuterOffset):
# No-op if fill_type is not chunked.
return multi_filled
return [dechunk_filled(filled, fill_type) for filled in multi_filled]
def dechunk_multi_lines(
multi_lines: list[cpy.LineReturn],
line_type: LineType | str,
) -> list[cpy.LineReturn]:
"""Return multiple sets of contour lines with all chunked data moved into the first chunks.
Contour lines that are not chunked (``LineType.Separate`` and ``LineType.SeparateCode``) and
those that are but only contain a single chunk are returned unmodified. Individual lines are
unchanged, they are not geometrically combined.
Args:
multi_lines (nested sequence of arrays): Contour line data, such as returned by
:meth:`.ContourGenerator.multi_lines`.
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` as enum or string
equivalent.
Return:
Multiple sets of contour lines in a single chunk.
.. versionadded:: 1.3.0
"""
line_type = as_line_type(line_type)
if line_type in (LineType.Separate, LineType.SeparateCode):
# No-op if line_type is not chunked.
return multi_lines
return [dechunk_lines(lines, line_type) for lines in multi_lines]

View File

@ -0,0 +1,57 @@
from __future__ import annotations
from contourpy._contourpy import FillType, LineType, ZInterp
def as_fill_type(fill_type: FillType | str) -> FillType:
"""Coerce a FillType or string value to a FillType.
Args:
fill_type (FillType or str): Value to convert.
Return:
FillType: Converted value.
"""
if isinstance(fill_type, str):
try:
return FillType.__members__[fill_type]
except KeyError as e:
raise ValueError(f"'{fill_type}' is not a valid FillType") from e
else:
return fill_type
def as_line_type(line_type: LineType | str) -> LineType:
"""Coerce a LineType or string value to a LineType.
Args:
line_type (LineType or str): Value to convert.
Return:
LineType: Converted value.
"""
if isinstance(line_type, str):
try:
return LineType.__members__[line_type]
except KeyError as e:
raise ValueError(f"'{line_type}' is not a valid LineType") from e
else:
return line_type
def as_z_interp(z_interp: ZInterp | str) -> ZInterp:
"""Coerce a ZInterp or string value to a ZInterp.
Args:
z_interp (ZInterp or str): Value to convert.
Return:
ZInterp: Converted value.
"""
if isinstance(z_interp, str):
try:
return ZInterp.__members__[z_interp]
except KeyError as e:
raise ValueError(f"'{z_interp}' is not a valid ZInterp") from e
else:
return z_interp

View File

View File

@ -0,0 +1,203 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, cast
import numpy as np
from contourpy import FillType, LineType
from contourpy.enum_util import as_fill_type, as_line_type
from contourpy.types import MOVETO, code_dtype, offset_dtype, point_dtype
if TYPE_CHECKING:
import contourpy._contourpy as cpy
# Minimalist array-checking functions that check dtype, ndims and shape only.
# They do not walk the arrays to check the contents for performance reasons.
def check_code_array(codes: Any) -> None:
if not isinstance(codes, np.ndarray):
raise TypeError(f"Expected numpy array not {type(codes)}")
if codes.dtype != code_dtype:
raise ValueError(f"Expected numpy array of dtype {code_dtype} not {codes.dtype}")
if not (codes.ndim == 1 and len(codes) > 1):
raise ValueError(f"Expected numpy array of shape (?,) not {codes.shape}")
if codes[0] != MOVETO:
raise ValueError(f"First element of code array must be {MOVETO}, not {codes[0]}")
def check_offset_array(offsets: Any) -> None:
if not isinstance(offsets, np.ndarray):
raise TypeError(f"Expected numpy array not {type(offsets)}")
if offsets.dtype != offset_dtype:
raise ValueError(f"Expected numpy array of dtype {offset_dtype} not {offsets.dtype}")
if not (offsets.ndim == 1 and len(offsets) > 1):
raise ValueError(f"Expected numpy array of shape (?,) not {offsets.shape}")
if offsets[0] != 0:
raise ValueError(f"First element of offset array must be 0, not {offsets[0]}")
def check_point_array(points: Any) -> None:
if not isinstance(points, np.ndarray):
raise TypeError(f"Expected numpy array not {type(points)}")
if points.dtype != point_dtype:
raise ValueError(f"Expected numpy array of dtype {point_dtype} not {points.dtype}")
if not (points.ndim == 2 and points.shape[1] ==2 and points.shape[0] > 1):
raise ValueError(f"Expected numpy array of shape (?, 2) not {points.shape}")
def _check_tuple_of_lists_with_same_length(
maybe_tuple: Any,
tuple_length: int,
allow_empty_lists: bool = True,
) -> None:
if not isinstance(maybe_tuple, tuple):
raise TypeError(f"Expected tuple not {type(maybe_tuple)}")
if len(maybe_tuple) != tuple_length:
raise ValueError(f"Expected tuple of length {tuple_length} not {len(maybe_tuple)}")
for maybe_list in maybe_tuple:
if not isinstance(maybe_list, list):
msg = f"Expected tuple to contain {tuple_length} lists but found a {type(maybe_list)}"
raise TypeError(msg)
lengths = [len(item) for item in maybe_tuple]
if len(set(lengths)) != 1:
msg = f"Expected {tuple_length} lists with same length but lengths are {lengths}"
raise ValueError(msg)
if not allow_empty_lists and lengths[0] == 0:
raise ValueError(f"Expected {tuple_length} non-empty lists")
def check_filled(filled: cpy.FillReturn, fill_type: FillType | str) -> None:
fill_type = as_fill_type(fill_type)
if fill_type == FillType.OuterCode:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_OuterCode, filled)
_check_tuple_of_lists_with_same_length(filled, 2)
for i, (points, codes) in enumerate(zip(*filled)):
check_point_array(points)
check_code_array(codes)
if len(points) != len(codes):
raise ValueError(f"Points and codes have different lengths in polygon {i}")
elif fill_type == FillType.OuterOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_OuterOffset, filled)
_check_tuple_of_lists_with_same_length(filled, 2)
for i, (points, offsets) in enumerate(zip(*filled)):
check_point_array(points)
check_offset_array(offsets)
if offsets[-1] != len(points):
raise ValueError(f"Inconsistent points and offsets in polygon {i}")
elif fill_type == FillType.ChunkCombinedCode:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
_check_tuple_of_lists_with_same_length(filled, 2, allow_empty_lists=False)
for chunk, (points_or_none, codes_or_none) in enumerate(zip(*filled)):
if points_or_none is not None and codes_or_none is not None:
check_point_array(points_or_none)
check_code_array(codes_or_none)
if len(points_or_none) != len(codes_or_none):
raise ValueError(f"Points and codes have different lengths in chunk {chunk}")
elif not (points_or_none is None and codes_or_none is None):
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
elif fill_type == FillType.ChunkCombinedOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
_check_tuple_of_lists_with_same_length(filled, 2, allow_empty_lists=False)
for chunk, (points_or_none, offsets_or_none) in enumerate(zip(*filled)):
if points_or_none is not None and offsets_or_none is not None:
check_point_array(points_or_none)
check_offset_array(offsets_or_none)
if offsets_or_none[-1] != len(points_or_none):
raise ValueError(f"Inconsistent points and offsets in chunk {chunk}")
elif not (points_or_none is None and offsets_or_none is None):
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
elif fill_type == FillType.ChunkCombinedCodeOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
_check_tuple_of_lists_with_same_length(filled, 3, allow_empty_lists=False)
for i, (points_or_none, codes_or_none, outer_offsets_or_none) in enumerate(zip(*filled)):
if (points_or_none is not None and codes_or_none is not None and
outer_offsets_or_none is not None):
check_point_array(points_or_none)
check_code_array(codes_or_none)
check_offset_array(outer_offsets_or_none)
if len(codes_or_none) != len(points_or_none):
raise ValueError(f"Points and codes have different lengths in chunk {i}")
if outer_offsets_or_none[-1] != len(codes_or_none):
raise ValueError(f"Inconsistent codes and outer_offsets in chunk {i}")
elif not (points_or_none is None and codes_or_none is None and
outer_offsets_or_none is None):
raise ValueError(f"Inconsistent Nones in chunk {i}")
elif fill_type == FillType.ChunkCombinedOffsetOffset:
if TYPE_CHECKING:
filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
_check_tuple_of_lists_with_same_length(filled, 3, allow_empty_lists=False)
for i, (points_or_none, offsets_or_none, outer_offsets_or_none) in enumerate(zip(*filled)):
if (points_or_none is not None and offsets_or_none is not None and
outer_offsets_or_none is not None):
check_point_array(points_or_none)
check_offset_array(offsets_or_none)
check_offset_array(outer_offsets_or_none)
if offsets_or_none[-1] != len(points_or_none):
raise ValueError(f"Inconsistent points and offsets in chunk {i}")
if outer_offsets_or_none[-1] != len(offsets_or_none) - 1:
raise ValueError(f"Inconsistent offsets and outer_offsets in chunk {i}")
elif not (points_or_none is None and offsets_or_none is None and
outer_offsets_or_none is None):
raise ValueError(f"Inconsistent Nones in chunk {i}")
else:
raise ValueError(f"Invalid FillType {fill_type}")
def check_lines(lines: cpy.LineReturn, line_type: LineType | str) -> None:
line_type = as_line_type(line_type)
if line_type == LineType.Separate:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_Separate, lines)
if not isinstance(lines, list):
raise TypeError(f"Expected list not {type(lines)}")
for points in lines:
check_point_array(points)
elif line_type == LineType.SeparateCode:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_SeparateCode, lines)
_check_tuple_of_lists_with_same_length(lines, 2)
for i, (points, codes) in enumerate(zip(*lines)):
check_point_array(points)
check_code_array(codes)
if len(points) != len(codes):
raise ValueError(f"Points and codes have different lengths in line {i}")
elif line_type == LineType.ChunkCombinedCode:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
_check_tuple_of_lists_with_same_length(lines, 2, allow_empty_lists=False)
for chunk, (points_or_none, codes_or_none) in enumerate(zip(*lines)):
if points_or_none is not None and codes_or_none is not None:
check_point_array(points_or_none)
check_code_array(codes_or_none)
if len(points_or_none) != len(codes_or_none):
raise ValueError(f"Points and codes have different lengths in chunk {chunk}")
elif not (points_or_none is None and codes_or_none is None):
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
elif line_type == LineType.ChunkCombinedOffset:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
_check_tuple_of_lists_with_same_length(lines, 2, allow_empty_lists=False)
for chunk, (points_or_none, offsets_or_none) in enumerate(zip(*lines)):
if points_or_none is not None and offsets_or_none is not None:
check_point_array(points_or_none)
check_offset_array(offsets_or_none)
if offsets_or_none[-1] != len(points_or_none):
raise ValueError(f"Inconsistent points and offsets in chunk {chunk}")
elif not (points_or_none is None and offsets_or_none is None):
raise ValueError(f"Inconsistent Nones in chunk {chunk}")
elif line_type == LineType.ChunkCombinedNan:
if TYPE_CHECKING:
lines = cast(cpy.LineReturn_ChunkCombinedNan, lines)
_check_tuple_of_lists_with_same_length(lines, 1, allow_empty_lists=False)
for _chunk, points_or_none in enumerate(lines[0]):
if points_or_none is not None:
check_point_array(points_or_none)
else:
raise ValueError(f"Invalid LineType {line_type}")

View File

@ -0,0 +1,13 @@
from __future__ import annotations
import numpy as np
# dtypes of arrays returned by ContourPy.
point_dtype = np.float64
code_dtype = np.uint8
offset_dtype = np.uint32
# Kind codes used in Matplotlib Paths.
MOVETO = 1
LINETO = 2
CLOSEPOLY = 79

View File

@ -0,0 +1,5 @@
from __future__ import annotations
from contourpy.util._build_config import build_config
__all__ = ["build_config"]

View File

@ -0,0 +1,60 @@
# _build_config.py.in is converted into _build_config.py during the meson build process.
from __future__ import annotations
def build_config() -> dict[str, str]:
"""
Return a dictionary containing build configuration settings.
All dictionary keys and values are strings, for example ``False`` is
returned as ``"False"``.
.. versionadded:: 1.1.0
"""
return dict(
# Python settings
python_version="3.12",
python_install_dir=r"c:/Lib/site-packages/",
python_path=r"C:/Users/runneradmin/AppData/Local/Temp/build-env-q46jz1_c/Scripts/python.exe",
# Package versions
contourpy_version="1.3.0",
meson_version="1.5.1",
mesonpy_version="0.16.0",
pybind11_version="2.13.5",
# Misc meson settings
meson_backend="ninja",
build_dir=r"D:/a/contourpy/contourpy/.mesonpy-q97jrs7l/lib/contourpy/util",
source_dir=r"D:/a/contourpy/contourpy/lib/contourpy/util",
cross_build="False",
# Build options
build_options=r"-Dbuildtype=release -Db_ndebug=if-release -Db_vscrt=mt '-Dcpp_link_args=['ucrt.lib','vcruntime.lib','/nodefaultlib:libucrt.lib','/nodefaultlib:libvcruntime.lib']' -Dvsenv=True '--native-file=D:/a/contourpy/contourpy/.mesonpy-q97jrs7l/meson-python-native-file.ini'",
buildtype="release",
cpp_std="c++17",
debug="False",
optimization="3",
vsenv="True",
b_ndebug="if-release",
b_vscrt="mt",
# C++ compiler
compiler_name="msvc",
compiler_version="19.40.33813",
linker_id="link",
compile_command="cl",
# Host machine
host_cpu="x86_64",
host_cpu_family="x86_64",
host_cpu_endian="little",
host_cpu_system="windows",
# Build machine, same as host machine if not a cross_build
build_cpu="x86_64",
build_cpu_family="x86_64",
build_cpu_endian="little",
build_cpu_system="windows",
)

View File

@ -0,0 +1,335 @@
from __future__ import annotations
import io
from typing import TYPE_CHECKING, Any
from bokeh.io import export_png, export_svg, show
from bokeh.io.export import get_screenshot_as_png
from bokeh.layouts import gridplot
from bokeh.models.annotations.labels import Label
from bokeh.palettes import Category10
from bokeh.plotting import figure
import numpy as np
from contourpy.enum_util import as_fill_type, as_line_type
from contourpy.util.bokeh_util import filled_to_bokeh, lines_to_bokeh
from contourpy.util.renderer import Renderer
if TYPE_CHECKING:
from bokeh.models import GridPlot
from bokeh.palettes import Palette
from numpy.typing import ArrayLike
from selenium.webdriver.remote.webdriver import WebDriver
from contourpy import FillType, LineType
from contourpy._contourpy import FillReturn, LineReturn
class BokehRenderer(Renderer):
"""Utility renderer using Bokeh to render a grid of plots over the same (x, y) range.
Args:
nrows (int, optional): Number of rows of plots, default ``1``.
ncols (int, optional): Number of columns of plots, default ``1``.
figsize (tuple(float, float), optional): Figure size in inches (assuming 100 dpi), default
``(9, 9)``.
show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
want_svg (bool, optional): Whether output is required in SVG format or not, default
``False``.
Warning:
:class:`~.BokehRenderer`, unlike :class:`~.MplRenderer`, needs to be told in advance if
output to SVG format will be required later, otherwise it will assume PNG output.
"""
_figures: list[figure]
_layout: GridPlot
_palette: Palette
_want_svg: bool
def __init__(
self,
nrows: int = 1,
ncols: int = 1,
figsize: tuple[float, float] = (9, 9),
show_frame: bool = True,
want_svg: bool = False,
) -> None:
self._want_svg = want_svg
self._palette = Category10[10]
total_size = 100*np.asarray(figsize, dtype=int) # Assuming 100 dpi.
nfigures = nrows*ncols
self._figures = []
backend = "svg" if self._want_svg else "canvas"
for _ in range(nfigures):
fig = figure(output_backend=backend)
fig.xgrid.visible = False
fig.ygrid.visible = False
self._figures.append(fig)
if not show_frame:
fig.outline_line_color = None # type: ignore[assignment]
fig.axis.visible = False
self._layout = gridplot(
self._figures, ncols=ncols, toolbar_location=None, # type: ignore[arg-type]
width=total_size[0] // ncols, height=total_size[1] // nrows)
def _convert_color(self, color: str) -> str:
if isinstance(color, str) and color[0] == "C":
index = int(color[1:])
color = self._palette[index]
return color
def _get_figure(self, ax: figure | int) -> figure:
if isinstance(ax, int):
ax = self._figures[ax]
return ax
def filled(
self,
filled: FillReturn,
fill_type: FillType | str,
ax: figure | int = 0,
color: str = "C0",
alpha: float = 0.7,
) -> None:
"""Plot filled contours on a single plot.
Args:
filled (sequence of arrays): Filled contour data as returned by
:meth:`~.ContourGenerator.filled`.
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` data as returned
by :attr:`~.ContourGenerator.fill_type`, or a string equivalent.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``"C0"``.
alpha (float, optional): Opacity to plot with, default ``0.7``.
"""
fill_type = as_fill_type(fill_type)
fig = self._get_figure(ax)
color = self._convert_color(color)
xs, ys = filled_to_bokeh(filled, fill_type)
if len(xs) > 0:
fig.multi_polygons(xs=[xs], ys=[ys], color=color, fill_alpha=alpha, line_width=0)
def grid(
self,
x: ArrayLike,
y: ArrayLike,
ax: figure | int = 0,
color: str = "black",
alpha: float = 0.1,
point_color: str | None = None,
quad_as_tri_alpha: float = 0,
) -> None:
"""Plot quad grid lines on a single plot.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color to plot grid lines, default ``"black"``.
alpha (float, optional): Opacity to plot lines with, default ``0.1``.
point_color (str, optional): Color to plot grid points or ``None`` if grid points
should not be plotted, default ``None``.
quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default
``0``.
Colors may be a string color or the letter ``"C"`` followed by an integer in the range
``"C0"`` to ``"C9"`` to use a color from the ``Category10`` palette.
Warning:
``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
"""
fig = self._get_figure(ax)
x, y = self._grid_as_2d(x, y)
xs = list(x) + list(x.T)
ys = list(y) + list(y.T)
kwargs = {"line_color": color, "alpha": alpha}
fig.multi_line(xs, ys, **kwargs)
if quad_as_tri_alpha > 0:
# Assumes no quad mask.
xmid = (0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])).ravel()
ymid = (0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])).ravel()
fig.multi_line(
list(np.stack((x[:-1, :-1].ravel(), xmid, x[1:, 1:].ravel()), axis=1)),
list(np.stack((y[:-1, :-1].ravel(), ymid, y[1:, 1:].ravel()), axis=1)),
**kwargs)
fig.multi_line(
list(np.stack((x[:-1, 1:].ravel(), xmid, x[1:, :-1].ravel()), axis=1)),
list(np.stack((y[:-1, 1:].ravel(), ymid, y[1:, :-1].ravel()), axis=1)),
**kwargs)
if point_color is not None:
fig.circle(
x=x.ravel(), y=y.ravel(), fill_color=color, line_color=None, alpha=alpha, size=8)
def lines(
self,
lines: LineReturn,
line_type: LineType | str,
ax: figure | int = 0,
color: str = "C0",
alpha: float = 1.0,
linewidth: float = 1,
) -> None:
"""Plot contour lines on a single plot.
Args:
lines (sequence of arrays): Contour line data as returned by
:meth:`~.ContourGenerator.lines`.
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` data as returned
by :attr:`~.ContourGenerator.line_type`, or a string equivalent.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``"C0"``.
alpha (float, optional): Opacity to plot lines with, default ``1.0``.
linewidth (float, optional): Width of lines, default ``1``.
Note:
Assumes all lines are open line strips not closed line loops.
"""
line_type = as_line_type(line_type)
fig = self._get_figure(ax)
color = self._convert_color(color)
xs, ys = lines_to_bokeh(lines, line_type)
if xs is not None:
fig.line(xs, ys, line_color=color, line_alpha=alpha, line_width=linewidth)
def mask(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike | np.ma.MaskedArray[Any, Any],
ax: figure | int = 0,
color: str = "black",
) -> None:
"""Plot masked out grid points as circles on a single plot.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
z (masked array of shape (ny, nx): z-values.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Circle color, default ``"black"``.
"""
mask = np.ma.getmask(z) # type: ignore[no-untyped-call]
if mask is np.ma.nomask:
return
fig = self._get_figure(ax)
color = self._convert_color(color)
x, y = self._grid_as_2d(x, y)
fig.circle(x[mask], y[mask], fill_color=color, size=10)
def save(
self,
filename: str,
transparent: bool = False,
*,
webdriver: WebDriver | None = None,
) -> None:
"""Save plots to SVG or PNG file.
Args:
filename (str): Filename to save to.
transparent (bool, optional): Whether background should be transparent, default
``False``.
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
.. versionadded:: 1.1.1
Warning:
To output to SVG file, ``want_svg=True`` must have been passed to the constructor.
"""
if transparent:
for fig in self._figures:
fig.background_fill_color = None # type: ignore[assignment]
fig.border_fill_color = None # type: ignore[assignment]
if self._want_svg:
export_svg(self._layout, filename=filename, webdriver=webdriver)
else:
export_png(self._layout, filename=filename, webdriver=webdriver)
def save_to_buffer(self, *, webdriver: WebDriver | None = None) -> io.BytesIO:
"""Save plots to an ``io.BytesIO`` buffer.
Args:
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
.. versionadded:: 1.1.1
Return:
BytesIO: PNG image buffer.
"""
image = get_screenshot_as_png(self._layout, driver=webdriver)
buffer = io.BytesIO()
image.save(buffer, "png")
return buffer
def show(self) -> None:
"""Show plots in web browser, in usual Bokeh manner.
"""
show(self._layout)
def title(self, title: str, ax: figure | int = 0, color: str | None = None) -> None:
"""Set the title of a single plot.
Args:
title (str): Title text.
ax (int or Bokeh Figure, optional): Which plot to set the title of, default ``0``.
color (str, optional): Color to set title. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``None`` which is ``black``.
"""
fig = self._get_figure(ax)
fig.title = title # type: ignore[assignment]
fig.title.align = "center" # type: ignore[attr-defined]
if color is not None:
fig.title.text_color = self._convert_color(color) # type: ignore[attr-defined]
def z_values(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
ax: figure | int = 0,
color: str = "green",
fmt: str = ".1f",
quad_as_tri: bool = False,
) -> None:
"""Show ``z`` values on a single plot.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
z (array-like of shape (ny, nx): z-values.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color of added text. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``"green"``.
fmt (str, optional): Format to display z-values, default ``".1f"``.
quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centres
of quads.
Warning:
``quad_as_tri=True`` shows z-values for all quads, even if masked.
"""
fig = self._get_figure(ax)
color = self._convert_color(color)
x, y = self._grid_as_2d(x, y)
z = np.asarray(z)
ny, nx = z.shape
kwargs = {"text_color": color, "text_align": "center", "text_baseline": "middle"}
for j in range(ny):
for i in range(nx):
fig.add_layout(Label(x=x[j, i], y=y[j, i], text=f"{z[j, i]:{fmt}}", **kwargs))
if quad_as_tri:
for j in range(ny-1):
for i in range(nx-1):
xx = np.mean(x[j:j+2, i:i+2])
yy = np.mean(y[j:j+2, i:i+2])
zz = np.mean(z[j:j+2, i:i+2])
fig.add_layout(Label(x=xx, y=yy, text=f"{zz:{fmt}}", **kwargs))

View File

@ -0,0 +1,74 @@
from __future__ import annotations
from typing import TYPE_CHECKING, cast
from contourpy import FillType, LineType
from contourpy.array import offsets_from_codes
from contourpy.convert import convert_lines
from contourpy.dechunk import dechunk_lines
if TYPE_CHECKING:
from contourpy._contourpy import (
CoordinateArray,
FillReturn,
LineReturn,
LineReturn_ChunkCombinedNan,
)
def filled_to_bokeh(
filled: FillReturn,
fill_type: FillType,
) -> tuple[list[list[CoordinateArray]], list[list[CoordinateArray]]]:
xs: list[list[CoordinateArray]] = []
ys: list[list[CoordinateArray]] = []
if fill_type in (FillType.OuterOffset, FillType.ChunkCombinedOffset,
FillType.OuterCode, FillType.ChunkCombinedCode):
have_codes = fill_type in (FillType.OuterCode, FillType.ChunkCombinedCode)
for points, offsets in zip(*filled):
if points is None:
continue
if have_codes:
offsets = offsets_from_codes(offsets)
xs.append([]) # New outer with zero or more holes.
ys.append([])
for i in range(len(offsets)-1):
xys = points[offsets[i]:offsets[i+1]]
xs[-1].append(xys[:, 0])
ys[-1].append(xys[:, 1])
elif fill_type in (FillType.ChunkCombinedCodeOffset, FillType.ChunkCombinedOffsetOffset):
for points, codes_or_offsets, outer_offsets in zip(*filled):
if points is None:
continue
for j in range(len(outer_offsets)-1):
if fill_type == FillType.ChunkCombinedCodeOffset:
codes = codes_or_offsets[outer_offsets[j]:outer_offsets[j+1]]
offsets = offsets_from_codes(codes) + outer_offsets[j]
else:
offsets = codes_or_offsets[outer_offsets[j]:outer_offsets[j+1]+1]
xs.append([]) # New outer with zero or more holes.
ys.append([])
for k in range(len(offsets)-1):
xys = points[offsets[k]:offsets[k+1]]
xs[-1].append(xys[:, 0])
ys[-1].append(xys[:, 1])
else:
raise RuntimeError(f"Conversion of FillType {fill_type} to Bokeh is not implemented")
return xs, ys
def lines_to_bokeh(
lines: LineReturn,
line_type: LineType,
) -> tuple[CoordinateArray | None, CoordinateArray | None]:
lines = convert_lines(lines, line_type, LineType.ChunkCombinedNan)
lines = dechunk_lines(lines, LineType.ChunkCombinedNan)
if TYPE_CHECKING:
lines = cast(LineReturn_ChunkCombinedNan, lines)
points = lines[0][0]
if points is None:
return None, None
else:
return points[:, 0], points[:, 1]

View File

@ -0,0 +1,78 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any
import numpy as np
if TYPE_CHECKING:
from contourpy._contourpy import CoordinateArray
def simple(
shape: tuple[int, int], want_mask: bool = False,
) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
"""Return simple test data consisting of the sum of two gaussians.
Args:
shape (tuple(int, int)): 2D shape of data to return.
want_mask (bool, optional): Whether test data should be masked or not, default ``False``.
Return:
Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
``want_mask=True``.
"""
ny, nx = shape
x = np.arange(nx, dtype=np.float64)
y = np.arange(ny, dtype=np.float64)
x, y = np.meshgrid(x, y)
xscale = nx - 1.0
yscale = ny - 1.0
# z is sum of 2D gaussians.
amp = np.asarray([1.0, -1.0, 0.8, -0.9, 0.7])
mid = np.asarray([[0.4, 0.2], [0.3, 0.8], [0.9, 0.75], [0.7, 0.3], [0.05, 0.7]])
width = np.asarray([0.4, 0.2, 0.2, 0.2, 0.1])
z = np.zeros_like(x)
for i in range(len(amp)):
z += amp[i]*np.exp(-((x/xscale - mid[i, 0])**2 + (y/yscale - mid[i, 1])**2) / width[i]**2)
if want_mask:
mask = np.logical_or(
((x/xscale - 1.0)**2 / 0.2 + (y/yscale - 0.0)**2 / 0.1) < 1.0,
((x/xscale - 0.2)**2 / 0.02 + (y/yscale - 0.45)**2 / 0.08) < 1.0,
)
z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
return x, y, z
def random(
shape: tuple[int, int], seed: int = 2187, mask_fraction: float = 0.0,
) -> tuple[CoordinateArray, CoordinateArray, CoordinateArray | np.ma.MaskedArray[Any, Any]]:
"""Return random test data in the range 0 to 1.
Args:
shape (tuple(int, int)): 2D shape of data to return.
seed (int, optional): Seed for random number generator, default 2187.
mask_fraction (float, optional): Fraction of elements to mask, default 0.
Return:
Tuple of 3 arrays: ``x``, ``y``, ``z`` test data, ``z`` will be masked if
``mask_fraction`` is greater than zero.
"""
ny, nx = shape
x = np.arange(nx, dtype=np.float64)
y = np.arange(ny, dtype=np.float64)
x, y = np.meshgrid(x, y)
rng = np.random.default_rng(seed)
z = rng.uniform(size=shape)
if mask_fraction > 0.0:
mask_fraction = min(mask_fraction, 0.99)
mask = rng.uniform(size=shape) < mask_fraction
z = np.ma.array(z, mask=mask) # type: ignore[no-untyped-call]
return x, y, z

View File

@ -0,0 +1,534 @@
from __future__ import annotations
import io
from typing import TYPE_CHECKING, Any, cast
import matplotlib.collections as mcollections
import matplotlib.pyplot as plt
import numpy as np
from contourpy import FillType, LineType
from contourpy.convert import convert_filled, convert_lines
from contourpy.enum_util import as_fill_type, as_line_type
from contourpy.util.mpl_util import filled_to_mpl_paths, lines_to_mpl_paths
from contourpy.util.renderer import Renderer
if TYPE_CHECKING:
from collections.abc import Sequence
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from numpy.typing import ArrayLike
import contourpy._contourpy as cpy
class MplRenderer(Renderer):
"""Utility renderer using Matplotlib to render a grid of plots over the same (x, y) range.
Args:
nrows (int, optional): Number of rows of plots, default ``1``.
ncols (int, optional): Number of columns of plots, default ``1``.
figsize (tuple(float, float), optional): Figure size in inches, default ``(9, 9)``.
show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
backend (str, optional): Matplotlib backend to use or ``None`` for default backend.
Default ``None``.
gridspec_kw (dict, optional): Gridspec keyword arguments to pass to ``plt.subplots``,
default None.
"""
_axes: Sequence[Axes]
_fig: Figure
_want_tight: bool
def __init__(
self,
nrows: int = 1,
ncols: int = 1,
figsize: tuple[float, float] = (9, 9),
show_frame: bool = True,
backend: str | None = None,
gridspec_kw: dict[str, Any] | None = None,
) -> None:
if backend is not None:
import matplotlib as mpl
mpl.use(backend)
kwargs: dict[str, Any] = {"figsize": figsize, "squeeze": False,
"sharex": True, "sharey": True}
if gridspec_kw is not None:
kwargs["gridspec_kw"] = gridspec_kw
else:
kwargs["subplot_kw"] = {"aspect": "equal"}
self._fig, axes = plt.subplots(nrows, ncols, **kwargs)
self._axes = axes.flatten()
if not show_frame:
for ax in self._axes:
ax.axis("off")
self._want_tight = True
def __del__(self) -> None:
if hasattr(self, "_fig"):
plt.close(self._fig)
def _autoscale(self) -> None:
# Using axes._need_autoscale attribute if need to autoscale before rendering after adding
# lines/filled. Only want to autoscale once per axes regardless of how many lines/filled
# added.
for ax in self._axes:
if getattr(ax, "_need_autoscale", False):
ax.autoscale_view(tight=True)
ax._need_autoscale = False # type: ignore[attr-defined]
if self._want_tight and len(self._axes) > 1:
self._fig.tight_layout()
def _get_ax(self, ax: Axes | int) -> Axes:
if isinstance(ax, int):
ax = self._axes[ax]
return ax
def filled(
self,
filled: cpy.FillReturn,
fill_type: FillType | str,
ax: Axes | int = 0,
color: str = "C0",
alpha: float = 0.7,
) -> None:
"""Plot filled contours on a single Axes.
Args:
filled (sequence of arrays): Filled contour data as returned by
:meth:`~.ContourGenerator.filled`.
fill_type (FillType or str): Type of :meth:`~.ContourGenerator.filled` data as returned
by :attr:`~.ContourGenerator.fill_type`, or string equivalent
ax (int or Maplotlib Axes, optional): Which axes to plot on, default ``0``.
color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``tab10`` colormap. Default ``"C0"``.
alpha (float, optional): Opacity to plot with, default ``0.7``.
"""
fill_type = as_fill_type(fill_type)
ax = self._get_ax(ax)
paths = filled_to_mpl_paths(filled, fill_type)
collection = mcollections.PathCollection(
paths, facecolors=color, edgecolors="none", lw=0, alpha=alpha)
ax.add_collection(collection)
ax._need_autoscale = True # type: ignore[attr-defined]
def grid(
self,
x: ArrayLike,
y: ArrayLike,
ax: Axes | int = 0,
color: str = "black",
alpha: float = 0.1,
point_color: str | None = None,
quad_as_tri_alpha: float = 0,
) -> None:
"""Plot quad grid lines on a single Axes.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
color (str, optional): Color to plot grid lines, default ``"black"``.
alpha (float, optional): Opacity to plot lines with, default ``0.1``.
point_color (str, optional): Color to plot grid points or ``None`` if grid points
should not be plotted, default ``None``.
quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default 0.
Colors may be a string color or the letter ``"C"`` followed by an integer in the range
``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap.
Warning:
``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
"""
ax = self._get_ax(ax)
x, y = self._grid_as_2d(x, y)
kwargs: dict[str, Any] = {"color": color, "alpha": alpha}
ax.plot(x, y, x.T, y.T, **kwargs)
if quad_as_tri_alpha > 0:
# Assumes no quad mask.
xmid = 0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])
ymid = 0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])
kwargs["alpha"] = quad_as_tri_alpha
ax.plot(
np.stack((x[:-1, :-1], xmid, x[1:, 1:])).reshape((3, -1)),
np.stack((y[:-1, :-1], ymid, y[1:, 1:])).reshape((3, -1)),
np.stack((x[1:, :-1], xmid, x[:-1, 1:])).reshape((3, -1)),
np.stack((y[1:, :-1], ymid, y[:-1, 1:])).reshape((3, -1)),
**kwargs)
if point_color is not None:
ax.plot(x, y, color=point_color, alpha=alpha, marker="o", lw=0)
ax._need_autoscale = True # type: ignore[attr-defined]
def lines(
self,
lines: cpy.LineReturn,
line_type: LineType | str,
ax: Axes | int = 0,
color: str = "C0",
alpha: float = 1.0,
linewidth: float = 1,
) -> None:
"""Plot contour lines on a single Axes.
Args:
lines (sequence of arrays): Contour line data as returned by
:meth:`~.ContourGenerator.lines`.
line_type (LineType or str): Type of :meth:`~.ContourGenerator.lines` data as returned
by :attr:`~.ContourGenerator.line_type`, or string equivalent.
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``tab10`` colormap. Default ``"C0"``.
alpha (float, optional): Opacity to plot lines with, default ``1.0``.
linewidth (float, optional): Width of lines, default ``1``.
"""
line_type = as_line_type(line_type)
ax = self._get_ax(ax)
paths = lines_to_mpl_paths(lines, line_type)
collection = mcollections.PathCollection(
paths, facecolors="none", edgecolors=color, lw=linewidth, alpha=alpha)
ax.add_collection(collection)
ax._need_autoscale = True # type: ignore[attr-defined]
def mask(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike | np.ma.MaskedArray[Any, Any],
ax: Axes | int = 0,
color: str = "black",
) -> None:
"""Plot masked out grid points as circles on a single Axes.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
z (masked array of shape (ny, nx): z-values.
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
color (str, optional): Circle color, default ``"black"``.
"""
mask = np.ma.getmask(z) # type: ignore[no-untyped-call]
if mask is np.ma.nomask:
return
ax = self._get_ax(ax)
x, y = self._grid_as_2d(x, y)
ax.plot(x[mask], y[mask], "o", c=color)
def save(self, filename: str, transparent: bool = False) -> None:
"""Save plots to SVG or PNG file.
Args:
filename (str): Filename to save to.
transparent (bool, optional): Whether background should be transparent, default
``False``.
"""
self._autoscale()
self._fig.savefig(filename, transparent=transparent)
def save_to_buffer(self) -> io.BytesIO:
"""Save plots to an ``io.BytesIO`` buffer.
Return:
BytesIO: PNG image buffer.
"""
self._autoscale()
buf = io.BytesIO()
self._fig.savefig(buf, format="png")
buf.seek(0)
return buf
def show(self) -> None:
"""Show plots in an interactive window, in the usual Matplotlib manner.
"""
self._autoscale()
plt.show()
def title(self, title: str, ax: Axes | int = 0, color: str | None = None) -> None:
"""Set the title of a single Axes.
Args:
title (str): Title text.
ax (int or Matplotlib Axes, optional): Which Axes to set the title of, default ``0``.
color (str, optional): Color to set title. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``tab10`` colormap. Default is ``None`` which uses Matplotlib's default title color
that depends on the stylesheet in use.
"""
if color:
self._get_ax(ax).set_title(title, color=color)
else:
self._get_ax(ax).set_title(title)
def z_values(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
ax: Axes | int = 0,
color: str = "green",
fmt: str = ".1f",
quad_as_tri: bool = False,
) -> None:
"""Show ``z`` values on a single Axes.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
z (array-like of shape (ny, nx): z-values.
ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
color (str, optional): Color of added text. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``tab10`` colormap. Default ``"green"``.
fmt (str, optional): Format to display z-values, default ``".1f"``.
quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centers
of quads.
Warning:
``quad_as_tri=True`` shows z-values for all quads, even if masked.
"""
ax = self._get_ax(ax)
x, y = self._grid_as_2d(x, y)
z = np.asarray(z)
ny, nx = z.shape
for j in range(ny):
for i in range(nx):
ax.text(x[j, i], y[j, i], f"{z[j, i]:{fmt}}", ha="center", va="center",
color=color, clip_on=True)
if quad_as_tri:
for j in range(ny-1):
for i in range(nx-1):
xx = np.mean(x[j:j+2, i:i+2])
yy = np.mean(y[j:j+2, i:i+2])
zz = np.mean(z[j:j+2, i:i+2])
ax.text(xx, yy, f"{zz:{fmt}}", ha="center", va="center", color=color,
clip_on=True)
class MplTestRenderer(MplRenderer):
"""Test renderer implemented using Matplotlib.
No whitespace around plots and no spines/ticks displayed.
Uses Agg backend, so can only save to file/buffer, cannot call ``show()``.
"""
def __init__(
self,
nrows: int = 1,
ncols: int = 1,
figsize: tuple[float, float] = (9, 9),
) -> None:
gridspec = {
"left": 0.01,
"right": 0.99,
"top": 0.99,
"bottom": 0.01,
"wspace": 0.01,
"hspace": 0.01,
}
super().__init__(
nrows, ncols, figsize, show_frame=True, backend="Agg", gridspec_kw=gridspec,
)
for ax in self._axes:
ax.set_xmargin(0.0)
ax.set_ymargin(0.0)
ax.set_xticks([])
ax.set_yticks([])
self._want_tight = False
class MplDebugRenderer(MplRenderer):
"""Debug renderer implemented using Matplotlib.
Extends ``MplRenderer`` to add extra information to help in debugging such as markers, arrows,
text, etc.
"""
def __init__(
self,
nrows: int = 1,
ncols: int = 1,
figsize: tuple[float, float] = (9, 9),
show_frame: bool = True,
) -> None:
super().__init__(nrows, ncols, figsize, show_frame)
def _arrow(
self,
ax: Axes,
line_start: cpy.CoordinateArray,
line_end: cpy.CoordinateArray,
color: str,
alpha: float,
arrow_size: float,
) -> None:
mid = 0.5*(line_start + line_end)
along = line_end - line_start
along /= np.sqrt(np.dot(along, along)) # Unit vector.
right = np.asarray((along[1], -along[0]))
arrow = np.stack((
mid - (along*0.5 - right)*arrow_size,
mid + along*0.5*arrow_size,
mid - (along*0.5 + right)*arrow_size,
))
ax.plot(arrow[:, 0], arrow[:, 1], "-", c=color, alpha=alpha)
def filled(
self,
filled: cpy.FillReturn,
fill_type: FillType | str,
ax: Axes | int = 0,
color: str = "C1",
alpha: float = 0.7,
line_color: str = "C0",
line_alpha: float = 0.7,
point_color: str = "C0",
start_point_color: str = "red",
arrow_size: float = 0.1,
) -> None:
fill_type = as_fill_type(fill_type)
super().filled(filled, fill_type, ax, color, alpha)
if line_color is None and point_color is None:
return
ax = self._get_ax(ax)
filled = convert_filled(filled, fill_type, FillType.ChunkCombinedOffset)
# Lines.
if line_color is not None:
for points, offsets in zip(*filled):
if points is None:
continue
for start, end in zip(offsets[:-1], offsets[1:]):
xys = points[start:end]
ax.plot(xys[:, 0], xys[:, 1], c=line_color, alpha=line_alpha)
if arrow_size > 0.0:
n = len(xys)
for i in range(n-1):
self._arrow(ax, xys[i], xys[i+1], line_color, line_alpha, arrow_size)
# Points.
if point_color is not None:
for points, offsets in zip(*filled):
if points is None:
continue
mask = np.ones(offsets[-1], dtype=bool)
mask[offsets[1:]-1] = False # Exclude end points.
if start_point_color is not None:
start_indices = offsets[:-1]
mask[start_indices] = False # Exclude start points.
ax.plot(
points[:, 0][mask], points[:, 1][mask], "o", c=point_color, alpha=line_alpha)
if start_point_color is not None:
ax.plot(points[:, 0][start_indices], points[:, 1][start_indices], "o",
c=start_point_color, alpha=line_alpha)
def lines(
self,
lines: cpy.LineReturn,
line_type: LineType | str,
ax: Axes | int = 0,
color: str = "C0",
alpha: float = 1.0,
linewidth: float = 1,
point_color: str = "C0",
start_point_color: str = "red",
arrow_size: float = 0.1,
) -> None:
line_type = as_line_type(line_type)
super().lines(lines, line_type, ax, color, alpha, linewidth)
if arrow_size == 0.0 and point_color is None:
return
ax = self._get_ax(ax)
separate_lines = convert_lines(lines, line_type, LineType.Separate)
if TYPE_CHECKING:
separate_lines = cast(cpy.LineReturn_Separate, separate_lines)
if arrow_size > 0.0:
for line in separate_lines:
for i in range(len(line)-1):
self._arrow(ax, line[i], line[i+1], color, alpha, arrow_size)
if point_color is not None:
for line in separate_lines:
start_index = 0
end_index = len(line)
if start_point_color is not None:
ax.plot(line[0, 0], line[0, 1], "o", c=start_point_color, alpha=alpha)
start_index = 1
if line[0][0] == line[-1][0] and line[0][1] == line[-1][1]:
end_index -= 1
ax.plot(line[start_index:end_index, 0], line[start_index:end_index, 1], "o",
c=color, alpha=alpha)
def point_numbers(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
ax: Axes | int = 0,
color: str = "red",
) -> None:
ax = self._get_ax(ax)
x, y = self._grid_as_2d(x, y)
z = np.asarray(z)
ny, nx = z.shape
for j in range(ny):
for i in range(nx):
quad = i + j*nx
ax.text(x[j, i], y[j, i], str(quad), ha="right", va="top", color=color,
clip_on=True)
def quad_numbers(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
ax: Axes | int = 0,
color: str = "blue",
) -> None:
ax = self._get_ax(ax)
x, y = self._grid_as_2d(x, y)
z = np.asarray(z)
ny, nx = z.shape
for j in range(1, ny):
for i in range(1, nx):
quad = i + j*nx
xmid = x[j-1:j+1, i-1:i+1].mean()
ymid = y[j-1:j+1, i-1:i+1].mean()
ax.text(xmid, ymid, str(quad), ha="center", va="center", color=color, clip_on=True)
def z_levels(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
lower_level: float,
upper_level: float | None = None,
ax: Axes | int = 0,
color: str = "green",
) -> None:
ax = self._get_ax(ax)
x, y = self._grid_as_2d(x, y)
z = np.asarray(z)
ny, nx = z.shape
for j in range(ny):
for i in range(nx):
zz = z[j, i]
if upper_level is not None and zz > upper_level:
z_level = 2
elif zz > lower_level:
z_level = 1
else:
z_level = 0
ax.text(x[j, i], y[j, i], str(z_level), ha="left", va="bottom", color=color,
clip_on=True)

View File

@ -0,0 +1,76 @@
from __future__ import annotations
from typing import TYPE_CHECKING, cast
import matplotlib.path as mpath
import numpy as np
from contourpy import FillType, LineType
from contourpy.array import codes_from_offsets
if TYPE_CHECKING:
from contourpy._contourpy import FillReturn, LineReturn, LineReturn_Separate
def filled_to_mpl_paths(filled: FillReturn, fill_type: FillType) -> list[mpath.Path]:
if fill_type in (FillType.OuterCode, FillType.ChunkCombinedCode):
paths = [mpath.Path(points, codes) for points, codes in zip(*filled) if points is not None]
elif fill_type in (FillType.OuterOffset, FillType.ChunkCombinedOffset):
paths = [mpath.Path(points, codes_from_offsets(offsets))
for points, offsets in zip(*filled) if points is not None]
elif fill_type == FillType.ChunkCombinedCodeOffset:
paths = []
for points, codes, outer_offsets in zip(*filled):
if points is None:
continue
points = np.split(points, outer_offsets[1:-1])
codes = np.split(codes, outer_offsets[1:-1])
paths += [mpath.Path(p, c) for p, c in zip(points, codes)]
elif fill_type == FillType.ChunkCombinedOffsetOffset:
paths = []
for points, offsets, outer_offsets in zip(*filled):
if points is None:
continue
for i in range(len(outer_offsets)-1):
offs = offsets[outer_offsets[i]:outer_offsets[i+1]+1]
pts = points[offs[0]:offs[-1]]
paths += [mpath.Path(pts, codes_from_offsets(offs - offs[0]))]
else:
raise RuntimeError(f"Conversion of FillType {fill_type} to MPL Paths is not implemented")
return paths
def lines_to_mpl_paths(lines: LineReturn, line_type: LineType) -> list[mpath.Path]:
if line_type == LineType.Separate:
if TYPE_CHECKING:
lines = cast(LineReturn_Separate, lines)
paths = []
for line in lines:
# Drawing as Paths so that they can be closed correctly.
closed = line[0, 0] == line[-1, 0] and line[0, 1] == line[-1, 1]
paths.append(mpath.Path(line, closed=closed))
elif line_type in (LineType.SeparateCode, LineType.ChunkCombinedCode):
paths = [mpath.Path(points, codes) for points, codes in zip(*lines) if points is not None]
elif line_type == LineType.ChunkCombinedOffset:
paths = []
for points, offsets in zip(*lines):
if points is None:
continue
for i in range(len(offsets)-1):
line = points[offsets[i]:offsets[i+1]]
closed = line[0, 0] == line[-1, 0] and line[0, 1] == line[-1, 1]
paths.append(mpath.Path(line, closed=closed))
elif line_type == LineType.ChunkCombinedNan:
paths = []
for points in lines[0]:
if points is None:
continue
nan_offsets = np.nonzero(np.isnan(points[:, 0]))[0]
nan_offsets = np.concatenate([[-1], nan_offsets, [len(points)]])
for s, e in zip(nan_offsets[:-1], nan_offsets[1:]):
line = points[s+1:e]
closed = line[0, 0] == line[-1, 0] and line[0, 1] == line[-1, 1]
paths.append(mpath.Path(line, closed=closed))
else:
raise RuntimeError(f"Conversion of LineType {line_type} to MPL Paths is not implemented")
return paths

View File

@ -0,0 +1,166 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any
import numpy as np
if TYPE_CHECKING:
import io
from numpy.typing import ArrayLike
from contourpy._contourpy import CoordinateArray, FillReturn, FillType, LineReturn, LineType
class Renderer(ABC):
"""Abstract base class for renderers."""
def _grid_as_2d(self, x: ArrayLike, y: ArrayLike) -> tuple[CoordinateArray, CoordinateArray]:
x = np.asarray(x)
y = np.asarray(y)
if x.ndim == 1:
x, y = np.meshgrid(x, y)
return x, y
@abstractmethod
def filled(
self,
filled: FillReturn,
fill_type: FillType | str,
ax: Any = 0,
color: str = "C0",
alpha: float = 0.7,
) -> None:
pass
@abstractmethod
def grid(
self,
x: ArrayLike,
y: ArrayLike,
ax: Any = 0,
color: str = "black",
alpha: float = 0.1,
point_color: str | None = None,
quad_as_tri_alpha: float = 0,
) -> None:
pass
@abstractmethod
def lines(
self,
lines: LineReturn,
line_type: LineType | str,
ax: Any = 0,
color: str = "C0",
alpha: float = 1.0,
linewidth: float = 1,
) -> None:
pass
@abstractmethod
def mask(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike | np.ma.MaskedArray[Any, Any],
ax: Any = 0,
color: str = "black",
) -> None:
pass
def multi_filled(
self,
multi_filled: list[FillReturn],
fill_type: FillType | str,
ax: Any = 0,
color: str | None = None,
**kwargs: Any,
) -> None:
"""Plot multiple sets of filled contours on a single axes.
Args:
multi_filled (list of filled contour arrays): Multiple filled contour sets as returned
by :meth:`.ContourGenerator.multi_filled`.
fill_type (FillType or str): Type of filled data as returned by
:attr:`~.ContourGenerator.fill_type`, or string equivalent.
ax (int or Renderer-specific axes or figure object, optional): Which axes to plot on,
default ``0``.
color (str or None, optional): If a string color then this same color is used for all
filled contours. If ``None``, the default, then the filled contour sets use colors
from the ``tab10`` colormap in order, wrapping around to the beginning if more than
10 sets of filled contours are rendered.
kwargs: All other keyword argument are passed on to
:meth:`.Renderer.filled` unchanged.
.. versionadded:: 1.3.0
"""
if color is not None:
kwargs["color"] = color
for i, filled in enumerate(multi_filled):
if color is None:
kwargs["color"] = f"C{i % 10}"
self.filled(filled, fill_type, ax, **kwargs)
def multi_lines(
self,
multi_lines: list[LineReturn],
line_type: LineType | str,
ax: Any = 0,
color: str | None = None,
**kwargs: Any,
) -> None:
"""Plot multiple sets of contour lines on a single axes.
Args:
multi_lines (list of contour line arrays): Multiple contour line sets as returned by
:meth:`.ContourGenerator.multi_lines`.
line_type (LineType or str): Type of line data as returned by
:attr:`~.ContourGenerator.line_type`, or string equivalent.
ax (int or Renderer-specific axes or figure object, optional): Which axes to plot on,
default ``0``.
color (str or None, optional): If a string color then this same color is used for all
lines. If ``None``, the default, then the line sets use colors from the ``tab10``
colormap in order, wrapping around to the beginning if more than 10 sets of lines
are rendered.
kwargs: All other keyword argument are passed on to
:meth:`Renderer.lines` unchanged.
.. versionadded:: 1.3.0
"""
if color is not None:
kwargs["color"] = color
for i, lines in enumerate(multi_lines):
if color is None:
kwargs["color"] = f"C{i % 10}"
self.lines(lines, line_type, ax, **kwargs)
@abstractmethod
def save(self, filename: str, transparent: bool = False) -> None:
pass
@abstractmethod
def save_to_buffer(self) -> io.BytesIO:
pass
@abstractmethod
def show(self) -> None:
pass
@abstractmethod
def title(self, title: str, ax: Any = 0, color: str | None = None) -> None:
pass
@abstractmethod
def z_values(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
ax: Any = 0,
color: str = "green",
fmt: str = ".1f",
quad_as_tri: bool = False,
) -> None:
pass